Commit Graph

194 Commits

Author SHA1 Message Date
BowenBao
47d1ed60e1 [ONNX] Remove argument _retain_param_name from torch.onnx.export() function. (#61702) (#64370)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64370

As of now, the "_retain_param_name" parameter has no description in PyTorch docs website. According to code, this argument determines if we keep the original parameter names of PyTorch model in the final ONNX graph. If this is False, those original parameter names will be replaced with a series of integers starting from 1.

Since setting numbers as parameter names make no sense to users, we remove this argument from the torch.onnx.export() function to increase user experience of calling this function.

This PR will still keep it in torch.onnx.export() function for backward support while all backend logic has been changed to work as _retain_param_name is set to True.

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D30905270

Pulled By: malfet

fbshipit-source-id: ca60757ca17daaff937e9f08da42596086795f4a

Co-authored-by: fatcat-z <zhang-ji@outlook.com>
2021-09-23 22:18:52 -07:00
BowenBao
3d32dec5ba [ONNX] Deprecate enable_onnx_checker argument in torch.onnx.export() (#61708) (#64369)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64369

As of now, the "enable_onnx_checker" parameter was described as below:

enable_onnx_checker (bool, default True): If True the ONNX model checker will be run to ensure the exported model is a valid ONNX model.

An invalid ONNX graph is useless to users so such checker should be done for each call.

In this PR, we will still write the model to an ONNX file even it is invalid. And the exception will be thrown after the ONNX file has been created. This enables user output an invalid ONNX graph for debug.

This PR will still keep it in torch.onnx.export() function for backward support while all backend logic has been changed to work as enable_onnx_checker is set to True.

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D30905267

Pulled By: malfet

fbshipit-source-id: 3ad3f68e77fcec012cc7ef674cc9a61755eebc9e

Co-authored-by: fatcat-z <zhang-ji@outlook.com>
2021-09-17 14:31:41 -07:00
BowenBao
6512838fab [ONNX] Enhance shape (two changes merged) (#64585)
Summary:
Enhanced shape inference by introducing typeReliableMap.
[ONNX] exporter changes for torch hub models (https://github.com/pytorch/pytorch/issues/62856)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64585

Reviewed By: ezyang

Differential Revision: D30870418

Pulled By: msaroufim

fbshipit-source-id: 87a294799cb87d649d1d13b6114a5cfbac9be15c

Co-authored-by: jiafatom <jiafa@microsoft.com>
2021-09-15 13:02:19 -07:00
Corey Levinson
db3fcf0af3 fix typo in torch/onnx/utils.py (#63396)
Summary:
fixes minor typo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/63396

Reviewed By: pbelevich

Differential Revision: D30644295

Pulled By: SplitInfinity

fbshipit-source-id: c506f67383909aa2c0c7c533038446b4b3d76a3a
2021-09-10 09:37:44 -07:00
Meghan Lele
95d0b3199b Back out "[ONNX] Fix an issue that optimizations might adjust graph inputs unexpectedly. (#61280)" (#64004)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64004

Pull Request resolved: https://github.com/pytorch/pytorch/pull/63904

Fixes T98808160

Test Plan: T98808160

Reviewed By: msaroufim

Differential Revision: D30527450

fbshipit-source-id: 6262901a78ca929cecda1cf740893139aa26f1b4
2021-08-26 12:49:42 -07:00
BowenBao
8760254911 [ONNX] Fix an issue that optimizations might adjust graph inputs unexpectedly. (#61280) (#62763)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62763

This PR is to fix the issue that the graph inputs might be updated when we export the model in inference mode.

When a model is export in inference mode, some optimizations will be made. One side effect of these optimizations is: the inputs of graph might be adjusted. Such optimizatiosn include:

	1. Conv and BatchNorm op fusion.
	2. Do constant folding.

If the user sets export_params=False, or set keep_initializers_as_inputs=True, it's highly possible that the user wants to provide the corresponding parameters or initiliazers as the inputs of the graph.
In such situation, no matter the model is export in inference mode or training mode, exporter needs to prevent above optimizations from adjusting the graph inputs. By this, the inputs of graph could match inputs that users provided.

The changes in this PR, add an additional common judgement to see if the above optimizations needs to be done or not. From the value of export_params and keep_initializers_as_inputs arguments, infer if the graph inputs are allowed to be adjusted.
If no, these optimizations will be ignored, even other requirements are matched.

