Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52659
**Summary**
This commit adds `torch._C.ScriptDict`, a dictionary type that has reference
semantics across the Python/TorchScript boundary. That is, modifications
made to instances of `torch._C.ScriptDict` in TorchScript are visible in
Python even when it is not returned from the function. Instances can be
constructed by passing an instance of a Python dictionary to
`torch.jit.script`. In the case of an empty dictionary, its type is
assumed to be `Dict[str, Tensor]` to be consistent with the handling of
empty dictionaries in TorchScript source code.
`torch._C.ScriptDict` is implemented using a modified version of pybind's `stl_bind.h`-style bindings attached to `ScriptDict`, `ScriptDictIterator` and `ScriptDictKeyIterator`, wrapper classes around `c10::impl::GenericDict` and `c10::impl::GenericDict::iterator`. These bindings allow instances of `torch._C.ScriptDict` to be used as if it were a regular `dict` Python. Reference semantics are achieved by simply retrieving the `IValue` contained in `ScriptDict` in `toIValue` (invoked when converting Python arguments to `IValues` before calling TorchScript code).
**Test Plan**
This commit adds `TestScriptDict` to `test_list_dict.py`, a set of tests
that check that all of the common dictionary operations are supported
and that instances have reference semantics across the
Python/TorchScript boundary.
Differential Revision:
D27211605
D27211605
Test Plan: Imported from OSS
Reviewed By: gmagogsfm
Pulled By: SplitInfinity
fbshipit-source-id: 446d4e5328375791aa73eb9e8b04dfe3465af960
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58492
Update graph rewrite to specify how values in replacement pattern should
map to values in original pattern for fuse_linear pass
(Note: this ignores all push blocking failures!)
Test Plan:
python test/test_quantization.py TestQuantizeJitPasses.test_fuse_linear
Imported from OSS
Reviewed By: jerryzh168
Differential Revision: D28512464
fbshipit-source-id: 250a69cebc11eb4328a34c8f685b36e337439aae
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58300
Current state: During graph rewriting that can fuse nodes or add nodes
result in new nodes without debug information that was available in
original node. Thus we lose this information during graph rewrite.
This PR changes graph rewriting API to let user specify how the values
in the replacement pattern map to values in the pattern to be matched.
Then the graph rewriting will copy source range and inlined callstack
from the matched nodes onto the nodes being inserted.
(Note: this ignores all push blocking failures!)
Test Plan:
python test/test_jit.py
TestJit.test_pattern_based_rewrite_with_source_range_preserved
Imported from OSS
Reviewed By: malfet
Differential Revision: D28512465
fbshipit-source-id: 863173c29de726be85b3acbd3ddf3257eea36d13
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54809
I'm going to post on dev-discuss soon with a more thorough explanation of the design and advantages of this shape analysis, so I'm leaving out that for now.
There is still a ton left to do, I'm posting this initial version so we can get something on master multiple can work on. List of many remaining steps to do:
- [ ] Add symbolic shapes support
- [ ] Bind shape functions for operators in C++
- [ ] Make classes of operators share the same shape function (e.g. pointwise, broadcast two inputs)
- [ ] Refactor APIs
- [ ] Only iteratively optimize shape function while a change has been made
- [ ] Expand coverage of coverage to common ops
- [ ] Add shape analysis pass on Graph that handles Ifs and Loops
- [ ] Allow concurrent reads to the operator map
- [ ] Successive applications of same inputs to same shape function (e.g. series of pointwise ops)
For this review, I am mostly looking for comments related to the implementation of symolic_shape_analysis.cpp, with the caveats listed above. I am not really looking for comments related to api/registration/graph level analysis as those are all planned to be changed. I am fine landing this as is or waiting until necessary components of the TODOs above are finished.
