We guard on key order
1) When a key is a non-constant object
2) When we actually need key order - like .values, .items etc
For dicts/OrderedDicts that do not require key order guarding, we just rely on usual `GuardManger + DictGetItemGuardAccessor`. This is faster than going through the `list(d.keys())` based design for OrderedDicts.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124779
Approved by: https://github.com/jansel
For some reason, adding a `TYPE_CHECK` in DATA_PTR_MATCH guard in https://github.com/pytorch/pytorch/issues/123302 increases optimizer guard overhead for `MT5ForConditionalGeneration` by 10x. There is nothing special about MT5. As we are going to move towards the CPP guards soon, there is no reason to investigate this deeper.
We can use `ID_MATCH` instead of `DATA_PTR` match. Today both cant be serialized, so there is no one preference over the other.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123485
Approved by: https://github.com/mlazos
Speeds up the guard-overhead microbenchmark by around 10% normalized to main-branch CPP guards
~~~
import torch
@torch.compile(backend="eager")
def fn(x, lst):
for l in lst:
x = x + l
return x
n = 1000
lst = [i for i in range(n)]
x = torch.randn(4)
print(fn(x, lst))
print("Sucess")
~~~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123396
Approved by: https://github.com/jansel
ghstack dependencies: #123285, #123302, #123303
We should sparingly use ID_MATCH guards. When it comes to performance, ID_MATCH is much faster DATA_PTR for Python guards. However, the difference is very small in C++. So, its worth just using DATA_PTR_MATCH.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123302
Approved by: https://github.com/mlazos
ghstack dependencies: #123285
I am ok if people don't want this PR to be merged.
For optimizers, we know that the state dict and param_group have same parameters. So, I think its ok to skip TENSOR_MUST_ALIAS guards.
Similarly for state tensors, all of them are different. Therefore, we can skip the tensor aliasing guards.
With this PR, these are the numbers for Megatron which has 394 parameters
<img width="290" alt="image" src="https://github.com/pytorch/pytorch/assets/13822661/0ce75dc6-4299-46bb-bf3c-7989ebc7cfc4">
C++ numbers jump a lot because of 2 reasons
1) We are now not doing INCREF/DECREF for a large number of tensors.
2) For python guards, we can expect higher numbers but that requires some more plumbing because the Python tensor guards are all collapsed into one.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123044
Approved by: https://github.com/jansel, https://github.com/mlazos
Fixes#118795
This is a graph breaking partial fix for #120914. We still need -actual- module parametrization tracing support, but at least it doesn't blow up hard now.
**Background**: Module parametrization injects a property as the module parameter attribute that calls a `nn.Module` whose forward takes in a module parameter and returns a reparametrized module parameter.
Example:
```
class MyParametrization(nn.Module):
def forward(X):
# This reparametrization just negates the original parameter value
return -X
m = nn.Linear(...)
p = MyParametrization()
register_parametrization(m, "weight", p)
# Accessing the "weight" attribute will invoke p's forward() on m's original weight and return the output as the new weight.
# m.weight here is now an injected property that does the above instead of an actual Parameter.
# This property is defined in torch/nn/utils/parametrize.py.
m.weight
# NB: Parametrization changes the module type (e.g. torch.nn.utils.parametrize.ParametrizedLinear)
print(type(m))
```
**Problem 1**: Dynamo has special tracing rules for things in `torch.nn`. Parametrizing a module changes the type of the module and the parametrized attribute, so now these rules wrongly affect tracing here. To fix this:
* For parametrized modules, call `convert_to_unspecialized()` to restart analysis where Dynamo starts inlining the module.
**Problem 2**: The issue seen in #118795 is that Dynamo will see a dynamically constructed tensor when `m.weight` is called and introduce that to its `tensor_weakref_to_sizes_strides` cache during fake-ification. This tensor is also made to be a graph input, since it's a module parameter. When guards are created for this module parameter input, the logic calls `m.weight` again and tries to look the result up in the cache, but this is a different tensor now, giving the `KeyError` symptom. To fix this:
* Replace Dynamo's `tensor_weakref_to_sizes_strides` cache with a `input_source_to_sizes_strides` cache.
* This cache was originally introduced in #100128.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121041
Approved by: https://github.com/anijain2305
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
Putting this PR as an RFC since I have resorted to some horrible hacks in order to make this work.
```
(Pdb) p triton.language.float32
triton.language.fp32
(Pdb) p str(triton.language.float32)
'fp32'
(Pdb) p repr(triton.language.float32)
'triton.language.fp32'
```
This means that we need to "rewrite" them for fx graph and inductor execution.
