Commit Graph

604 Commits

Author SHA1 Message Date
William Wen
4caeede799 [dynamo] more better error messages [3/N] (#147494)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147494
Approved by: https://github.com/jansel, https://github.com/zou3519
2025-02-28 06:23:28 +00:00
Xuehai Pan
3ce352e389 [BE][PYFMT] migrate PYFMT for torch._dynamo to ruff format (#144549)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144549
Approved by: https://github.com/jansel
2025-02-28 03:03:53 +00:00
Raymond Li
c5bf9aaf1c Log graph breaks (#146537)
Graph breaks currently aren't logged to dynamo_compile and pt2_compile_events. We want to log them.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146537
Approved by: https://github.com/c00w
2025-02-27 11:06:33 +00:00
Ryan Guo
7e0ef2c844 [dynamo] Use the new get_unique_name_wrt helper when applicable (#146950)
This patch removes some duplicated name generation logic in Dynamo.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146950
Approved by: https://github.com/zou3519
ghstack dependencies: #146714, #146367
2025-02-26 19:47:39 +00:00
Ryan Guo
f46f0e465c [dynamo] Initial support for nonstrict_trace (#146367)
## Context
> **Note:** `mark_traceable` got renamed to `nonstrict_trace` after
> offline discussion. The reasons are (1) it aligns with `torch.export`'s
> `nonstrict` notion, and (2) it's more definitive in behavior suggestion.

1. [Overall Design](https://docs.google.com/document/d/1O-dR2ZQaJQVt_v67AVcDCw2yJLtqgkZFwoXK0buEWRg/edit?tab=t.0)
2. [Dynamo graph representation with `torch._higher_order_ops.flat_apply`](https://docs.google.com/document/d/1YHl5nPTJvYeCPE5TO9uA18DPWNgUYGE4gCn6bFvXcBM/edit?tab=t.0#heading=h.xtw3hhbro4gn)

## Summary
This patch adds a `torch._dynamo.nonstrict_trace` decorator, which
currently is an enhanced version of `torch._dynamo.allow_in_graph` (see
docstring for their differences). Specifically, this patch focuses on
the UI and functionality prototyping/plumbing.

The main enhancement is supporting more input types, and the
implementation challenge lies in reconstructing the input objects from
Dynamo `VariableTracker` (while accounting for buffered side-effects and
guards).  This patch takes a middle-ground (simple implementation with a
bit of user labor), by
1. asking the user to provide pytree registration for non-proxy-able
   input types,
2. letting Dynamo trace through `pytree_flatten` (which accounts for
   buffered side-effects and guards automatically),
3. and passing in the TreeSpec as a graph attribute constant into
   `torch._higher_order_ops.flat_apply` (which unflattens the inputs and
   invokes the underlying function).

## Next Steps
In subsequent patches, we will try to support the following:
- annotating on class method
- reads to global tensors
- inputs that contains `pytree.register_constant`-ed instances.
- function as input
- more output types (e.g., any pytree-registered type)
- `torch.nn.Module` as inputs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146367
Approved by: https://github.com/zou3519
ghstack dependencies: #146714
2025-02-26 19:47:39 +00:00
William Wen
cf6d1e6824 [dynamo] add generic graph break hints (#147429)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147429
Approved by: https://github.com/jansel, https://github.com/zou3519
ghstack dependencies: #147385
2025-02-26 09:20:28 +00:00
William Wen
3fd68e4e2f [dynamo] make some more graph break messages readable in English [2/N] (#147385)
This is for "for some large number Z, make sure the error messages are readable English." - beginning to audit all `unimplemented` sites and making sure that all messages are at least English-readable. Hints may not necessarily be provided.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147385
Approved by: https://github.com/jansel
2025-02-26 09:20:28 +00:00
lei,zhenyuan
7c52ef2424 Add XPU to is_compile_supported to support roi_align op in torchvision (#147541)
Part of the required fix for https://github.com/intel/torch-xpu-ops/issues/1264.

To support `roi_align`, torchvision uses `is_compile_supported` in `torch/_dynamo/utils.py` to compile a non-deterministic version of the op for backwards passes. This PR adds XPU device to the supported compile devices.