Test Plan: Imported from OSS
Reviewed By: pbelevich
Differential Revision: D27750998
Pulled By: eellison
fbshipit-source-id: 4338b99e8651df076291c6b781c0e36a1bcbec03
Summary:
This PR adds an alternative way of calling `torch.einsum`. Instead of specifying the subscripts as letters in the `equation` parameter, one can now specify the subscripts as a list of integers as in `torch.einsum(operand1, subscripts1, operand2, subscripts2, ..., [subscripts_out])`. This would be equivalent to `torch.einsum('<subscripts1>,<subscripts2>,...,->[<subscript_out>]', operand1, operand2, ...)`
TODO
- [x] Update documentation
- [x] Add more error checking
- [x] Update tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56625
Reviewed By: zou3519
Differential Revision: D28062616
Pulled By: heitorschueroff
fbshipit-source-id: ec50ad34f127210696e7c545e4c0675166f127dc
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55172
Description:
This is part 1 of series of PRs for supporting torch.jit.ignore as context manager. Following features are implemented in this PR:
- Unique name for the registered function under torch.jit.frontend module. The unique name is generated based on the file name and line number of context manager
- Forcing user to explicitly annotate the input and outputs.
- No side effects are considered.
Test Plan: Imported from OSS
Reviewed By: gmagogsfm
Differential Revision: D27895283
Pulled By: tugsbayasgalan
fbshipit-source-id: 5d36d9aa5d457055a6bb1676f264647a745ec36a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49352
In this PR, we replace all definitions of slice to take None parameters for the start, end, and step. This will simplify the compiler logic
Test Plan:
test_jit test cases
Imported from OSS
Reviewed By: jamesr66a, nikithamalgifb
Differential Revision: D25929903
fbshipit-source-id: 5bfc6bad514a8aafbef2dacc706f95f867fe85f1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54284
In order to bring mobile deployment, via lite interpreter, on feature
parity with JIT, with respect model level debug information we must make
model level debug information available to mobile runtime.
At the moment, model level debug information is stored in SourceRange
which associates node's of graph to where the come from in original
python source code.
This information is serialized as part of debug_pkl and deserialized
when JIT loads the model and reads the model code.
On lite interpreter, we do not have access to all the functionality of
JIT and hence we cannot load model in the same way as JIT, by reading
code, constructing module hierarchy and graph corresponding module
methods etc. Instead in, lite interpreter, only bytecode corresonding to
the compiled graph, Code, is saved.
Thus in order to annotate OPs in the bytecode with equivalent
SourceRange information we do the following:
1. During model serialization, we create a unique tag for each source
range of the model.
2. Create a map of <SourceRange, tag>
3. During debug_pkl serialization we save tag along with SourceRange, on
top of byte offset.
4. During bytecode generation, the methods of the top module are
lowered. During this process methods are inlined. In the inlined graph,
when the node of a graph is lowered to bytecode, we query node's source
range and look it up against the map.
5. Resulting source range tag is serialized in module_debug_info.
6. During model deserialization, we read all the debug_pkl records in
the archieve and create a map of <tag, SourceRange>
7. This map can be used to find source code information.
During mobile runtime:
1. We read all the debug_pkl records and create <tag=debug_handle,
SourceRange> map.
1.1 This map, MobileDebugInfo, is a member of mobile Module.
2. Interpreter catches appropriate exceptions and sets the thread local
debug handle and rethrows the exception.
3. In Function's run method we catch exception and query current debug
handle where the exception happened.
4. Query MobileDebugInfo with debug handle to retrieve source range and
augment error with source range info.
This information is still incomplete as it does not contain entire
callstack.
In the following diffs we will serialize InlinedCallStack directly.
Note that compilation is gated by SYMBOLICATE_MOBILE_DEBUG_HANDLE macro,
so that mobile builds can avoid building MobileDebugInfo, source range
and source range pickler/unpickler. Later we will add path where, if
building without debug support stack trace will contain only debug
handles. They can be symbolicated later.