Besides these code changes, the comments of some parameters below have been updated so that users have more thoughts when they consider how to leverage these parameters for different purposes:

	1. export_params
	2. training
	3. do_constant_folding
	4. keep_initializers_as_inputs

Test Plan: Imported from OSS

Reviewed By: SplitInfinity

Differential Revision: D30375183

Pulled By: msaroufim

fbshipit-source-id: 4db8b9695649eb32a3a0fefa950ee2e5651bdba0

Co-authored-by: fatcat-z <jiz@microsoft.com>
2021-08-20 12:46:52 -07:00
BowenBao
e182401062 [ONNX] Remove aten parameter (#61652) (#62759)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62759

* remove aten argument in export()

* add export_to_pretty_string default value OperatorExportTypes.ONNX

* add DPYTORCH_ONNX_CAFFE2_BUNDLE description

Test Plan: Imported from OSS

Reviewed By: SplitInfinity

Differential Revision: D30349062

Pulled By: msaroufim

fbshipit-source-id: d9738f3aa8b80eac54548d0b9494f9f1e544f20f

Co-authored-by: Gary Miguel <garymiguel@microsoft.com>
2021-08-18 13:29:04 -07:00
BowenBao
8726f08e15 [ONNX] Update documentation (#58712) (#60249)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60249

* Add introductory paragraph explaining what ONNX is and what the
  torch.onnx module does.
* In "Tracing vs Scripting" and doc-string for torch.onnx.export(),
  clarify that exporting always happens on ScriptModules and that
  tracing and scripting are the two ways to produce a ScriptModule.
* Remove examples of using Caffe2 to run exported models.
  Caffe2's website says it's deprecated, so it's probably best not to
  encourage people to use it by including it in examples.
* Remove a lot of content that's redundant:
  * The example of how to mix tracing and scripting, and instead
    link to Introduction to TorchScript, which includes very similar
    content.
  * "Type annotations" section. Link to TorchScript docs which explain
    that in more detail.
  * "Using dictionaries to handle Named Arguments as model inputs"
    section. It's redundant with the description of the `args` argument
    to `export()`, which appears on the same page once the HTML
    is generated.
  * Remove the list of supported Tensor indexing patterns. If it's not
    in the list of unsupported patterns, users can assume it's
    supported, so having both is redundant.
  * Remove the list of supported operators and models.
    I think the list of supported operators is not very useful.
    A list of supported model architectures may be useful, but in
    reality it's already very out of date. We should add it back if
    / when we have a system for keeping it up to date.
  * "Operator Export Type" section. It's redundant with the description
    of the `operator_export_type` arg to to `export()`, which appears on
    the same page once the HTML is generated.
  * "Use external data format" section. It's redundant with the
    description of the `use_external_data_format` arg to `export()`.
  * "Training" section.  It's redundant with the
    description of the `training` arg to `export()`.
* Move the content about different operator implementations producing
  different results from the "Limitations" section into the doc for the
  `operator_export_type` arg.
* Document "quantized" -> "caffe2" behavior of
  OperatorExportTypes.ONNX_ATEN_FALLBACK.
* Combing the text about using torch.Tensor.item() and the text about
  using NumPy types into a section titled
  "Avoid NumPy and built-in Python types", since they're both
  fundamentally about the same issue.
* Rename "Write PyTorch model in Torch way" to "Avoiding Pitfalls".
* Lots of minor fixes: spelling, grammar, brevity, fixing links, adding
  links.
* Clarify limitation on input and output types. Phrasing it in terms of
  PyTorch types is much more accessible than in terms of TorchScript
  types. Also clarify what actually happens when dict and str are used
  as inputs and outputs.
* In Supported operators, use torch function and class names and link
  to them. This is more user friendly than using the internal aten
  op names.
* Remove references to VariableType.h, which doesn't appear to contain
  the information that it once did. Instead refer to the generated
  .pyi files.
* Remove the text in the FAQ about appending to lists within loops.
  I think this limitation is no longer present
  (perhaps since https://github.com/pytorch/pytorch/pull/51577).
* Minor fixes to some code I read along the way.
* Explain the current rationale for the weird ::prim_PythonOp op name.

Test Plan: Imported from OSS

Reviewed By: zou3519, ZolotukhinM

Differential Revision: D29494912

Pulled By: SplitInfinity

fbshipit-source-id: 7756c010b2320de0692369289604403d28877719

Co-authored-by: Gary Miguel <garymiguel@microsoft.com>
2021-07-08 16:29:32 -07:00
Gary Miguel
4b91355232 [ONNX] remove raw export type (#59160)
Summary:
[ONNX] remove raw export type

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59160

Reviewed By: tugsbayasgalan

Differential Revision: D28937039

Pulled By: SplitInfinity

fbshipit-source-id: 79bf91605526aa32a7304e75f50fe55d872bd4e8
2021-06-11 00:08:06 -07:00
BowenBao
0a6828a306 [ONNX] use consistent quoting for string literals (#57757) (#58695)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58695

As PEP8 says: "Pick a rule and stick to it." [1]

[1] https://www.python.org/dev/peps/pep-0008/#string-quotes

Test Plan: Imported from OSS

Reviewed By: driazati

Differential Revision: D28714811

Pulled By: SplitInfinity

fbshipit-source-id: c95103aceb1725c17c034dc6fc8216627f189548

Co-authored-by: Gary Miguel <garymiguel@microsoft.com>
2021-05-27 12:06:42 -07:00
Meghan Lele
0d5527de7a Back out "Back out "[ONNX] Process const folding progressively when converts to ONNX (#54569)"" (#58923)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58923

Original commit changeset: c54597b2048e
ghstack-source-id: 129842041

Test Plan: Sandcastle and OSS CI.