The `is_compile_supported()` util function has extremely limited usage, only being used in `torchvision.ops.roi_align` and `torch.utils._content_store.has_storage()`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147541
Approved by: https://github.com/guangyey, https://github.com/jansel

Co-authored-by: lei,zhenyuan <zhenyuan.lei@intel.com>
2025-02-24 01:32:36 +00:00
Aaron Orenstein
db4ce78d46 PEP585: More UP006 fixes (#146392)
This should be the final PR before we can enable RUFF UP006.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146392
Approved by: https://github.com/justinchuby, https://github.com/albanD, https://github.com/Skylion007
2025-02-20 06:18:13 +00:00
William Wen
16e202a38e [dynamo] improved graph break messages for some common graph break sites [1/N] (#146525)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146525
Approved by: https://github.com/jansel
2025-02-20 00:08:13 +00:00
Simon Fan
ed83b0b70b [ddp] decouple python reducer from compilation mode (#147123)
Current implementation reads as: we will only actually use the "python_reducer" config if the DDP forward is compiled. Otherwise, we will silently fallback to C++ reducer + no DDPOptimizer.
I'm changing this behavior to always use the python reducer if the config is specified.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147123
Approved by: https://github.com/fegin
2025-02-19 15:51:40 +00:00
Yidi Wu
1224765286 [cond] make cond call fake kernel in dynamo (#147045)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147045
Approved by: https://github.com/zou3519
ghstack dependencies: #146954
2025-02-14 23:13:15 +00:00
Raymond Li
21c2565f35 Document dynamo (#146736)
Many files in dynamo are currently lacking file/module-level documentation, which makes it hard to know what they do at a glance and without digging into the code. This fixes that.

Note: documentation was AI-generated and could be incorrect, please review carefully.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146736
Approved by: https://github.com/jansel, https://github.com/StrongerXi, https://github.com/anijain2305, https://github.com/zou3519
2025-02-13 00:02:21 +00:00
Animesh Jain
d6513f3246 [dynamo] Support list subclasses and fix dict subclasses mutation bugs (#146819)
This PR adds support for list subclasses. Among other things are

1) Tracking the mutations on internal vts like `_dict_vt` and `_list_vt` using sources. This helps identify if there was a mutation in the underlying data structures, and we need to reconstruct it.
2) `UserDefinedObjectVariable` now has a new method - `is_modified` which `side_effect` infra relies upon to check mutations in the underlying vts (like `_dict_vt`).
3) `reconstruction` logic ensures that we use `dict.__getitem__` and `list.__getitem__` methods. This is super important because we don't want to call the overridden `__getitem__` methods.

If this PR is hard to review, please let me know. I can break it into several small PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146819
Approved by: https://github.com/StrongerXi, https://github.com/jansel
2025-02-12 17:46:02 +00:00
Yuanhao Ji
b0042286d4 [Dynamo] Allow dynamo to handle str.xxx() (#146587)
Fixes #146350

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146587
Approved by: https://github.com/zou3519
2025-02-12 08:54:10 +00:00
James Wu
76c8a2dc48 Fix get_top() to return the base level event of the stack, not the most recently started event (#146649)
`get_top()` is really confusing when talking about a stack, because it can mean the most recently started event on the stack or the toplevel event in perfetto(which displays the stack upside down). Rename to `get_outermost` and fix the bug associated with it,  so that it returns the correct value out of the stack.

Running nanogpt now puts `guard_latency_us` correctly in the `dynamo` event:
```
tlp python benchmarks/dynamo/torchbench.py --backend inductor --device cuda --only nanogpt --amp --cold-start-latency --print-compilation-time --training --performance 2>&1 --dynamic-shapes | tee out.log
```
<img width="1281" alt="image" src="https://github.com/user-attachments/assets/4eeb371a-4d81-415a-acc4-7d303a4b2a93" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146649
Approved by: https://github.com/masnesral, https://github.com/anijain2305
2025-02-07 18:04:50 +00:00
Animesh Jain
e2e265e27b [dynamo] Use polyfill to implement comparison operators (#144485)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144485
Approved by: https://github.com/jansel
2025-02-06 17:27:07 +00:00
Simon Fan
a14c780c4c [dynamo] fix dynamo_compile logging on RecompileLimitExceeded (#146544)
Logging branches based on RecompileLimitExceeded or not. If we exceed the limit, we fallback to eager before even trying to analyze the frame. We handle RecompileLimitExceeded outside of the try/catch/finally that edits the metrics context:
72405b0c0f/torch/_dynamo/convert_frame.py (L908-L935).