This PR allows Mamba2 to work with `torch.compile`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121690
Approved by: https://github.com/Skylion007
With the current `Dim`-based dynamic shapes API for export, one can express that shapes of different input shapes must be equal by reusing the same `Dim`. However, non-trivial relationships between such input shapes cannot be expressed.
Recently we are seeing more and more examples of code that require this additional expressibility, e.g., where a pair of shapes might differ by one, or a shape might be double another (or simply even).
This PR introduces the concept of a "derived" `Dim`, i.e., a linear arithmetic expression over a `Dim`. By using a combination of `Dim`s and derived `Dim`s to specify input shapes, the desired relationships can be expressed naturally. E.g., a pair of shapes might be `dim` and `dim + 1`, or `dim` and `2*dim`, or even `2*dim` and `dim + 1`.
We extend the current infrastructure that translates `Dim`s to deprecated `dynamic_dim`-based constraints to work with derived `Dim`s. As usual, we raise constraint violation errors when shape guards cannot be verified given a dynamic shapes spec; suggest fixes; and raise runtime errors when future inputs violate the spec.
Importantly, some guards that used to cause forced specializations in the constraint solver because they were deemed "too complex" now do not do so, because they can now be specified as constraints. Since this was what motivated the introduction of a `disable_constraint_solver` flag to some internal APIs, we may not need that flag any more.
Note that shapes of placeholders in exported programs can now contain symbolic expressions and not just symbols.
Differential Revision: D53254587
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118729
Approved by: https://github.com/ezyang
Overall design: https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit
How to read the diff:
* Most files are me augmenting pre-existing logging with structured variants. For the most part it's simple (esp FX graphs, which have a canonical string representation); it gets more complicated when I decided to JSON-ify some data structure instead of keeping the ad hoc printing (notably, guards and dynamo output graph sizes)
* torch/_functorch/_aot_autograd/collect_metadata_analysis.py is some unrelated fixes I noticed while auditing artifact logs
* torch/_logging/_internal.py has the actual trace log implementation. The trace logger is implement as a logger named torch.__trace which is disconnected from the logging hierarchy. It gets its own handler and formatter (TorchLogsFormatter with _is_trace True). `trace_structured` is the main way to emit a trace log. Unusually, there's a separate "metadata" and "payload" field. The metadata field should not be too long (as it is serialized as a single line) and is always JSON (we put contextual things like compile id in it); the payload field can be long and is emitted after the metadata log line and can span multiple lines.
* torch/_logging/structured.py contains some helpers for converting Python data structures into JSON form. Notably, we have a string interning implementation here, which helps reduce the cost of serializing filenames into the log.
* test/dynamo/test_structured_trace.py the tests are cribbed from test_logging.py, but all rewritten to use expect tests on munged versions of what we'd actually output. Payloads are never tested, since they tend not be very stable.
https://github.com/ezyang/tlparse is a POC Rust program that can interpret these logs.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120289
Approved by: https://github.com/Skylion007
ghstack dependencies: #120712
Reduces backend=eager compile time from 33 to 19 seconds for `MobileBertForQuestionAnswering`. This also helps an internal model where guards.add function is taking 124 seconds.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120520
Approved by: https://github.com/mlazos
Overall design: https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit
How to read the diff:
* Most files are me augmenting pre-existing logging with structured variants. For the most part it's simple (esp FX graphs, which have a canonical string representation); it gets more complicated when I decided to JSON-ify some data structure instead of keeping the ad hoc printing (notably, guards and dynamo output graph sizes)
* torch/_functorch/_aot_autograd/collect_metadata_analysis.py is some unrelated fixes I noticed while auditing artifact logs
* torch/_logging/_internal.py has the actual trace log implementation. The trace logger is implement as a logger named torch.__trace which is disconnected from the logging hierarchy. It gets its own handler and formatter (TorchLogsFormatter with _is_trace True). There's a teensy bit of FB specific code to automatically enable trace logging if a /logs directory exists. `trace_structured` is the main way to emit a trace log. Unusually, there's a separate "metadata" and "payload" field. The metadata field should not be too long (as it is serialized as a single line) and is always JSON (we put contextual things like compile id in it); the payload field can be long and is emitted after the metadata log line and can span multiple lines.
* torch/_logging/structured.py contains some helpers for converting Python data structures into JSON form. Notably, we have a string interning implementation here, which helps reduce the cost of serializing filenames into the log.
* test/dynamo/test_structured_trace.py the tests are cribbed from test_logging.py, but all rewritten to use expect tests on munged versions of what we'd actually output. Payloads are never tested, since they tend not be very stable.
https://github.com/ezyang/tlparse is a POC Rust program that can interpret these logs.
Testing that the fbcode detection works at https://www.internalfb.com/mlhub/pipelines/runs/fblearner/534553450 (Meta-only)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120289
Approved by: https://github.com/Skylion007