Reviewed By: snisarg

Differential Revision: D28432555

fbshipit-source-id: 2a9ec22cc004c7c6979f1cc8f3124b833cdc6634
2021-05-26 13:29:07 -07:00
Meghan Lele
c034bce979 Back out "[ONNX] Process const folding progressively when converts to ONNX (#54569)"
Summary: Original commit changeset: 833dac7c71f2

Test Plan:
```
buck test mode/dev //pytext/fb/assistant/lite/test:test -- --exact
'pytext/fb/assistant/lite/test:test - test_export_bytes_model_to_caffe2
(pytext.fb.assistant.lite.test.test.TestExport)'
```

Reviewed By: jeanm

Differential Revision: D28431840

fbshipit-source-id: 0f1d530034404421a5d51691173e1cc0ee16fdd6
2021-05-14 13:45:49 -07:00
BowenBao
bfe7728f18 [ONNX] Process const folding progressively when converts to ONNX (#54569) (#57601)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57601

This PR automatically solves onnx const attribute issue in PR https://github.com/pytorch/pytorch/pull/53784.

Test Plan: Imported from OSS

Reviewed By: malfet

Differential Revision: D28393525

Pulled By: SplitInfinity

fbshipit-source-id: 833dac7c71f24a88af62d5dd2be0a702ed34d053

Co-authored-by: David <jiafa@microsoft.com>
2021-05-13 13:42:51 -07:00
BowenBao
346dc88bfa [ONNX] Support registering custom export for prim::PythonOp from torch.autograd.Function (#55630) (#57600)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57600

Demo script:

```python
import torch

class MyReLU(torch.autograd.Function):
    staticmethod
    def forward(ctx, input, scalar_tuple, scalar, scalar_list):
        ctx.save_for_backward(input)
        return input.clamp(min=scalar)
    staticmethod
    def backward(ctx, grad_output):
        input, = ctx.saved_tensors
        grad_input = grad_output.clone()
        grad_input[input < 0] = 0
        return grad_input

class MyModule(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.linear_a = torch.nn.Linear(2, 2)
        self.linear_b = torch.nn.Linear(2, 2)
        self.relu = MyReLU.apply
    def forward(self, x):
        h = self.linear_a(x)
        h = self.relu(h, (5, 3), 2, [1, 2, 3])
        h = self.linear_b(h)
        return h

"""
User define how to export prim::PythonOp into custom op.
"""
def symbolic_pythonop(g, n, *args, **kwargs):
    # Print information:
    print('arguments of ', kwargs['name'], ':')
    print('original node: ', n)
    for i, out in enumerate(n.outputs()):
        print('original output {}: {}, requires grad: {}'.format(i, out, out.requiresGrad()))
    import torch.onnx.symbolic_helper as sym_helper
    for i, arg in enumerate(args):
        print('arg {}: {}, requires grad: {}'.format(i, arg, arg.requiresGrad() if sym_helper._is_value(arg) else False))
    for k, v in kwargs.items():
        print('key: ', k, ' v: ', v)

    # TODO: all inputs (tensors and scalars) are in args.
    #       backend can define CustomDomain::PythonOp and how info are stored however it deem fit.
    return g.op("CustomDomain::PythonOp", args[0], name_s=kwargs['name'])

torch.onnx.register_custom_op_symbolic("::prim_PythonOp", symbolic_pythonop, 9)

# Define input.
x = torch.tensor([[0.3971, 0.7544],
                  [0.5695, 0.4388]], requires_grad=True)

model = MyModule()
# Forward.
y = model(x)

torch.onnx.export(model, (x,), 'model.onnx', opset_version=12, verbose=True)
```

Test Plan: Imported from OSS

Reviewed By: malfet

Differential Revision: D28393528

Pulled By: SplitInfinity

fbshipit-source-id: e0d55b7c737c5916fda08a3b26b3306037f970df

Co-authored-by: BowenBao <bowbao@microsoft.com>
2021-05-13 13:42:49 -07:00
neginraoof
1de3525ca8 [ONNX] Handle PackedParams inputs for _propagate_and_assign_input_shapes (#56449) (#57079)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57079

Testing onnx 1.9 release, we see that the old bug is triggered for the caffe2 test:
`pytest test/onnx/test_pytorch_onnx_caffe2_quantized.py::TestQuantizedOps::test_small_model`
This is because the graph inputs
```python
graph(%x.1 : Tensor,
      %conv1._packed_params : __torch__.torch.classes.quantized.Conv2dPackedParamsBase,
      %conv2._packed_params : __torch__.torch.classes.quantized.Conv2dPackedParamsBase,
      %fc.bias : Float(10, strides=[1], requires_grad=0, device=cpu),
      %fc.weight : Float(10, 72, strides=[72, 1], requires_grad=0, device=cpu)):
```
contains `Conv2dPackedParamsBase` which is a PackedParams.
When we do flatten, we will flatten to several tensors, then the shape inference for input misaligned.
This PR record how may tensors got flattened in PackeParams, and skip by these number rather than 1, then the UT passed.
Note that tuple case should still follow the original logic.

