This PR adds support for `SymInt`s in python. Namely,
* `THPVariable_size` now returns `sym_sizes()`
* python arg parser is modified to parse PyObjects into ints and `SymbolicIntNode`s
* pybind11 bindings for `SymbolicIntNode` are added, so size expressions can be traced
* a large number of tests added to demonstrate how to implement python symints.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78135
Approved by: https://github.com/ezyang
This makes prims look as if they were defined in native_functions.yaml
but they're still all written in Python. You now need to give a full
schema string for your prims. The returned prim object is now
torch.ops.prim overload (prims are not allowed to be overloaded,
so we return the overload, not the overload packet, for speed.)
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77117
Approved by: https://github.com/mruberry, https://github.com/albanD
For the most part, PrimTorch refs have the same signature as their
ATen equivalents. I modify most PrimTorch refs to register themselves
as decompositions, using the prim name they wrap to find the aten name
(except for a few cases where the prim/aten names mismatch). There are
some exclusions, falling into one of two categories:
- The torch equivalent was already implemented as a CompositeImplicitAutograd
decomposition in C++
- The ref doesn't support enough features (e.g., the real deal has more
kwargs / overloads than are currently implemented)
PrimTorch refs are written as a single function that supports all
overloads, and this style is convenient for cases where we have a bundle
of overloads for what morally is a single overload with a Union type
on an argument (which we ought to have supported in
native_functions.yaml but blah); to support registering a single decomp
for all the overloads, we modify register_decomposition to register
to ALL overloads if you pass it an overload packet. This is technically
BC breaking but no tests started failing because of it.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76835
Approved by: https://github.com/Chillee, https://github.com/mruberry
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73874
These get triggered when you are doing normal stuff with sparse
tensors and `__torch_dispatch__`, but it all works fine. No need
to warn.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: bdhirsh
Differential Revision: D34707395
Pulled By: ezyang
fbshipit-source-id: 3492c03abb1df1e925af3855dbf772784405d8c1
(cherry picked from commit 95e5981b304abf0367740906c238b29cadeea41c)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72301
First step in resolving #35026.
This adds `PythonRecordFunction` which is a `torch::CustomClassHolder`
for `at::RecordFunction` to keep the ATen code free of torch includes.
And adds new unused internal API functions
`_record_function_enter_new` which return the torchbind object.
Once the FC period is expired, `torch.profiler.record_function` will
be updated to use this new internal API. Then once BC period is
expired, the cpp_custom_type_hack-based API can be removed.
Test Plan: Imported from OSS
Reviewed By: dagitses
Differential Revision: D34586311
Pulled By: robieta
fbshipit-source-id: d3eb9ffad7b348548a2b22c75203a92d1cb5115b
(cherry picked from commit 92d2ca808e5fbd20c9d6645dcabc3f059f9ef2d3)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68945
This PR enables the Python conversion functions for `Storage` (specifically `UntypedStorage`) and also cleans up some remnants of the deprecated typed storages from `DynamicTypes.cpp`.
ghstack-source-id: 147245110
Test Plan: Run the existing unit and integration tests.
Reviewed By: albanD
Differential Revision: D32676505
fbshipit-source-id: 3a3f6db4fb0da5c78dd406c96ab70bdc37015521
(cherry picked from commit d6427b94cf)
Summary:
Follow up to https://github.com/pytorch/pytorch/issues/68095
This also changes the files from the ATen folder to include c10's `Export.h` instead since they can't ever be exporting `TORCH_PYTHON_API`.
cc pietern mrshenli pritamdamania87 zhaojuanmao satgera rohan-varma gqchen aazzolini osalpekar jiayisuse SciPioneer H-Huang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69585
Reviewed By: mrshenli
Differential Revision: D32958594
Pulled By: albanD
fbshipit-source-id: 1ec7ef63764573fa2b486928955e3a1172150061
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65967
Graph is an implementation detail. If user wants to get access to the
underlying graph, they should be able to explicitly dynamic cast instead.
ghstack-source-id: 141659819
Test Plan: no behavior change.
