Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29826
After save/load, we lose concrete type information. So if you tried to
script something that contained a loaded ScriptModule as a submodule,
the following sequence happened:
1. During ConcreteType inference, the loaded submodule got a new
inferred type.
2. But it already has a type! So there was a type mismatch.
To fix this, we should generate a ConcreteType directly from the loaded
submodule type (similar to what we do for interfaces). This makes sense
too--the ConcreteModuleType should be empty, since all the "sugaredness"
was stripped out during the save/load process.
Test Plan: Imported from OSS
Differential Revision: D18575009
Pulled By: suo
fbshipit-source-id: 4d329b7e9b7e7624f459e50092e35ab0ab813791
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28988
Make ModuleList, Sequential, ModuleDict go through the same pathway as other modules, cleaning up a bunch of code and allowing them to define custom forwards and other methods.
EDIT: Previously, we would ignore an nn.Sequential attribute if it was not in `__constants__` ("did you forget to add it to Constants"). This PR scripts it even if it is not in `__constants__`. Is that what we want?
Test Plan: Imported from OSS
Differential Revision: D18402821
Pulled By: eellison
fbshipit-source-id: dd4f28fb0df0d1ba4ad1b3bc34ba141959a433f7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29583
The normal flow for type sharing assumes that we will construct the
`ConcreteModuleType`, then use `operator==` to decide whether or not to
reuse an existing JIT type. In this case, `jitType_` is not populated,
so it doesn't make sense to compare it.
However, there is one exception to this flow: for traced modules, we
pre-compute the JIT type and poke it into the `ConcreteModuleType`
manually. To handle this case, we should compare the `jitType_`s in
`operator==` like everything else.
Test Plan: Imported from OSS
Differential Revision: D18435949
Pulled By: suo
fbshipit-source-id: 44b7672a686015aaf02f6664c6aff00e165fde65
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29432
This removes a lot of the private methods on torch._C.ScriptModule,
and instead implements functionality in terms of slot_dict_impl views
to implement _parameter, _buffers, and _modules in nn.Module.
A followup PR should also remove the _register_attribute,
_register_module, and _register_parameter methods, but this requires
more refactoring of the way tracing creates modules and replication
for data parallel works.
Test Plan: Imported from OSS
Differential Revision: D18387963
Pulled By: zdevito
fbshipit-source-id: f10d47afeb30c1e05d704ae5ac4166830933125c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28395
Currently property methods are broken in TorchScript because we
basically treat it as an attribute in the existing path: we'll evaluate
the method once and store that as the value forever.
Since lack of property support is easily worked around (just make it
a method), I've opted to just explicitly error to avoid confusion. If
people want it, they can file an issue and we can look at their use
case.
This also helps us nicely clean up some parts of the ScriptModule conversion
path.
Test Plan: Imported from OSS
Reviewed By: shannonzhu
Differential Revision: D18054946
Pulled By: suo
fbshipit-source-id: 7e927836ae687cd2f13a94b9f0af399437fae422
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29249
This splits out all the tests that are "easy", leaving `TestJit`,
`TestScript`, the autogenerated tests, and a small docs test.
Splitting those into reasonable chunks is more effort which is less
mechanical.
Differential Revision: D18339007
Test Plan: Imported from OSS
Pulled By: suo
fbshipit-source-id: 69164b9f9a2c379fe8923a846c98dd3c37ccb70e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28569
Previously, the inclusion of function attributes would "poison" a
ConcreteModuleType, because we did not have a way of checking whether
they are actually the same function. This PR uses the Python function
object to perform that check. This improves our ability to reuse JIT
types between modules.
Also this PR fixes a bug where we weren't properly adding modules as
attributes when converting from ConcreteType -> JIT type (we were adding
them after the fact--another reason to switch from using `register_x` to
`set_x` during module construction, which is on my to-do list after
this).
Fixes https://github.com/pytorch/pytorch/issues/28559
Test Plan: Imported from OSS
Differential Revision: D18111331
Pulled By: suo
fbshipit-source-id: ec2cccf832d3ddd4cd4d28fe19cb265f1275325a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27819
The idea here is to preserve the fact that `test_jit.py` contains all the JIT tests. So we import `JitTestCase`s from `jit/` into `test_jit.py` so that the test loader will find and run them when you do `python test_jit.py`. This also means that things like `-k` will work as expected.
The individual test files in `jit/` will throw if run directly, to prevent cases where the CI accidentally runs multiple versions of the same test.
Differential Revision: D17898105
Test Plan: Imported from OSS
Pulled By: suo
fbshipit-source-id: 0cd6f8421c86c90a6e1bae33a3fdbe998f570e07