dynamo_config and recompile_reason are both known before we raise the RecompileLimitExceeded, so we can add them with the rest of the "common" metrics. which are logged on metric_context decorator exit and is always called

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146544
Approved by: https://github.com/masnesral
2025-02-06 16:20:42 +00:00
Simon Fan
1d4adf4e1f [dynamo] log recompile reason to dynamo_compile (#146117)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146117
Approved by: https://github.com/bobrenjc93
2025-02-03 21:04:04 +00:00
Aaron Orenstein
23695ea002 Fix dynamo use of list[int] in graph break (#145554)
This reintroduces the change backed out by #145393 and fixes the underlying problem.

Although using a BuiltinVariable was better than nothing when we saw a GenericAlias it had problems if there was a graph break and we had to reconstruct the original python code which BuiltinVariable did as a simple `list` instead of a `list[int]`.

This changes it to use a TypingVariable instead and then teaches TypingVariable how to reconstruct.

Original commit changeset: 77b9193acb23

python test/dynamo/test_repros.py ReproTests.test_graph_break_on_jit_isinstance

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145554
Approved by: https://github.com/anijain2305
ghstack dependencies: #145551, #145552, #145553
2025-01-30 22:21:40 +00:00
IvanKobzarev
894ef8c1e3 [torchbench] Inductor freezing bfloat16 conv folding needs high tolerance (#145623)
Issue:
https://github.com/pytorch/pytorch/issues/144888

Torchbench of timm lcnet_050 model fails on accuracy in case of `--frezing` `--inference` `--bfloat16`
`res_error==0.12`
If to turn off convolution inductor constant folding - `res_error==0.016`

`float16 error ~ 0.00669`
`float16 without conv folding ~ 0.0018`

convolution folding results in increase of error almost at one order of magnitude.

I think we should revisit and try to do something to improve the accuracy for conv folding.
E.g. For example doing conv folding at compilation time with float64?

At the moment I am adding counters to identify if convolution folding happened, and in case of bfloat16 and conv_folding - increase multiplier to the max level (10) to pass accuracy test.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145623
Approved by: https://github.com/eellison
2025-01-30 12:46:35 +00:00
PyTorch MergeBot
1185b81c51 Revert "[dynamo] Use polyfill to implement comparison operators (#144485)"
This reverts commit d1f82de2bf.

Reverted https://github.com/pytorch/pytorch/pull/144485 on behalf of https://github.com/huydhn due to This seems to break dynamo tests in trunk after landing ([comment](https://github.com/pytorch/pytorch/pull/144485#issuecomment-2622893294))
2025-01-29 21:30:42 +00:00
Animesh Jain
d1f82de2bf [dynamo] Use polyfill to implement comparison operators (#144485)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144485
Approved by: https://github.com/jansel
2025-01-29 17:37:40 +00:00
Colin L. Rice
c1161957a4 inductor_config_logging: Don't drop keys (#144700)
This bit me while I was trying to debug some trace issues.
In general this config is already quite large when dumping, so adding
more fields doesn't make it significantly worse.

Also a number of the items we are type checking for (except the test
configs), don't even show up. Primarily this will help us when debugging
rocm, halide, and trace configs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144700
Approved by: https://github.com/ezyang
2025-01-27 23:47:25 +00:00
Animesh Jain
7e1c7253e9 [dynamo][builtin-skipfile-cleanup] Support tuple.__new__ (#145558)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145558
Approved by: https://github.com/jansel, https://github.com/StrongerXi
ghstack dependencies: #145519, #145547
2025-01-27 21:42:43 +00:00
Animesh Jain
ef60de07a0 [dynamo] Log guard latency (#145132)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145132
Approved by: https://github.com/ezyang
ghstack dependencies: #145509
2025-01-25 03:01:18 +00:00
Aishwarya Sivaraman
457facf7e2 [caffe2] Use the manifold cache backend as the default (#144773)
Test Plan: CI

D68155591

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144773
Approved by: https://github.com/izaitsevfb
2025-01-24 19:48:34 +00:00
PyTorch MergeBot
6f60c65a3a Revert "[dynamo] Log guard latency (#145132)"
This reverts commit 0a310d7388.

