Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57749
add to a fx test
Test Plan: Imported from OSS
Reviewed By: huiguoo
Differential Revision: D28425974
fbshipit-source-id: 195c7a1944decb7a2a99c2831cab38485f32be17
Summary:
Fixes https://github.com/pytorch/pytorch/issues/57719.
This PR fixes `torch.Tensor{__rsub__, __rdiv__, __rtruediv__, __pow__, __rmatmul__}` to return `NotImplemented` instead of raising a `TypeError`.
cc/ mruberry: The first commit of this PR is the same as 1d209db1cc excepts the commit message.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57934
Reviewed By: mruberry
Differential Revision: D28351931
Pulled By: albanD
fbshipit-source-id: 985457a44dba24d2496794dfb8c1661cbcd4ff8f
Summary:
```
class Foo(nn.Module):
def __init__(self):
super().__init__()
def forward(self, y, x):
for k in x:
for v in x[k]:
v += y
return x
example_dict = {'x': {'a': [fx.HOLE], 'z': [fx.HOLE, fx.HOLE]}}
new_f = fx.symbolic_trace(Foo(), concrete_args=example_dict)
print(new_f.code)
new_f(torch.randn(5), {'x': {'a': [torch.randn(5)], 'z': [torch.randn(5), torch.randn(5)]}})
fx.symbolic_trace(new_f, concrete_args=example_dict)
```
prints out
```
def forward(self, y, x):
y, tree_2, tree_3, tree_4 = pytree.tree_flatten([y, x])[0]
add = tree_2 + y
add_1 = tree_3 + y
add_2 = tree_4 + y; y = None
return {'a': [tree_2], 'z': [tree_3, tree_4]}
```
Currently, I store `in_spec` as an extra attribute on `fx.Graph`, and then include it when we do the codegen. I'm not sure if this is the right approach - it introduces a divergence between what's in `fx.Graph` and what's in the python code.
Perhaps the best API is something explicit like `fx.Graph.flatten_args`, but that does make calling things a bit ... more verbose.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55888
Reviewed By: jamesr66a
Differential Revision: D27884694
Pulled By: Chillee
fbshipit-source-id: f9e8a70c63a8df63c9f9bd0a6459255daa5a8df8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57383
Notes: I picked up an activation from https://github.com/pytorch/pytorch/issues/56969. You can look at the [activations.cpp](https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cpu/Activation.cpp#L429) file which has both forward and backward kernel code to help you write the NNC lowering and the symbolic gradient.
I added a test in test_jit_fuser_te for the fusion, and I added an OpInfo and asserted that we expect to see autodiffable nodes to test the symbolic gradient.
Test Plan: Imported from OSS
Reviewed By: mrshenli
Differential Revision: D28197820
Pulled By: eellison
fbshipit-source-id: 05305d85c5bb0847c8f911b95ba47b137dca7e90
Summary:
Fixes https://github.com/pytorch/pytorch/issues/45687
Fix changes the input size check for `InstanceNorm*d` to be more restrictive and correctly reject sizes with only a single spatial element, regardless of batch size, to avoid infinite variance.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56659
Reviewed By: pbelevich
Differential Revision: D27948060
Pulled By: jbschlosser
fbshipit-source-id: 21cfea391a609c0774568b89fd241efea72516bb
Summary:
Fixes https://github.com/pytorch/pytorch/issues/55398
Generates tests that calls `symbolic_trace` on torchvision models and verifies the parity of outputs from eager model, `fx.GraphModule`, `jit.ScriptModule`.
Test errors: GoogleNet and Inception models throw a type mismatch when scripting the traced `fx.GraphModule`.
