Ideally all `_dynamo.exc.UserError`s should have "case names", i.e., link to examples in `exportdb`.
This PR adds case names to several instances of `_dynamo.exc.UserError`. In particular, looking at coverage based on `UserErrorType`:
* `DYNAMIC_CONTROL_FLOW`, `ANTI_PATTERN`, and `STANDARD_LIBRARY` are fully covered.
* `CONSTRAINT_VIOLATION` and `DYNAMIC_DIM` have no coverage. We don't seem to have any dedicated examples of specifying dynamic shapes in `exportdb` (although they are used in some other examples without explanation, to avoid some specialization that would make such examples moot).
* `INVALID_INPUT` is only partly covered. Frankly this is tedious to cover via examples.
Differential Revision: [D49928518](https://our.internmc.facebook.com/intern/diff/D49928518/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110555
Approved by: https://github.com/angelayi, https://github.com/ydwu4
Triplet Margin Loss takes in a Callable `distance_function` parameter which is not supported as an argument on the fx graph. See previous error:
> File "/scratch/eellison/work/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function
self.push(fn.call_function(self, args, kwargs))
File "/scratch/eellison/work/pytorch/torch/_dynamo/variables/torch.py", line 723, in call_function
*proxy_args_kwargs(args, kwargs),
File "/scratch/eellison/work/pytorch/torch/_dynamo/utils.py", line 504, in proxy_args_kwargs
f"call_function args: {typestr(*args)} {typestr(*list(kwargs.values()))}"
File "/scratch/eellison/work/pytorch/torch/_dynamo/exc.py", line 143, in unimplemented
raise Unsupported(msg)
torch._dynamo.exc.Unsupported: call_function args: TensorVariable() TensorVariable() TensorVariable() ConstantVariable(float) NNModuleVariable()
This is fixable by just inlining into `triplet_margin_loss` and continuing to compile it. This required support for `has_torch_function_variadic`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110302
Approved by: https://github.com/mlazos
This PR fix the `is_typing` function: checks whether a value is an instance of a class
from the `typing` package.
This reverts commit b09c09f7bb3adb6a5b8a107a5b96757b569daa8d.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109201
Approved by: https://github.com/ezyang
This PR introduces binary search for finding smaller validation errors, when they occur.
We do that by bisecting the sequence of `torch._assert` FX nodes recorded as the source
expression of the translation validator (TV) by `ShapeEnv.evaluate_expr` calls. Then, we
raise the error caused by the earliest node.
In summary, the changes are:
- Call `bisect` on `ValidationError` @ _torch/_dynamo/convert_frame.py_
- Implement the binary search @ _torch/fx/experimental/symbolic_shapes.py_
Edit: moved `ShapeEnv` replay-recording to #107989
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107493
Approved by: https://github.com/ezyang
ghstack dependencies: #107989
Summary:
Original commit changeset: e11cddf1fecc
Original Phabricator Diff: D49064185
Test Plan:
Comparing PT1 and PT2 performance on the IG Feed Model with this diff backed out: N4274204
Comparing the PT1 and PT2 performance on IG Feed with this diff committed: N4271093
Reviewed By: zou3519
Differential Revision: D49230047
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109199
Approved by: https://github.com/zou3519, https://github.com/xw285cornell
Fixes#106893
There are two main changes:
- Before this PR, the function returned by once_differentiable was
included in skipfiles (because its .co_code is
torch/autograd/function.py). This PR adds a mechanism to tell Dynamo
to inline a function, no matter if it is included in skipfiles.
- A bugfix: when we are introspecting the backward, we need to turn the
grad mode off. This is to accurately model the eager-mode semantics:
In eager-mode PyTorch, if second-order gradients were not requested, then
the grad mode is off. torch.compile does not work with higher-order
gradients and just assumes we do first-order gradients, so this is OK.
Test Plan:
- new test
Differential Revision: [D49064185](https://our.internmc.facebook.com/intern/diff/D49064185)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108686
Approved by: https://github.com/voznesenskym
Fixes inference accuracy for `doctr_reco_predictor` and `pyhpc_turbulent_kinetic_energy`.