Reverted https://github.com/pytorch/pytorch/pull/145132 on behalf of https://github.com/anijain2305 due to CI failures observed after PR was merged ([comment](https://github.com/pytorch/pytorch/pull/145132#issuecomment-2611268421))
2025-01-24 00:11:50 +00:00
Animesh Jain
0a310d7388 [dynamo] Log guard latency (#145132)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145132
Approved by: https://github.com/ezyang
ghstack dependencies: #145351, #145420
2025-01-23 23:30:07 +00:00
Aaron Orenstein
a79100ab11 PEP585 update - torch/_dynamo (#145105)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145105
Approved by: https://github.com/bobrenjc93
2025-01-18 20:47:11 +00:00
Colin L. Rice
95c363cc9b dynamo: Don't crash with internal error if getattr on a tensor fails (#144817)
This prevents crashes when getattr is called on a tensor for something
which doesn't exist.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144817
Approved by: https://github.com/williamwen42, https://github.com/jansel
2025-01-16 22:04:06 +00:00
James Wu
e58c823ab8 Implement increment and add_to_set for CompileEventLogger (#143427)
This diff implements `increment` and `add_to_set`, which are features of MetricsContext, but not ChromiumEventLogger. This allows us to add a bunch of other metricscontext callsites to use CompileEventLogger instead.

Differential Revision: [D67354867](https://our.internmc.facebook.com/intern/diff/D67354867/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143427
Approved by: https://github.com/masnesral
2025-01-14 02:42:49 +00:00
bobrenjc93
1fe3af2c68 Migrate from Tuple -> tuple in torch/_dynamo (#144261)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144261
Approved by: https://github.com/aorenste, https://github.com/zou3519
2025-01-10 07:45:57 +00:00
Colin L. Rice
73278e6a5d easy: sort dictionary keys for inductor config when publishing (#143307)
This means we should get consistent logging strings for the same
config on different ranks

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143307
Approved by: https://github.com/xmfan
2025-01-09 18:01:20 +00:00
Aaron Gokaslan
373541fbf4 [BE]: Remove unnecessary copy of gradients in util (#144329)
No need to copy gradients to CPU too

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144329
Approved by: https://github.com/awgu, https://github.com/cyyever
2025-01-08 16:52:15 +00:00
James Wu
f2d6cfa677 Introduce CompileEventLogger, replace usages of metrics_context and chromium_event with it (#143420)
**Problem statement**: I want to be able to centralize and simplify the process by which people add columns/data to existing spans. We have MetricsContext and ChromiumEventLogger, and there's various choices you can make to decide where and when to log different levels of observability for your events. To resolve this, I want a central API for "adding to events under dynamo_timed".

**CompileEventLogger** is intended as a frontend for MetricsContext and ChromiumEventLogger so we can use the same class for handling everything.

CompileEventLogger is intended be used within a `dynamo_timed()` context. Its purpose is to 1. log to existing events that are in progress (i.e. within dynamo_timed), and 2. log instant events to chromium that are independent of any specific span.

CompileEventLogger has three log levels:

- CHROMIUM: Log only to chromium events, visible via tlparse.
- PT2_COMPILE: Log to chromium_events + pt2_compile_events
- COMPILATION_METRIC: Log to compilation metrics in addition to the toplevel chromium and pt2_compile_event.

In addition, we have a function CompileEventLogger.add() that automagically chooses the correct log level. For now, it is conservative, and will never automagically choose to log CompilationMetrics (though I could imagine it figuring out the metadata are all keys in CompilationMetric and therefore loggable there).

The goal here is to make one single interface to log stuff for observability reasons, and make it as easy as possible.

Not included in this diff:
- V1 of this diff will not have implementations of `increment` and `add_to_set` which MetricsContext has, so those usages are not replaced yet. But I'll add those in a followup.

- We don't handle `RuntimeMetricsContext`. It's unclear if I want that to be part of this, because under RuntimeMetricsContext there might not be a toplevel event to log to, so chromium events doesn't make sense in that context. So I might leave that separate for now.