Test Plan: Imported from OSS

Reviewed By: SplitInfinity

Differential Revision: D28393949

Pulled By: malfet

fbshipit-source-id: 98d48aad27e5ca03fb10d260f8e625478d996ee2

Co-authored-by: David <jiafa@microsoft.com>
2021-05-12 15:20:26 -07:00
BowenBao
818ce1d0d2 Add standardOps match more input type in ORT (#53813) (#56172)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56172

Enable the standardOps include **Add\Sub\Mul\Div\Gemm\Pow\Mod**  with low precision input in ORT

Test Plan: Imported from OSS

Reviewed By: pbelevich

Differential Revision: D27866136

Pulled By: SplitInfinity

fbshipit-source-id: f2cf5649fffefd68c0cc7b6dce94198751636727
2021-04-21 17:58:08 -07:00
Sam Estep
75024e228c Add lint for unqualified type: ignore (#56290)
Summary:
The other half of https://github.com/pytorch/pytorch/issues/56272.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56290

Test Plan:
CI should pass on the tip of this PR, and we know that the lint works because the following CI runs (before this PR was finished) failed:

- https://github.com/pytorch/pytorch/runs/2384511062
- https://github.com/pytorch/pytorch/actions/runs/765036024

Reviewed By: seemethere

Differential Revision: D27867219

Pulled By: samestep

fbshipit-source-id: e648f07b6822867e70833e23ddafe7fb7eaca235
2021-04-21 08:07:23 -07:00
Negin Raoof
cd9dd653e9 [ONNX] Support primitive type input/outputs and attributes (#53550) (#54864)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54864

Support primitive type attributes. Needed for Silero model.

Test Plan: Imported from OSS

Reviewed By: nikithamalgifb

Differential Revision: D27408982

Pulled By: SplitInfinity

fbshipit-source-id: 16b291eedbe9f9bb31d7664a29a484555df53755
2021-03-31 21:14:20 -07:00
Peiyuan Liao
3519625a34 Fix onnx warning message (#54371)
Summary:
Adding a space between "as" and "Dropout".

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54371

Reviewed By: radkris-git

Differential Revision: D27244053

Pulled By: heitorschueroff

fbshipit-source-id: 500ea719e239ce89e5ac4b54e5b32a36155e8544
2021-03-23 03:05:52 -07:00
BowenBao
7f17058894 [ONNX] Symbolic shape inference (#51481) (#53307)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53307

This PR did symbolic shape inference, in the onnx pass _jit_pass_onnx_graph_shape_type_inference.
It creates a singleton ConstantValueMap.
It leverages constant folding technique and did a per-op based handling for ConstantValueMap.
As a byproduct, it enables fold_if pass for dynamic axes cases, typically for faster-rcnn etc.

The core change is in `torch/csrc/jit/passes/onnx/shape_type_inference.cpp` and `torch/csrc/jit/passes/onnx/constant_map.cpp`.

We usually need copy tensor to store in the ConstantValueMap, otherwise the underlying value may change. I see this issue in (1) from_blob (2) get value from Constant node.

Test Plan: Imported from OSS

Reviewed By: pbelevich, malfet

Differential Revision: D26922414

Pulled By: SplitInfinity

fbshipit-source-id: 7654dc13d1de8d9496ad4be89f1454260d7bdeb0
2021-03-12 02:49:14 -08:00
BowenBao
57d1df071f [ONNX] Support inplace operations on inplace indexing (#52063) (#53306)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53306

* [ONNX] Fix for sequence of mutations in blocks (#51577)

Fixes consecutive mutations in a tensor inside blocks.
Also, support append and pop in blocks.

* Support inplace operations + indexing

* Clean up old pass for remove mutations

* Add loop test

* Fixes for set attr in loops

* Removing the new jit API flag

* [ONNX] Redesign onnx pass to enable shape type dependent pattern conversion - cont (#51795)

With the introduction of ONNX shape inference, shape and type are inferred on the fly as operators get converted from ATen to ONNX when running symbolic function. This resolves the shape/type requirement for the symbolic functions. The pre-onnx passes however, can not be supported by shape inference, since at that stage the operators in the graph are still ATen operators.

This PR is to update the design of ONNX pass, to enable a mechanism of capturing subgraphs of ATen operators of certain patterns, and convert them later, when shape/type information of upstream operators are available.

The new design will require pre-onnx passes that need shape/type to be written in two parts, encapsulation and conversion.

    The encapsulation part will find the nodes of patterns, like how pre-onnx passes were written previously. But instead of converting the nodes, it will encapsulate them into a sub-block of a new placeholder node. This part is called before onnx pass, so it runs before calling symbolic functions.

    The conversion part will be called inside the onnx pass. In onnx pass, run_symbolic_func will be called for each node in topological order. When it reaches the placeholder node, the conversion part will be invoked. It will convert the nodes inside the sub-block based on pattern. By that time, it will have shape/type of upstream operators available. After the conversion is complete, the placeholder node will be removed, and nodes inside its sub-block converted. Run_symbolic_func will be called for these nodes, and they will be converted from ATen operator to ONNX operator.