For the `same(float, float)` comparison we weren't going through the more rigorous tensor comparison path which takes into account the fp64 base results.
Also return True when fp64 base result are not well formed (nan).
I debugged these models and the source of divergence were innocuous:
`doctr_reco_predictor` - can be fixed by turning off layout optimization, decomp for batch norm
`pyhpc_turbulent_kinetic_energy` - divergence caused because fused kernel keeps precision in fp32 instead of casting back and forth from/to fp32/bf16. Fused kernel is better precision, anyway.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108202
Approved by: https://github.com/jansel
There is already some support for plumbing `__torch_dispatch__` tensor subclasses through dynamo, but this PR beefs it up a bit and adds a test. In particular:
(1) Fakeifying tensor subclasses didn't properly set autograd metadata (requires_grad, is_leaf) on the newly fakeified wrapper subclass. I don't actually have a test for this in this PR, but it's tested pretty heavily later in my aot autograd tests
(2) Fakeifying tensor subclasses didn't properly track source information for dynamic shapes on the inner tensors. I added a new `WrapperSubclassFieldSource` subclass, that represents a source coming from a tensor field on a wrapper subclass, which I use in the fakeifying logic, and again in symbolic_shapes.py to generate proper guards.
(3) `_make_wrapper_subclass()` marginally updated this code to work better with dynamic shapes. One thing that's a bit weird about `_make_wrapper_subclass`: it has two overloads, and the first explicitly does not support dynamic shapes (and the second.. does not support kwargs). I think that later we probably want to consolidate / at least make the first overload work with dynamic shapes, but I didn't want to handle that in this PR (so these smaller changes seemed like a strict improvement).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107415
Approved by: https://github.com/ezyang
This adds some utilities for conveniently working with fast combined CapturedTraceback from Python. The main goal of these utilities is to make it easier for people to use CapturedTraceback as a drop-in replacement for `traceback.extract_stack`, which is 20x slower than CapturedTraceback.
I port symbolic shapes to use the new CapturedTraceback code, to validate that the APIs work and are useful.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107358
Approved by: https://github.com/zdevito, https://github.com/albanD
ghstack dependencies: #107438
Adds API to mark tensor as a static input -
To make this trigger recompiles properly, I'll need to update tensor match checks to also check for this new attribute
Additional concern is memory - the tensors will be kept alive, but this is the current behavior for nn modules and parameters.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107154
Approved by: https://github.com/eellison
RFC: https://github.com/pytorch/rfcs/pull/54
First commit is the contents of https://github.com/Quansight-Labs/numpy_pytorch_interop/
We have already been using this in core for the last few months as a external dependency. This PR pulls all these into core.
In the next commits, I do a number of things in this order
- Fix a few small issues
- Make the tests that this PR adds pass
- Bend backwards until lintrunner passes
- Remove the optional dependency on `torch_np` and simply rely on the upstreamed code
- Fix a number dynamo tests that were passing before (they were not tasting anything I think) and are not passing now.
Missing from this PR (but not blocking):
- Have a flag that deactivates tracing NumPy functions and simply breaks. There used to be one but after the merge stopped working and I removed it. @lezcano to investigate.
- https://github.com/pytorch/pytorch/pull/106431#issuecomment-1667079543. @voznesenskym to submit a fix after we merge.
All the tests in `tests/torch_np` take about 75s to run.
This was a work by @ev-br, @rgommers @honno and I. I did not create this PR via ghstack (which would have been convenient) as this is a collaboration, and ghstack doesn't allow for shared contributions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106211
Approved by: https://github.com/ezyang
This PR adds a new configuration that enables shapes of torch.nn.Parameter to be treated as dynamic in order to avoid extensive recompilation when Paramters are used instead of Tensor.
This features addresses part of issue #105279
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105855
Approved by: https://github.com/ezyang
Since Python 3.11 bytecode contains endline and column information, for each bytecode, we attribute the source code corresponding to the bytecode in a more accurate way. For example, we can highlight a function call in a series of nested function calls, or highlight a function call spanning multiple lines.