Differential Revision: [D67346203](https://our.internmc.facebook.com/intern/diff/D67346203/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143420
Approved by: https://github.com/aorenste
2025-01-04 22:40:34 +00:00
Animesh Jain
816328fa51 [dynamo][lazy] LazyVT utils to get original value/source and is_hashable (#144160)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144160
Approved by: https://github.com/williamwen42, https://github.com/jansel
ghstack dependencies: #144129, #144130, #144141, #144158, #144163
2025-01-04 06:23:05 +00:00
Animesh Jain
3292220c43 [dynamo][easy] Move symnode helpers to utils (#144158)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144158
Approved by: https://github.com/williamwen42, https://github.com/jansel
ghstack dependencies: #144129, #144130, #144141
2025-01-04 02:52:58 +00:00
Animesh Jain
e296bab614 [dynamo] Remove DICT_SUBCLASS_GUARD_MANAGER and use dict.keys (#143722)
In hinsight, we never needed a DICT_SUBCLASS_GUARD_MANAGER, because Dynamo would inline through the overridden keys method. In this PR, we ensure that while creating guards and constructing variable trackers, we get the `d.keys()` value by using `dict.keys(d)`. This ensures that we do not call overridden keys method. Therefore, the C++ guard can use `PyDict_Next` directly to check the guards.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143722
Approved by: https://github.com/jansel
2024-12-27 04:51:35 +00:00
PyTorch MergeBot
26364428f5 Revert "[dynamo] Remove DICT_SUBCLASS_GUARD_MANAGER and use dict.keys (#143722)"
This reverts commit fe95cbe018.

Reverted https://github.com/pytorch/pytorch/pull/143722 on behalf of https://github.com/wdvr due to failing internal tests ([comment](https://github.com/pytorch/pytorch/pull/143722#issuecomment-2563127017))
2024-12-26 22:04:36 +00:00
Animesh Jain
fe95cbe018 [dynamo] Remove DICT_SUBCLASS_GUARD_MANAGER and use dict.keys (#143722)
In hinsight, we never needed a DICT_SUBCLASS_GUARD_MANAGER, because Dynamo would inline through the overridden keys method. In this PR, we ensure that while creating guards and constructing variable trackers, we get the `d.keys()` value by using `dict.keys(d)`. This ensures that we do not call overridden keys method. Therefore, the C++ guard can use `PyDict_Next` directly to check the guards.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143722
Approved by: https://github.com/jansel
2024-12-24 02:00:18 +00:00
Sam Larsen
4271a95590 [logging] A few fixes/updates to record_compilation_metrics (#143332)
Summary: Mostly cosmetic, but one bug fix:
* Bug fix: Make sure compile_id is converted to a string in the compilation metrics so it's printed as, e.g., "0/1" instead of "[0, 1]"
* Sort collections in `collection_to_str`
* Print non-string elements as `"<unknown>"` instead of None (since we don't expect non-strings)
* Move the population of the legacy metrics and any pre-processing to a new factory method in CompilationMetrics

Test Plan:
```
python test/dynamo/test_structured_trace.py
python test/dynamo/test_utils.py
```
Internal testing: https://fburl.com/scuba/dynamo_compile/sandbox/l0me8auf

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143332
Approved by: https://github.com/ppanchalia
2024-12-23 23:10:11 +00:00
Oguz Ulgen
dc55704b48 Rename cache limit to recompile limit in configs (#143709)
This PR renames every cache_limit to recompile_limit via sed.

Old config options are maintained via Config(alias='xyz')

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143709
Approved by: https://github.com/jansel
2024-12-22 10:03:57 +00:00
Animesh Jain
4627cfd1f9 [dynamo] Support user defined dicts (#143548)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143548
Approved by: https://github.com/yanboliang, https://github.com/jansel, https://github.com/williamwen42
2024-12-21 01:46:14 +00:00
Simon Fan
d88ebbf822 cleanup chromium event log on dynamo exit rather than on entry (#143175)
clearing at dynamo start is an issue because it throws away events from compiled autograd

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143175
Approved by: https://github.com/Skylion007, https://github.com/jamesjwu
ghstack dependencies: #141907
2024-12-21 00:41:24 +00:00
PyTorch MergeBot
ad7ab5ef84 Revert "[logging] A few fixes/updates to record_compilation_metrics (#143332)"
This reverts commit a9c753bbc8.

