- sets it as a fake stack trace as we don't have a generic comment feature
- when verbose is disabled, still adds a contextmanager and flag checks. the alternative is to use MACROS, but that wouldn't be usable with TORCH_LOGS
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124954
Approved by: https://github.com/jansel
Summary: `has_triton` causes some import time cycles. Lets use `has_triton_package` which is enough.
Test Plan:
```
buck2 test 'fbcode//mode/opt' fbcode//fblearner/flow/projects/model_processing/pytorch_model_export_utils/logical_transformations/tests:filter_inference_feature_metadata_test -- --exact 'fblearner/flow/projects/model_processing/pytorch_model_export_utils/logical_transformations/tests:filter_inference_feature_metadata_test - test_collect_features_from_graph_module_nodes (fblearner.flow.projects.model_processing.pytorch_model_export_utils.logical_transformations.tests.filter_inference_feature_metadata_test.FilterInferenceFromFeatureMetadataTest)'
```
now passes
Differential Revision: D55001430
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122059
Approved by: https://github.com/aakhundov
Summary: Unless we register triton to be a special import, FX graph import mechanism imports it as `from fx-generated._0 import triton as triton` which is obviously broken.
Test Plan:
I could not figure out how to write a test for this but
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//tgif/lib/tests/gpu_tests:lowering_pass_test -- -r test_default_ait_lowering_multi_hardwares
```
now passes
Differential Revision: D54990782
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122041
Approved by: https://github.com/aakhundov
Putting this PR as an RFC since I have resorted to some horrible hacks in order to make this work.
```
(Pdb) p triton.language.float32
triton.language.fp32
(Pdb) p str(triton.language.float32)
'fp32'
(Pdb) p repr(triton.language.float32)
'triton.language.fp32'
```
This means that we need to "rewrite" them for fx graph and inductor execution.
This PR allows Mamba2 to work with `torch.compile`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121690
Approved by: https://github.com/Skylion007
This pull request aims to complete most of the support for vectorizing int32 and int64 data types except for indirect indexing and masks. The basic data type support for uint32 and uint64 is also added but without vectorization. More vectorized conversion functions are added between integer and float. In order to support int64 vectors, a new VectorizedN class to handle vectors of arbitrary length. Below are the details:
1. Complete most of the int32 and int64 vectorization support including load, store, reduction, constant and conversion. The indirect indexing and masks will be addressed in follow-up PRs, after which, the legality checking logic in `CppVecKernelChecker` can be further simplified.
2. Util functions for conversion between integer and float vectors (in cpp_prefix.h and ATen vec). Ideally, we'd better move them from cpp_prefix.h to ATen vec to simplify cpp_prefix.h, will be addressed in follow-up PRs.
3. Introduced a new template class VectorizedN, designed to handle vectors of arbitrary length by encapsulating multiple Vectorized<T> instances. This class supports most of the operations of `Vectorized<T>`. It makes the support of int64 vectorization simpler. I will also apply it to bf16/fp16/int8 in the follow-up PRs for better efficiency. For example, bf16 currently only uses half of the vector lanes. With `VectorizedN`, we can use full of the lanes and map bf16 vector to `VectorizedN<float,2>` on conversion.
4. Basic data type support is added for uint32 and uint64 (in graph.py). Vectorization support will be added later but not of high priority due to fewer usages.
Next steps:
- [ ] Refactor the vector mask handling to support data types other than float. Currently vector masks are implemented with float vectors.
- [ ] Fully utilize vector lanes for bfloat16/float16/int8.
- [ ] Support indirect indexing with vectorized index via scalarization.
- [ ] Clean up `CppVecKernelChecker`.
- [ ] Simplify `cpp_prefix.h` including refactoring vector conversion logic.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119001
Approved by: https://github.com/peterbell10, https://github.com/jansel
When working with internal flows, it can sometimes be ambiguous what
version of the code they are working with. In this case, having the
function name available in the stack trace can help identify what you
are looking at.
Example now looks like:
```
[DEBUG] # File: /data/users/ezyang/a/pytorch/a.py:5 in f, code: return x + x
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117459
Approved by: https://github.com/Skylion007
Updates flake8 to v6.1.0 and fixes a few lints using sed and some ruff tooling.
- Replace `assert(0)` with `raise AssertionError()`
- Remove extraneous parenthesis i.e.
- `assert(a == b)` -> `assert a == b`
- `if(x > y or y < z):`->`if x > y or y < z:`
- And `return('...')` -> `return '...'`
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116591
Approved by: https://github.com/albanD, https://github.com/malfet
This PR fixes two cases when fx generated code is invalid in python (syntax error):
1. multiple type annotation in one line: `var1: annotation1, var2: annotation2 = function_call()`
2. invalid type annotation for scalars like `var1: f32[] = function_call()`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113345
Approved by: https://github.com/ezyang
example usage
* `TORCH_COMPILE_DEBUG=1 INDUCTOR_ORIG_FX_SVG=1 INDUCTOR_POST_FUSION_SVG=1 python trig.py`: show original fx node name, file, and code. see snapshot 2 where we have origin_0, 1, 2
* trig.py can be found in P816304818
Implementation
* keep original fx graph in GraphLowering, ```self.orig_gm: torch.fx.GraphModule = gm.__copy__()```
* draw original fx graph with origins ir_post_fusion ```V.debug.draw_orig_fx_graph(self.orig_gm, self.scheduler.nodes)```. node.meta["buff_meta"] tracks buf_name
<img width="350" alt="Screenshot 2023-08-29 at 12 40 24 PM" src="https://github.com/pytorch/pytorch/assets/134637289/c4e197cb-ab3b-4a09-a584-c1356376accb">
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107752
Approved by: https://github.com/mlazos
Requested from @tugsbayasgalan: we want dynamo to preserve some FX node metadata when we trace `GraphModule`s (`nn_module_stack`, `source_fn`, `stack_trace`). This is helpful for the case when we export an aten-level `GraphModule`, add some (possibly non-torch or non-aten) ops, and we want to transform the graph back into an aten-level graph. Without preserving metadata, future passes that look at metadata (e.g. quantization passes) won't work.