This PR includes several other fixes, listed below.
* ~~replace helper.cpp with onnx_utils.cpp for holding utility functions.~~
* fix EraseNumberTypes on Bool type, the code was outdated that back then Bool type doesn't exist.
* ~~enable onnx shape inference in export with parameter/initializer data.~~
* other code clean ups.
* fix insertion of identity nodes for loop opset 13 sequence output.

~~PR depends on #51603~~

* Fix after merge

* clang

* Fix clang

* Fix clang

* Fix warning message.

* Fixes for non-model param attributes

* Fix for caffe2

* Additional test

* clang

* Skip test for lower opsets

* fix clang-tidy

* Update init.cpp

* Update remove_inplace_ops_for_onnx.cpp

* Update remove_inplace_ops_for_onnx.cpp

* Update remove_inplace_ops_for_onnx.cpp

* Fix for clang formatting

Test Plan: Imported from OSS

Reviewed By: pbelevich, malfet

Differential Revision: D26922416

Pulled By: SplitInfinity

fbshipit-source-id: e7108620b39b6404c594910786c4d275fee59d84

Co-authored-by: Bowen Bao <bowbao@microsoft.com>
2021-03-12 02:49:11 -08:00
BowenBao
b9e900ee52 [ONNX] Update inputs/input_names formatting to avoid ValueError with scriptMethods (#53519) (#53548)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53548

fixes issue faced in #53506

Test Plan: Imported from OSS

Reviewed By: SplitInfinity

Differential Revision: D26922415

Pulled By: malfet

fbshipit-source-id: b61842827bb14cef8c7a7089b2426fa53e642c90
2021-03-11 14:26:02 -08:00
BowenBao
3f9c803fe8 [ONNX] Redesign onnx pass to enable shape type dependent pattern conversion - cont (#51795) (#53304)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53304

With the introduction of ONNX shape inference, shape and type are inferred on the fly as operators get converted from ATen to ONNX when running symbolic function. This resolves the shape/type requirement for the symbolic functions. The pre-onnx passes however, can not be supported by shape inference, since at that stage the operators in the graph are still ATen operators.

This PR is to update the design of ONNX pass, to enable a mechanism of capturing subgraphs of ATen operators of certain patterns, and convert them later, when shape/type information of upstream operators are available.

The new design will require pre-onnx passes that need shape/type to be written in two parts, encapsulation and conversion.

    The encapsulation part will find the nodes of patterns, like how pre-onnx passes were written previously. But instead of converting the nodes, it will encapsulate them into a sub-block of a new placeholder node. This part is called before onnx pass, so it runs before calling symbolic functions.

    The conversion part will be called inside the onnx pass. In onnx pass, run_symbolic_func will be called for each node in topological order. When it reaches the placeholder node, the conversion part will be invoked. It will convert the nodes inside the sub-block based on pattern. By that time, it will have shape/type of upstream operators available. After the conversion is complete, the placeholder node will be removed, and nodes inside its sub-block converted. Run_symbolic_func will be called for these nodes, and they will be converted from ATen operator to ONNX operator.

This PR includes several other fixes, listed below.
* ~~replace helper.cpp with onnx_utils.cpp for holding utility functions.~~
* fix EraseNumberTypes on Bool type, the code was outdated that back then Bool type doesn't exist.
* ~~enable onnx shape inference in export with parameter/initializer data.~~
* other code clean ups.
* fix insertion of identity nodes for loop opset 13 sequence output.

~~PR depends on #51603~~

Test Plan: Imported from OSS

Reviewed By: SplitInfinity

Differential Revision: D26922417

Pulled By: malfet

fbshipit-source-id: 14ed06158d539e2451c2e5e63ba1b32fb0f75095
2021-03-11 10:30:09 -08:00
Chester Liu
58eb23378f Clean up usage of torch._six partially (#49785)
Summary:
See https://github.com/pytorch/pytorch/issues/42919

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49785

Reviewed By: mruberry

Differential Revision: D25963833

Pulled By: bugra

fbshipit-source-id: 11c90d6b8d3f206c9d0a4d8621b773beb10c6ba2
2021-02-08 13:58:34 -08:00
BowenBao
3f185ac18e [ONNX] Export get/set attribute nodes (#50768) (#51517)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51517

Fix get/set attributes when getting/setting a model parameter.
This PR also fixes inplace ops in If blocks.

Test Plan: Imported from OSS

Reviewed By: pbelevich

Differential Revision: D26203116

Pulled By: SplitInfinity

fbshipit-source-id: bed6ee6dd92b5b43febc8c584a6872290f8fe33f
2021-02-04 12:43:59 -08:00
BowenBao
70dcfe2991 [ONNX] Enable _jit_pass_onnx_fold_if only when dynamic_axes is None (#50582) (#50910)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50910

Fixing pytorch/vision#3251 (PR #49410 triggers the torch vision test build failure, on three tests test_faster_rcnn, test_mask_rcnn, test_keypoint_rcnn. )

The offending PR is fine on pytorch UT, because the torchvision and pytorch test has a gap when we merge them - we are using different test API on two sides, therefore causing some discrepancy.