Reviewed By: gmagogsfm
Differential Revision: D31326153
fbshipit-source-id: a0e984f57c6013494b92a7095bf5bb660035eb84
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64066
I noticed a bunch of time being spent heap-allocating Tuples
in the unpickler. 1-, 2-, and 3-element Tuples are apparently common
enough that they get their own bytecode instructions, so I decided to
try also giving them their own representation. We store up to 3
IValues inline in `Tuple` rather than doing a second heap allocation
for a `std::vector<IValue>`.
ghstack-source-id: 140695395
Test Plan:
Added automated tests for TupleElements.
Pixel 3 before: https://www.internalfb.com/intern/aibench/details/761596366576284
Pixel 3 after: https://www.internalfb.com/intern/aibench/details/591414145082422
We went from 347 ms to 302 ms.
Reviewed By: dhruvbird
Differential Revision: D30592622
fbshipit-source-id: 93625c54c9dca5f765ef6d5c191944179cb281a8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65345
FooType::get() can return a const reference. Inconveniently, converting shared_ptr<FooType> to shared_ptr<Type> requires a copy & refcount bump, so to properly take advantage of this in unshapedType() we need to take a const Type& in isSubtypeOf(), which is good practice anyway -- don't require a shared_ptr if you don't need to take ownership.
ghstack-source-id: 140044165
Test Plan:
CI
perf says c10::unshapedType time decreased from 2.8% to 2.2% during static runtime startup, though I expect this to be generally beneficial.
Reviewed By: hlu1
Differential Revision: D31027361
fbshipit-source-id: 676feb81db9f74ad7b8651d8774f4ecb4cfa6ab8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63414
Misuse of raw pointer in here where stack is never nullable.
ghstack-source-id: 136938318
Test Plan:
compiles.
Imported from OSS
Reviewed By: ejguan
Differential Revision: D30375410
fbshipit-source-id: 9d65b620bb76d90d886c800f54308520095d58ee
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52832
**Summary**
This commit adds `torch._C.ScriptList`, a list type that has reference
semantics across the Python/TorchScript boundary. That is, modifications
made in TorchScript to instances of `torch._C.ScriptList`
are visible in Python even when it is not returned from the function.
`torch._C.ScriptList` is implemented using a modified version of pybind's
`stl_bind.h`-style bindings attached to `ScriptList` and `ScriptListIterator`,
wrapper classes around `c10::impl::GenericList` and
`c10::impl::GenericList::iterator`. These bindings allow instances of
`torch._C.ScriptList` to be used as if it were a
regular `list` in Python. Reference semantics are achieved by simply
retrieving the `IValue` contained in `ScriptList` in `toIValue` (invoked
when converting Python arguments to `IValues` before calling TorchScript
code).
**Test Plan**
This commit adds `TestScriptList` to `test_list_dict.py`, a set of tests
that check that all of the common list operations are supported
and that instances have reference semantics across the
Python/TorchScript boundary.
Test Plan: Imported from OSS
Reviewed By: gmagogsfm
Differential Revision: D29478121
Pulled By: SplitInfinity
fbshipit-source-id: 652cc25cfa37debe28db9527504846f22abd8b54
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52659
**Summary**
This commit adds `torch._C.ScriptDict`, a dictionary type that has reference
semantics across the Python/TorchScript boundary. That is, modifications
made to instances of `torch._C.ScriptDict` in TorchScript are visible in
Python even when it is not returned from the function. Instances can be
constructed by passing an instance of a Python dictionary to
`torch.jit.script`. In the case of an empty dictionary, its type is
assumed to be `Dict[str, Tensor]` to be consistent with the handling of
empty dictionaries in TorchScript source code.
`torch._C.ScriptDict` is implemented using a modified version of pybind's `stl_bind.h`-style bindings attached to `ScriptDict`, `ScriptDictIterator` and `ScriptDictKeyIterator`, wrapper classes around `c10::impl::GenericDict` and `c10::impl::GenericDict::iterator`. These bindings allow instances of `torch._C.ScriptDict` to be used as if it were a regular `dict` Python. Reference semantics are achieved by simply retrieving the `IValue` contained in `ScriptDict` in `toIValue` (invoked when converting Python arguments to `IValues` before calling TorchScript code).
**Test Plan**
This commit adds `TestScriptDict` to `test_list_dict.py`, a set of tests
that check that all of the common dictionary operations are supported
and that instances have reference semantics across the
Python/TorchScript boundary.