Test Plan:
Ported bunch of source range tests from test_jit.py. Added on more test
in test_lite_interpreter.py
Imported from OSS
Reviewed By: raziel
Differential Revision: D27174722
fbshipit-source-id: a7b7c6088ce16dec37e823c7fefa4f0b61047e12
Summary:
Adds support for type inference of nn.Module methods using monkeytype in JIT
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57165
Reviewed By: gmagogsfm
Differential Revision: D28064983
Pulled By: nikithamalgifb
fbshipit-source-id: 303eaf8d7a27e74be09874f70f519b4c1081645b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56147
This is support of #55686, you can see the broader context of the metaclass in
a more complete PR #56017. The short story is that in the future I want to
give Tensor a non-trivial metaclass, so to derisk the change first I give it a
trivial metaclass to shake out any bugs that might be caused by it. The
metaclass shouldn't have any performance impact on Tensor as it only gets
invoked upon subclass creation.
By the way, it was totally not documented how to create metaclasses in the Python
C API, and it took a good bit of trial error to figure it out (and the answer is
now immortalized in https://stackoverflow.com/q/67077317/23845 -- the things
that I got wrong in earlier versions of the PR included setting tp_basicsize
incorrectly, incorrectly setting Py_TPFLAGS_HAVE_GC on the metaclass--you want
to leave it unset so that it inherits, and determining that tp_init is what
actually gets called when you construct a class, not tp_call as another
not-to-be-named StackOverflow question suggests).
Aside: Ordinarily, adding a metaclass to a class is a user visible change, as
it means that it is no longer valid to mixin another class with a different
metaclass. However, because _C._TensorBase is a C extension object, it will
typically conflict with most other metaclasses, so this is not BC breaking.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: H-Huang
Differential Revision: D28028747
Pulled By: ezyang
fbshipit-source-id: c1e35a986aeb3db540c73d188f53dce951eeed33
Summary:
As this diff shows, currently there are a couple hundred instances of raw `noqa` in the codebase, which just ignore all errors on a given line. That isn't great, so this PR changes all existing instances of that antipattern to qualify the `noqa` with respect to a specific error code, and adds a lint to prevent more of this from happening in the future.
Interestingly, some of the examples the `noqa` lint catches are genuine attempts to qualify the `noqa` with a specific error code, such as these two:
```
test/jit/test_misc.py:27: print(f"{hello + ' ' + test}, I'm a {test}") # noqa E999
test/jit/test_misc.py:28: print(f"format blank") # noqa F541
```
However, those are still wrong because they are [missing a colon](https://flake8.pycqa.org/en/3.9.1/user/violations.html#in-line-ignoring-errors), which actually causes the error code to be completely ignored:
- If you change them to anything else, the warnings will still be suppressed.
- If you add the necessary colons then it is revealed that `E261` was also being suppressed, unintentionally:
```
test/jit/test_misc.py:27:57: E261 at least two spaces before inline comment
test/jit/test_misc.py:28:35: E261 at least two spaces before inline comment
```
I did try using [flake8-noqa](https://pypi.org/project/flake8-noqa/) instead of a custom `git grep` lint, but it didn't seem to work. This PR is definitely missing some of the functionality that flake8-noqa is supposed to provide, though, so if someone can figure out how to use it, we should do that instead.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56272
Test Plan:
CI should pass on the tip of this PR, and we know that the lint works because the following CI run (before this PR was finished) failed:
- https://github.com/pytorch/pytorch/runs/2365189927
Reviewed By: janeyx99
Differential Revision: D27830127
Pulled By: samestep
fbshipit-source-id: d6dcf4f945ebd18cd76c46a07f3b408296864fcb
Summary:
1. move module related stuff to test_module_container
2. created test_types for types and annotation
3. created test_misc for the rest
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55560
Reviewed By: VitalyFedyunin
Differential Revision: D27650911
Pulled By: walterddr
fbshipit-source-id: d895a7da9e9c3d25a662a37faf4daabc276b9c1a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52881
**This PR adds:**
1. logic to parse complex constants (complex literals of the form `bj`)
2. logic to parse complex lists
3. support for complex constructors: `complex(tensor/int/float/bool, tensor/int/float/bool)`
4. Limited operator support
- `add`, `sub`, `mul`, `torch.tensor`, `torch.as_tensor`
**Follow-up work:**
1. Add complex support for unary and other registered ops.
2. support complex constructor with string as input (this is supported in Python eager mode).