This PR bridge the gap for the above three tests, and disable _jit_pass_onnx_fold_if pass until it gets fixed.
Allow _jit_pass_onnx_fold_if only when dynamic_axes is None.

Test Plan: Imported from OSS

Reviewed By: pbelevich

Differential Revision: D26050886

Pulled By: SplitInfinity

fbshipit-source-id: b765ffe30914261866dcc761f0d0999fd16169e3
2021-01-27 17:48:58 -08:00
BowenBao
1c9347c666 [ONNX] Use parameter values in onnx shape inference (#49706) (#50905)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50905

Adds an additional run of onnx shape inference after constant folding, since initializer may have changed and affected shape inference.

Test Plan: Imported from OSS

Reviewed By: pbelevich

Differential Revision: D26050881

Pulled By: SplitInfinity

fbshipit-source-id: 9e5d69c52b647133cd3a0781988e2ad1d1a9c09d
2021-01-27 17:45:32 -08:00
neginraoof
137f2a385a [ONNX] Handle sequence output for models (#50599)
Summary:
Duplicate of https://github.com/pytorch/pytorch/issues/46542

Pull Request resolved: https://github.com/pytorch/pytorch/pull/50599

Reviewed By: SplitInfinity

Differential Revision: D25928897

Pulled By: bzinodev

fbshipit-source-id: a898cef7b2d15a287aedd9798ce1423cebf378d4
2021-01-21 15:36:41 -08:00
Brian Vaughan
a9db2f8e7a Revert D24924236: [pytorch][PR] [ONNX] Handle sequence output shape and type inference
Test Plan: revert-hammer

Differential Revision:
D24924236 (adc65e7c8d)

Original commit changeset: 506e70a38cfe

fbshipit-source-id: 78069a33fb3df825af1cb482da06a07f7b26ab48
2021-01-15 05:58:35 -08:00
Negin Raoof
adc65e7c8d [ONNX] Handle sequence output shape and type inference (#46542)
Summary:
Handle sequence output shape and type inference.

This PR fixes value type of sequence outputs. Prior to this, all model sequence type outputs were unfolded for ONNX models.
This PR also enable shape inference for sequence outputs to represent the dynamic shape of these values.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/46542

Reviewed By: ezyang

Differential Revision: D24924236

Pulled By: bzinodev

fbshipit-source-id: 506e70a38cfe31069191d7f40fc6375239c6aafe
2021-01-14 21:12:35 -08:00
Spandan Tiwari
aeefe2ce31 [ONNX] ONNX dev branch merge 01-06-2021 (#50163)
Summary:
[ONNX] ONNX dev branch merge 01-06-2021
- [ONNX] Support onnx if/loop sequence output in opset 13 - (https://github.com/pytorch/pytorch/issues/49270)
- Symbolic function for torch.square (https://github.com/pytorch/pytorch/issues/49446)
- [ONNX] Add checks in ONNXSetDynamicInputShape (https://github.com/pytorch/pytorch/issues/49783) …
- [ONNX] Enable export af aten::__derive_index (https://github.com/pytorch/pytorch/issues/49514) …
- [ONNX] Update symbolic for unfold (https://github.com/pytorch/pytorch/issues/49378) …
- [ONNX] Update the sequence of initializers in exported graph so that it is as same as inputs. (https://github.com/pytorch/pytorch/issues/49798)
- [ONNX] Enable opset 13 ops (https://github.com/pytorch/pytorch/issues/49612) …
- [ONNX] Improve error message for supported model input types in ONNX export API. (https://github.com/pytorch/pytorch/issues/50119)
- [ONNX] Add a post-pass for If folding (https://github.com/pytorch/pytorch/issues/49410)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/50163

Reviewed By: pbelevich

Differential Revision: D25821059

Pulled By: SplitInfinity

fbshipit-source-id: 9f511a93d9d5812d0ab0a49d61ed0fa5f8066948
2021-01-13 13:51:21 -08:00
Samuel Marks
e6779d4357 [*.py] Rename "Arguments:" to "Args:" (#49736)
Summary:
I've written custom parsers and emitters for everything from docstrings to classes and functions. However, I recently came across an issue when I was parsing/generating from the TensorFlow codebase: inconsistent use of `Args:` and `Arguments:` in its docstrings.

```sh
(pytorch#c348fae)$ for name in 'Args:' 'Arguments:'; do
    printf '%-10s %04d\n' "$name" "$(rg -IFtpy --count-matches "$name" | paste -s -d+ -- | bc)"; done
Args:      1095
Arguments: 0336
```

It is easy enough to extend my parsers to support both variants, however it looks like `Arguments:` is wrong anyway, as per:

  - https://google.github.io/styleguide/pyguide.html#doc-function-args @ [`ddccc0f`](https://github.com/google/styleguide/blob/ddccc0f/pyguide.md)

  - https://chromium.googlesource.com/chromiumos/docs/+/master/styleguide/python.md#describing-arguments-in-docstrings @ [`9fc0fc0`](https://chromium.googlesource.com/chromiumos/docs/+/9fc0fc0/styleguide/python.md)

  - https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html @ [`c0ae8e3`](https://github.com/sphinx-contrib/napoleon/blob/c0ae8e3/docs/source/example_google.rst)

Therefore, only `Args:` is valid. This PR replaces them throughout the codebase.