Differential Revision:
D27211605
D27211605
Test Plan: Imported from OSS
Reviewed By: gmagogsfm
Pulled By: SplitInfinity
fbshipit-source-id: 446d4e5328375791aa73eb9e8b04dfe3465af960
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57635
Note: this PR looks massive, but it's just one simple change, codemodded many times.
In many cases, a callback needs to access the value/error produced by the parent future. In Python this was easy because the callback was invoked with the parent future as argument, and could thus inspect it. In C++ the callbacks didn't take any arguments, thus in many cases we worked around this by capturing the future in its own callback. This is risky (leads to reference cycle and thus memory leak) and must be done carefully (spoiler: sometimes we weren't).
ghstack-source-id: 128296580
Test Plan: CI
Reviewed By: wanchaol
Differential Revision: D28178783
fbshipit-source-id: 6de02c4568be42123372edc008f630d5ddae0081
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57688
P412982836 says that `torch::jit::toIValue()` will also touch GIL through `torch::jit::createGenericDict()` (P412848640)
So we have to move `torch::jit::toIValue()` out of multithreading execution
Reviewed By: hyuen
Differential Revision: D28236527
fbshipit-source-id: 43a33dbcfc828cc42c5e1230c8f5cb415bf7bde4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56807
If I understand correctly, there's no reason to create your own instance of these global singleton types.
ghstack-source-id: 127312270
Test Plan: CI
Reviewed By: SplitInfinity
Differential Revision: D27973447
fbshipit-source-id: f12df69d185f1baaa45f2ac6eac70570a7a65912
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55124
**Summary**
This commit modifies type inference (used by the module scripting code)
so that it tries to script the type of any class instances that it
encounters. This enables recursive, automatic scripting of class type
module attributes.
**Test Plan**
This commit adds a test case for this to `TestClassType`.
Test Plan: Imported from OSS
Reviewed By: gmagogsfm
Differential Revision: D23971883
Pulled By: SplitInfinity
fbshipit-source-id: 7a5a2e7c12ee68cbdeb0a07e6aaf98734a79cb06
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54476
Per title. For `add_done_callback`, we log but swallow exceptions in order to keep consistent with what concurrent.futures python library does, see discussion in https://github.com/pytorch/pytorch/pull/45675.
Although, it would be good to improve the verbosity here as this can be a source of confusion if users are setting a different future via `add_done_callback`, and an error is hit resulting in an unexpected hang (see https://github.com/pytorch/pytorch/issues/52132 for more details on how this can happen).
ghstack-source-id: 125300389
Test Plan: CI
Reviewed By: lw
Differential Revision: D27253004
fbshipit-source-id: 72ed21c8fb6d27de5797c17fc46b762f893e6fea
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54915
TorchScript and torch.package have different mangling schemes. To avoid
them interfering with each other, we should undo the torch.package
mangling before processing anything with TorchScript (since TS
independently makes sure that no names collide).
Test Plan: Imported from OSS
Reviewed By: SplitInfinity
Differential Revision: D27410472
Pulled By: suo
fbshipit-source-id: d1cc013c532d9abb7fb9615122bc465ded4785bb
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50983
There is currently no way to handle/propagate errors with the python-based futures API (they are raised correctly if set with an error, but this is only possible from C++).
This diff allows the Future's `unwrap_func` to be set in python optionally, so users can set futures completed with an exception and the error will throw as expected. This is mostly to support the following use case in the next diff:
```
ret_fut = torch.futures.Future(unwrap_func = lambda python_result: {
# throw exception if needed
if isinstance(python_result, Exception):
throw python_result
})
rpc_fut = rpc.rpc_async(...) # RPC future that times out
# Goal is to propagate RPC error to this future
rpc_fut.add_done_callback(
res => {
# Note that ret_fut.set_result(res.wait()) won't propagate the error
try:
ret_fut.set_result(res.wait())
except Exception as e:
ret_fut.set_result(e)
}
)
```
ghstack-source-id: 121021434
Test Plan:
unittest
```
buck test mode/dev-nosan mode/no-gpu //caffe2/test:futures -- te
st_unwrap --print-passing-details
```
Reviewed By: mrshenli
Differential Revision: D25950304
fbshipit-source-id: 7ee61e98fcd783b3f515706fa141d538e6d2174d
Summary:
Previously we might have gotten segfaults and all, now it raises an exception.