This feature also has the additional benefit of being able to preserve origin line of code when `print_readable`'ing a `GraphModule`. This is helpful when debugging graphs that have passed through dynamo several times.
The added unit test demonstrates the added functionality of this PR.
~This PR is currently a proof-of-concept implementation that shows that preserving node metadata across dynamo is possible.~ This PR preserves node metadata across dynamo by doing the following:
- ~inject a counter variable into the `GraphModule` source code, which is incremented every time a node is run~
- Construct a line number -> node index map in `GraphModule` as the source code is being generated.
- pass a list of node metadata and the line number map to dynamo's bytecode analyzer
- ~dynamo traces the counter as a `ConstantVariable`, so when we create a new proxy, we can determine which original node index this proxy corresponds by looking at the value of the traced counter~
- When we create a new proxy, get the current instruction's line number, and get the node index using the line number map
- index into the original node metadata ~using the counter variable's tracked value.~
~Some things that should be addressed off the top of my head:~
- ~Is this feature even desirable? (Do we really want Dynamo to have special behavior for `GraphModules`? Should we expect users to re-export `GraphModules`?)~
- ~Is there a better approach than to use a counter? We considered using node names, line numbers, and assuming that proxies are created in the same order as the nodes, but each of these 3 have shortcomings. For node names, we only have access to new node names, not the old ones. Using line number is fragile. The third is problematic since not all created nodes go through `create_proxy` (e.g. inputs). We currently generate a line number to node index map when the `GraphModule`'s code is generated.~
- ~What's the best way to send data across the "CPython gap"? That is, it is not obvious how to cleanly pass data from dynamo's `eval_frame.py:_TorchDynamoContext.__call__` to `symbolic_convert.py:InstructionTranslatorBase.__init__`. In this PR, we use a global.~
Differential Revision: [D49257108](https://our.internmc.facebook.com/intern/diff/D49257108)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107067
Approved by: https://github.com/jansel
Requested from @tugsbayasgalan: we want dynamo to preserve some FX node metadata when we trace `GraphModule`s (`nn_module_stack`, `source_fn`, `stack_trace`). This is helpful for the case when we export an aten-level `GraphModule`, add some (possibly non-torch or non-aten) ops, and we want to transform the graph back into an aten-level graph. Without preserving metadata, future passes that look at metadata (e.g. quantization passes) won't work.
This feature also has the additional benefit of being able to preserve origin line of code when `print_readable`'ing a `GraphModule`. This is helpful when debugging graphs that have passed through dynamo several times.
The added unit test demonstrates the added functionality of this PR.
~This PR is currently a proof-of-concept implementation that shows that preserving node metadata across dynamo is possible.~ This PR preserves node metadata across dynamo by doing the following:
- ~inject a counter variable into the `GraphModule` source code, which is incremented every time a node is run~
- Construct a line number -> node index map in `GraphModule` as the source code is being generated.
- pass a list of node metadata and the line number map to dynamo's bytecode analyzer
- ~dynamo traces the counter as a `ConstantVariable`, so when we create a new proxy, we can determine which original node index this proxy corresponds by looking at the value of the traced counter~
- When we create a new proxy, get the current instruction's line number, and get the node index using the line number map
- index into the original node metadata ~using the counter variable's tracked value.~
~Some things that should be addressed off the top of my head:~
- ~Is this feature even desirable? (Do we really want Dynamo to have special behavior for `GraphModules`? Should we expect users to re-export `GraphModules`?)~
- ~Is there a better approach than to use a counter? We considered using node names, line numbers, and assuming that proxies are created in the same order as the nodes, but each of these 3 have shortcomings. For node names, we only have access to new node names, not the old ones. Using line number is fragile. The third is problematic since not all created nodes go through `create_proxy` (e.g. inputs). We currently generate a line number to node index map when the `GraphModule`'s code is generated.~
- ~What's the best way to send data across the "CPython gap"? That is, it is not obvious how to cleanly pass data from dynamo's `eval_frame.py:_TorchDynamoContext.__call__` to `symbolic_convert.py:InstructionTranslatorBase.__init__`. In this PR, we use a global.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107067
Approved by: https://github.com/jansel
Summary: We wanna do this little by little. For now, I tried only on DissectedPartsModel which needs to use aot_export version.
Test Plan: CI
Reviewed By: zhxchen17
Differential Revision: D46785735
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104897
Approved by: https://github.com/JacobSzwejbka
Previously, you'd get `<eval_with_key>.0`; now you get `<eval_with_key>.0 from /data/users/ezyang/b/pytorch/test/dynamo/test_misc.py:5683 in forward`
I used to do this with globals, but now I do it with a `co_fields` parameter that's plumbed around, because putting things in globals has implications(TM). Happy to bikeshed on the `co_fields` structure.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103885
Approved by: https://github.com/albanD
Previously, you'd get `<eval_with_key>.0`; now you get `<eval_with_key>.0 from /data/users/ezyang/b/pytorch/test/dynamo/test_misc.py:5683 in forward`
I used to do this with globals, but now I do it with a `co_fields` parameter that's plumbed around, because putting things in globals has implications(TM). Happy to bikeshed on the `co_fields` structure.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103885
Approved by: https://github.com/albanD