PS: For related PRs, see tensorflow/tensorflow/pull/45420

PPS: The trackbacks automatically appearing below are sending the same changes to other repositories in the [PyTorch](https://github.com/pytorch) organisation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49736

Reviewed By: albanD

Differential Revision: D25710534

Pulled By: soumith

fbshipit-source-id: 61e8ff01abb433e9f78185c2d1d0cbd7c22c1619
2020-12-28 09:34:47 -08:00
shubhambhokare1
e1c1a7e964 [ONNX] Changes to export API to better handle named arguments (#47367)
Summary:
The args parameter of ONNX export is changed to better support optional arguments such that args is represented as:
args (tuple of arguments or torch.Tensor, a dictionary consisting of named arguments (optional)):
            a dictionary to specify the input to the corresponding named parameter:
            - KEY: str, named parameter
            - VALUE: corresponding input

Pull Request resolved: https://github.com/pytorch/pytorch/pull/47367

Reviewed By: H-Huang

Differential Revision: D25432691

Pulled By: bzinodev

fbshipit-source-id: 9d4cba73cbf7bef256351f181f9ac5434b77eee8
2020-12-10 12:31:00 -08:00
Guilherme Leobas
34cc77a811 Torch onnx (#48980)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/45215

This is a follow up PR of https://github.com/pytorch/pytorch/issues/45258 and https://github.com/pytorch/pytorch/issues/48782

Pull Request resolved: https://github.com/pytorch/pytorch/pull/48980

Reviewed By: zhangguanheng66

Differential Revision: D25399823

Pulled By: ezyang

fbshipit-source-id: 798055f4abbbffecdfab0325884193c81addecec
2020-12-08 19:41:44 -08:00
Edward Yang
88ebf6f894 Revert D25304229: [pytorch][PR] Add type annotations to torch.onnx.* modules
Test Plan: revert-hammer

Differential Revision:
D25304229 (8bc6023d7a)

Original commit changeset: b01b21ddbf86

fbshipit-source-id: bc3308176e2c70423f29f694e9db94828213e7d6
2020-12-07 11:58:03 -08:00
Guilherme Leobas
8bc6023d7a Add type annotations to torch.onnx.* modules (#48782)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/45215

This is a follow up PR of https://github.com/pytorch/pytorch/issues/45258

Pull Request resolved: https://github.com/pytorch/pytorch/pull/48782

Reviewed By: heitorschueroff

Differential Revision: D25304229

Pulled By: ezyang

fbshipit-source-id: b01b21ddbf86f908ca08173e68b81fb25851bc81
2020-12-07 08:23:02 -08:00
neginraoof
15bc21c280 [ONNX] Track and list model params for scripting (#47348)
Summary:
List model parameters as inputs following freezing script module.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/47348

Reviewed By: heitorschueroff

Differential Revision: D25309756

Pulled By: bzinodev

fbshipit-source-id: cbe679ece934d5e6c418a22f08c1662256914c4c
2020-12-03 23:07:28 -08:00
Mike Ruberry
6299c870ee Revert D25254920: [pytorch][PR] Add type annotations to torch.onnx.* modules
Test Plan: revert-hammer

Differential Revision:
D25254920 (40a2dd7e1e)

Original commit changeset: dc9dc036da43

fbshipit-source-id: c17cb282ebf90ecbae4023aa63ecbb443a87037d
2020-12-02 02:25:31 -08:00
Guilherme Leobas
40a2dd7e1e Add type annotations to torch.onnx.* modules (#45258)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/45215

Still need to resolve a few mypy issues before a review. In special, there is an error which I don't know how to solve, see:
```python
torch/onnx/utils.py:437: error: Name 'is_originally_training' is not defined  [name-defined]
        if training is None or training == TrainingMode.EVAL or (training == TrainingMode.PRESERVE and not is_originally_training):
```

`is_originally_training` is used but never defined/imported on [`torch/onnx/utils.py`](ab5cc97fb0/torch/onnx/utils.py (L437)),

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45258

Reviewed By: zhangguanheng66

Differential Revision: D25254920

Pulled By: ezyang

fbshipit-source-id: dc9dc036da43dd56b23bd6141e3ab92e1a16e3b8
2020-12-01 20:41:39 -08:00
BowenBao
6a4d55f23c [ONNX] Enable onnx shape inference in export by default (#46629)
Summary:
* Enable ONNX shape inference by default.
* ONNX could potentially set inferred shape in output instead of value_infos, checking both to be sure.
* Small fix in symbol_map to avoid overlooking dup symbols.
* Fix scalar_type_analysis to be consistent with PyTorch scalar type promotion logic.
* Correctly handle None dim_param from ONNX inferred shape.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/46629