Thread safety hasn't been an objective.
I have a followup to expand the Python interface for the API.
Fixes https://github.com/pytorch/pytorch/issues/49969.
wanchaol
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50326
Reviewed By: pbelevich
Differential Revision: D26096234
Pulled By: gmagogsfm
fbshipit-source-id: 5425772002eb4deb3830ed51eaa3964f22505840
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50870
**Summary**
Module attributes whose types cannot be determined based on annotations
or inference based on their values at script time are added to the
concrete type of the corresponding module as "failed attributes". Any
attempt to access them in scripted code produces an error with a message
explaining that the attribute could not be contributed to a
corresponding attribute on the TorchScript module. However, this error
is not more specific than that.
This commit modifies `infer_type` in `_recursive.py` so that it returns
`c10::InferredType` instead, which allows more information about typing
failures to be communicated to the caller through the `reason()` method
on this class. This information is appended to the hint added to the
module concrete type for failed attributes.
**Testing**
This commit adds a unit test to `test_module_containers.py` that checks
that extra information is provided about the reason for the failure
when a module attribute consisting of a list of `torch.nn.Module` fails to convert.
Test Plan: Imported from OSS
Reviewed By: pbelevich
Differential Revision: D26091472
Pulled By: SplitInfinity
fbshipit-source-id: fcad6588b937520f250587f3d9e005662eb9af0d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48840
The CUDAFuture class needs to inspect the values it contains in order to extract its tensors (in fact, the DataPtrs backing those). These are needed first to determine what CUDA devices back those tensors, so that an event for each such device can be recorded; and later to record these DataPtrs with the CUDA caching allocator if they are used in other streams.
This became complicated when Python was added to the mix, because to inspect a Python object we need to acquire the GIL, but we couldn't do so from code that was supposed to also work in C++-only mode. The solution was for users to provide a custom way to extract DataPtrs, so that the PythonFutureWrapper could install such a custom Python-aware one. This was the DataPtr extractor.
In https://github.com/pytorch/pytorch/pull/48502 a different suggestion was proposed. At its root, it consists in adding support for IValues of type PyObject to the visit() and getSubValues() methods. In order to deal with the GIL, we do this through a virtual method: PyObjectHolder, which is the base class, is available also in C++-only mode, and thus defines this method but leaves it unimplemented; ConcretePyObjectHolder, which is the subclass, is only included in Python mode, and thus it can implement that method, acquire the GIL, and do what it's supposed to.
In my opinion, this approach is just brilliant! Thank wanchaol for proposing it! It hides the complexity of dealing with Python inside getSubValues(), where it can be done properly, thus simplifying enormously the CUDAFuture and the PythonFutureWrapper classes.
ghstack-source-id: 118704935
Test Plan: Unit tests
Reviewed By: wanchaol
Differential Revision: D25334355
fbshipit-source-id: 3f1d3bf6e6e8505a114c877fb9a6fcc3f68d91d3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49009
As per the title, we should generally not have exception swalling and
this commit makes it so that if there is a true error in JIT operator
resolution, it is propagated back to the RPC callee and we don't silently
swallow any other exceptions that may happen. Swallowing the exceptions
previously resulted in hard to debug issues such as unexpected ops showing up
in profiler, and flaky tests which were fixed by
https://github.com/pytorch/pytorch/pull/41287
Added a unittest that validates the error that comes from `jit/pybind_utils.h`.
ghstack-source-id: 118794661
Test Plan: CI
Reviewed By: mrshenli
Differential Revision: D25392905
fbshipit-source-id: 6f93251635740bcf902824548b2bc6f9249be5f0
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49146
Add support for Storage arguments to IValue and the JIT typing system, and make ops that were blocked on that c10-full.
ghstack-source-id: 118710665
(Note: this ignores all push blocking failures!)
Test Plan: waitforsandcastle
Reviewed By: ezyang
Differential Revision: D25456799
fbshipit-source-id: da14f125af352de5fcf05a83a69ad5a69d5a3b45