```
Return value was annotated as having type __torch__.torchvision.models.googlenet.GoogLeNetOutputs but is actually of type Tensor:
dropout = self.dropout(flatten); flatten = None
fc = self.fc(dropout); dropout = None
return fc
~~~~~~~~~ <--- HERE
```
Relevant type-inconsistency 512ea299d4/torchvision/models/googlenet.py (L200)
```
torch.jit.unused
def eager_outputs(self, x: Tensor, aux2: Tensor, aux1: Optional[Tensor]) -> GoogLeNetOutputs:
if self.training and self.aux_logits:
return _GoogLeNetOutputs(x, aux2, aux1)
else:
return x # type: ignore[return-value]
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55744
Reviewed By: albanD
Differential Revision: D27920595
Pulled By: suraj813
fbshipit-source-id: 01f6f2aef7badbde29b5162a7787b5af9398090d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55550
Add a test for `symbolic_trace` into `torch.nn.functional`
Test against all `functional`s with `torch.Tensor` argument and `functional`s from `FUNCTIONALS_WITHOUT_ANNOTATION`.
```py
FUNCTIONALS_WITHOUT_ANNOTATION = (
"adaptive_max_pool1d",
"adaptive_max_pool2d",
"adaptive_max_pool3d",
"fractional_max_pool2d",
"fractional_max_pool3d",
"max_pool1d",
"max_pool2d",
"max_pool3d",
"gaussian_nll_loss",
"upsample",
"upsample_bilinear",
"upsample_nearest",
)
```
`UNTRACEABLE_FUNCTIONALS` lists 110 current untraceable `functional`s with expected `Error`.
- `BUILT_IN_FUNC`: built-in functions or built-in methods can not be traced.
- `PROXY_ITERATED`: Proxy object cannot be iterated. This can be attempted when used in a for loop or as a *args or **kwargs function argument
- `LEN_ERROR`: 'len' is not supported in symbolic tracing by default. If you want this call to be recorded, please call torch.fx.wrap('len') at module scope
- `ARG_TYPE_MISMATCH`: `functional()`: argument <name> (position <n>) must be <type>, not Proxy
- `CONTROL_FLOW`: symbolically traced variables cannot be used as inputs to control flow
- `INTERPOLATE_ARGS_CONFLICT`: When tracing the functional by calling `interpolate(input, size, scale_factor, mode="bilinear", align_corners=True)`, `ValueError("only one of size or scale_factor should be defined")` is raised
Test Plan: Imported from OSS
Reviewed By: jamesr66a
Differential Revision: D27659367
Pulled By: ejguan
fbshipit-source-id: d0d05e4d94e0b85f47e6c171a31f0d41b1387373
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52859
This reverts commit 92a4ee1cf6.
Added support for bfloat16 for CUDA 11 and removed fast-path for empty input tensors that was affecting autograd graph.
Test Plan: Imported from OSS
Reviewed By: H-Huang
Differential Revision: D27402390
Pulled By: heitorschueroff
fbshipit-source-id: 73c5ccf54f3da3d29eb63c9ed3601e2fe6951034
Summary:
This PR:
- Updates the structure of the SampleInput class to require the "input" attribute be a tensor
- Limits unary ufuncs to test only the uint8, long, float16, bfloat16, float and cfloat dtypes by default
- Limits variant testing to the float dtype
- Removes test_variant_consistency from test_unary_ufuncs.py since it's now redundant with variant testing in test_ops.py
- Adds backwards supported testing to clarify failures that were coming from variant testing
This should decrease test e2e time.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53255
Reviewed By: ngimel
Differential Revision: D27043643
Pulled By: mruberry
fbshipit-source-id: 91d6b483ad6e2cd1b9ade939d42082980ae14217
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53444
GraphModule construction has two options when constructing the base nn.Module: a dict of names to attrs to assign to the GraphModule, or another nn.Module to copy attrs from.
- For the dict case, add logic to explicitly register `nn.Tensors` that are not `nn.Parameter` as buffers on the GraphModule, else fall back to `__setattr__`.
- For the other `nn.Module` case, update so that it checks in the other module whether the attr to copy in is a buffer, and register it as such, else fall back to `__setattr__`.
Test Plan: Added tests for fetching params and buffers from a GraphModule using both dict and module `__init__`s
Reviewed By: jamesr66a
Differential Revision: D26860055
fbshipit-source-id: 8d9999f91fef20aaa10969558006fc356247591f