Reviewed By: ailzhang

Differential Revision: D24900171

Pulled By: bzinodev

fbshipit-source-id: 83d37fb9daf83a2c5969d8383e4c8aac986c35fb
2020-11-13 15:09:46 -08:00
Negin Raoof
da2e2336b6 [ONNX] Export and shape inference for prim uninitialized in If subblock (#46094)
Summary:
Enable export of prim::Uninitialized in If subblock outputs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/46094

Reviewed By: houseroad

Differential Revision: D24838537

Pulled By: bzinodev

fbshipit-source-id: d0719b140393595e6df114ef5cc1bb845e919c14
2020-11-11 12:10:49 -08:00
Bowen Bao
e26c1726cf [ONNX] Fix scripting rand/randn/where (#45793)
Summary:
- rand/randn: the type signature of int[] is different in scripting, thus failing the check.
- where: scripting produces dynamic cases which are supported by `unbind` export of higher opsets.
- test_list_pass: this test fails when using new scripting api, should be fixed by https://github.com/pytorch/pytorch/issues/45369

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45793

Reviewed By: mrshenli

Differential Revision: D24566096

Pulled By: bzinodev

fbshipit-source-id: 6fe0925c66dee342106d71c9cbc3c95cabe639f7
2020-11-09 12:39:31 -08:00
neginraoof
5ce31b6f3f [ONNX] Improve error handling for adaptive_pool (#45874)
Summary:
Duplicate of https://github.com/pytorch/pytorch/issues/43032
This update would also improve error handling for interpolate with 'area' mode.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45874

Reviewed By: albanD

Differential Revision: D24141266

Pulled By: bzinodev

fbshipit-source-id: 7559f1d6af4f1ef3507c15a1aee76fe01fa433cd
2020-10-07 09:20:35 -07:00
Ansley Ussery
5072728d88 Fix stride printing/parsing formatting (#45156)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/45156

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D24078695

Pulled By: ansley

fbshipit-source-id: dab993277d43b31105c38d12098c37653747b42a
2020-10-06 15:06:46 -07:00
Dmytro Dzhulgakov
5177f8de2b Revert D23398534: [pytorch][PR] [ONNX] Improve error handling for adaptive_pool
Test Plan: revert-hammer

Differential Revision:
D23398534 (45ddeb5ce6)

Original commit changeset: f2d60d40340f

fbshipit-source-id: acc9d6c3d031662c37447fcee027b0c97b8492a7
2020-10-05 15:16:59 -07:00
Negin Raoof
45ddeb5ce6 [ONNX] Improve error handling for adaptive_pool (#43032)
Summary:
This would also improve error handling for interpolate with 'area' mode.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43032

Reviewed By: malfet

Differential Revision: D23398534

Pulled By: bzinodev

fbshipit-source-id: f2d60d40340f46e7c0499ea73c1e39945713418d
2020-10-05 11:53:14 -07:00
BowenBao
3da4cea658 [ONNX] Add dim_param support in export with onnx shape inference (#44920)
Summary:
* Support propagating `dim_param` in ONNX by encoding as `ShapeSymbol` in `SymbolicShape` of outputs. If export is called with `dynamic_axes` provided, shape inference will start with these axes set as dynamic.
* Add new test file `test_pytorch_onnx_shape_inference.py`, reusing all test cases from `test_pytorch_onnx_onnxruntime.py`, but focus on validating shape for all nodes in graph. Currently this is not enabled in the CI, since there are still quite some existing issues and corner cases to fix. The test is default to run only at opset 12.
* Bug fixes, such as div, _len, and peephole.cpp passes for PackPadded, and LogSoftmaxCrossEntropy.
* This PR depends on existing PR such as 44332.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44920

Reviewed By: eellison

Differential Revision: D23958398

Pulled By: bzinodev

fbshipit-source-id: 00479d9bd19c867d526769a15ba97ec16d56e51d
2020-09-30 21:56:24 -07:00
Negin Raoof
6b42ca2d69 [ONNX] Update embedding_bag export (#44693)
Summary:
Export of embedding bag with dynamic list of offsets.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44693

Reviewed By: malfet

Differential Revision: D23831980

Pulled By: bzinodev

fbshipit-source-id: 3eaff1a0f20d1bcfb8039e518d78c491be381e1a
2020-09-30 13:36:40 -07:00
shubhambhokare1
0063512a4b [ONNX] Updates to diagnostic tool to find missing ops (#44124)
Summary:
Moved description of tool and changes in function name

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44124

Reviewed By: albanD

Differential Revision: D23674618

Pulled By: bzinodev

fbshipit-source-id: 5db0bb14fc106fc96358b1e0590f08e975388c6d
2020-09-18 10:32:30 -07:00
Xiang Gao
20ac736200 Remove py2 compatible future imports (#44735)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44735

Reviewed By: mruberry

Differential Revision: D23731306

Pulled By: ezyang

fbshipit-source-id: 0ba009a99e475ddbe22981be8ac636f8a1c8b02f
2020-09-16 12:55:57 -07:00