3. Test all emitXYZ for all XYZ in `ir_emitter.cpp` (currently only emitConst, emitValueToTensor are tested). e.g., test loops etc.
4. onnx doesn't support complex tensors, so we should error out with a clear and descriptive error message.
Test Plan: Imported from OSS
Reviewed By: bdhirsh
Differential Revision: D27245059
Pulled By: anjali411
fbshipit-source-id: af043b5159ae99a9cc8691b5a8401503fa8d6f05
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53908
This adds reinplacing to MKLDNN Subgraphs so that we replace `aten::add` with `aten::add_`. Normally you would have to prove device and dtype, but we know that already, and because we have explicit broadcast nodes for other reasons we dont have to prove that the output shape of add is the same as inputs.
Ive tested correctness on resnet, I'm going to do more extensive testing as well. When I benchmarked the "unsafe" version (always inplace) I saw average speedups of ~16% for both Single threaded and Multithreaded. I dont think the "safe" version will be far beyond; when I looked at resnet for example every `add` and `relu` were reinplaced.
Theres some question of reusing other alias / liveness / inplacing passes in SR. I thought about it, however I didnt want to add a cross-dependency between very different parts of the code base with a bunch of different assumptions. The logic here is also covering a simpler case and does not add much complexity IMO.
Test Plan: Imported from OSS
Reviewed By: Krovatkin
Differential Revision: D27132969
Pulled By: eellison
fbshipit-source-id: 121a38daaedf01363f6b66a814beaaa72a0ab0dc
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53682
With this, under the meta device, 101 tests passed and 16953 skipped.
It ain't much, but it's a start.
Some various bits and bobs:
- NotImplementedError suppression at test level is implemented
in the same way as CUDA memory leak check, i.e., by wrapping
test methods and monkeypatching them back in.
- I had to reimplement assertRaises/assertRaisesRegex from scratch to
ignore NotImplementedError when _ignore_not_implemented_error is True.
The implementation relies on a small amount of private API that hasn't
changed since 2010
- expectedAlertNondeterministic doesn't really work so I skipped them
all; there's probably a way to do it better
I tested this using `pytest --disable-warnings --tb=native -k meta --sw
test/*.py` and a pile of extra patches to make collection actually work
(lol).
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: mruberry
Differential Revision: D26955539
Pulled By: ezyang
fbshipit-source-id: ac21c8734562497fdcca3b614a28010bc4c03d74
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53424
Fixes https://github.com/pytorch/pytorch/issues/24807 and supersedes the stale https://github.com/pytorch/pytorch/issues/25093 (Cc Microsheep). If you now run the reproduction
```python
import torch
if __name__ == "__main__":
t = torch.tensor([1, 2, 3], dtype=torch.float64)
```
with `pylint==2.6.0`, you get the following output
```
test_pylint.py:1:0: C0114: Missing module docstring (missing-module-docstring)
test_pylint.py:4:8: E1101: Module 'torch' has no 'tensor' member; maybe 'Tensor'? (no-
member)
test_pylint.py:4:38: E1101: Module 'torch' has no 'float64' member (no-member)
```
Now `pylint` doesn't recognize `torch.tensor` at all, but it is promoted in the stub. Given that it also doesn't recognize `torch.float64`, I think fixing this is out of scope of this PR.
---
## TL;DR
This BC-breaking only for users that rely on unintended behavior. Since `torch/__init__.py` loaded `torch/tensor.py` it was populated in `sys.modules`. `torch/__init__.py` then overwrote `torch.tensor` with the actual function. With this `import torch.tensor as tensor` does not fail, but returns the function rather than the module. Users that rely on this import need to change it to `from torch import tensor`.
Reviewed By: zou3519
Differential Revision: D26223815
Pulled By: bdhirsh
fbshipit-source-id: 125b9ff3d276e84a645cd7521e8d6160b1ca1c21