Sample:
```python
import torch
import torch._dynamo
from functorch.experimental.control_flow import cond
def h(x):
return x * 5
def true_fn(x):
return x * 2
def false_fn(x):
return x * 3
def f(pred, x):
x = h(
h(h(x))
)
x = x[1:][:2]
torch._dynamo.graph_break()
x = cond(pred, true_fn, false_fn, [x])
opt_f = torch.compile(f, backend="eager")
opt_f(torch.tensor(True), torch.randn(3, 3, 3, 3))
```
Output:
```
$ TORCH_LOGS="trace_call" python playground9.py
TRACE inlined call h from f /scratch/williamwen/work/pytorch/playground9.py:16
h(h(x))
~^^^
TRACE FX call mul from h /scratch/williamwen/work/pytorch/playground9.py:6 (inline depth: 1)
return x * 5
~~^~~
TRACE inlined call h from f /scratch/williamwen/work/pytorch/playground9.py:16
h(h(x))
~^^^^^^
TRACE FX call mul_1 from h /scratch/williamwen/work/pytorch/playground9.py:6 (inline depth: 1)
return x * 5
~~^~~
TRACE inlined call h from f /scratch/williamwen/work/pytorch/playground9.py:15
x = h(
~^
h(h(x))
^^^^^^^
)
^
TRACE FX call mul_2 from h /scratch/williamwen/work/pytorch/playground9.py:6 (inline depth: 1)
return x * 5
~~^~~
TRACE FX call getitem from f /scratch/williamwen/work/pytorch/playground9.py:18
x = x[1:][:2]
~^^^^
TRACE FX call getitem_1 from f /scratch/williamwen/work/pytorch/playground9.py:18
x = x[1:][:2]
~~~~~^^^^
TRACE inlined call true_fn from <resume in f> /scratch/williamwen/work/pytorch/playground9.py:20
x = cond(pred, true_fn, false_fn, [x])
~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TRACE FX call mul from true_fn /scratch/williamwen/work/pytorch/playground9.py:9 (inline depth: 1)
return x * 2
~~^~~
TRACE inlined call false_fn from <resume in f> /scratch/williamwen/work/pytorch/playground9.py:20
x = cond(pred, true_fn, false_fn, [x])
~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TRACE FX call mul from false_fn /scratch/williamwen/work/pytorch/playground9.py:12 (inline depth: 1)
return x * 3
~~^~~
TRACE FX call cond from <resume in f> /scratch/williamwen/work/pytorch/playground9.py:20
x = cond(pred, true_fn, false_fn, [x])
~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104676
Approved by: https://github.com/ezyang
This PR adds necessary plumbing through torchdynamo to allow tensor
subclasses with certain contract (i.e. with `__tensor_flatten__` and
`__tensor_unflatten__`) to goes through the dynamo fakification pass by
fakifying the tensor subclass internal components.
Some of the tensor subclass contract logic mostly borrowed from
https://github.com/pytorch/pytorch/pull/97540
Added some tests to verify simply passing through a tensor subclass
(i.e. DTensor) through dynamo eager works as expected.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105308
Approved by: https://github.com/ezyang
Add similar semantics for creating a buffer object similar to creating a parameter. This is done by introducing a new `Buffer` class that can be used for type disambiguation. The underlying functionality of registering a buffer remains the same as the `register_buffer` method has not been changed. The `persistent` parameter in the `Buffer` type is to indicate whether a buffer object should be persistent or not. Other non-test changes have to do with getting the new `Buffer` type recognized by inductor and dynamo. Remaining changes are test changes to make sure that the `Buffer` type can be used as a drop in replacement for `register_buffer` as it just leads to `register_buffer` being called. The addition of this new functionality still allows for normal tensors to be used as buffers so these changes are intended to be backwards compatible.
Fixes#35735
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104069
Approved by: https://github.com/mikaylagawarecki