Reverted https://github.com/pytorch/pytorch/pull/143332 on behalf of https://github.com/malfet due to Surprisingly failure is caused by this PR ([comment](https://github.com/pytorch/pytorch/pull/143332#issuecomment-2557899120))
2024-12-21 00:06:44 +00:00
Sam Larsen
a9c753bbc8 [logging] A few fixes/updates to record_compilation_metrics (#143332)
Summary: Mostly cosmetic, but one bug fix:
* Bug fix: Make sure compile_id is converted to a string in the compilation metrics so it's printed as, e.g., "0/1" instead of "[0, 1]"
* Sort collections in `collection_to_str`
* Print non-string elements as `"<unknown>"` instead of None (since we don't expect non-strings)
* Move the population of the legacy metrics and any pre-processing to a new factory method in CompilationMetrics

Test Plan:
```
python test/dynamo/test_structured_trace.py
python test/dynamo/test_utils.py
```
Internal testing: https://fburl.com/scuba/dynamo_compile/sandbox/l0me8auf

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143332
Approved by: https://github.com/ppanchalia
2024-12-20 21:42:32 +00:00
bobrenjc93
8850a7b62c add some logging for tensorify (#143391)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143391
Approved by: https://github.com/jamesjwu
2024-12-19 20:06:26 +00:00
qiurc
90cc43f270 Support garbage collection after pt2 compilation (#143364)
Summary:
Support garbage collection after pt2 compilation.
Add jk to control the global rollout / rollback of this functionality
Add env var to control individual job's rollout

Test Plan:
Test the model training job with / without this changes

Reviewers:
@yuxihu @ezyang , @Yuzhen11 ,

Subscribers:

Tasks:

Tags:

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143364
Approved by: https://github.com/ezyang
2024-12-18 07:25:11 +00:00
Sam Larsen
60c54467db [logging] Log runtime autotuning timing to scuba (#141919)
See test plan in internal diff [D66679369](https://our.internmc.facebook.com/intern/diff/D66679369)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141919
Approved by: https://github.com/jamesjwu, https://github.com/ezyang
2024-12-13 21:22:13 +00:00
Tom Ritchford
dc23f1944a Remove unused Python variables in torch/[_-a]* (#133492)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133492
Approved by: https://github.com/albanD
2024-12-12 17:39:14 +00:00
Sam Larsen
30b61e521c [logging] Populate compile_time_autotune_time_us (#143104)
See testing in attached diff

Differential Revision: [D67128210](https://our.internmc.facebook.com/intern/diff/D67128210)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143104
Approved by: https://github.com/ezyang
2024-12-12 17:08:43 +00:00
PyTorch MergeBot
5c97ac9721 Revert "Remove unused Python variables in torch/[_-a]* (#133492)"
This reverts commit fda975a7b3.

Reverted https://github.com/pytorch/pytorch/pull/133492 on behalf of https://github.com/clee2000 due to Sorry, I need to revert this in order to revert something else.  The only thing you need to do is rebase and remerge ([comment](https://github.com/pytorch/pytorch/pull/133492#issuecomment-2536635516))
2024-12-11 17:29:12 +00:00
Tom Ritchford
fda975a7b3 Remove unused Python variables in torch/[_-a]* (#133492)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133492
Approved by: https://github.com/albanD
2024-12-10 21:48:44 +00:00
Sam Larsen
a751558467 [logging] Fix bug involving missing compilation_metrics fields in tlparse logs (#142423)
Summary: The line of code that's compiling the set of compilation_metrics to include in the corresponding tlparse log is missing the "legacy" and "common" fields populated above. Fix is to make sure we consider all fields in the compilation_metrics object.

Test Plan:
Before: https://fburl.com/d6em8csg (e.g, https://fburl.com/c19s7ny0)
After: https://fburl.com/5zr6kbvf (e.g, https://fburl.com/3hp14ht2)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142423
Approved by: https://github.com/ezyang
2024-12-10 15:58:43 +00:00
Sam Larsen
692b5e75ed [logging] Add triton_compile_time_us column to dynamo_compile (#142068)
Test Plan: See internal diff [D66799565](https://www.internalfb.com/diff/D66799565)

Differential Revision: [D66799565](https://our.internmc.facebook.com/intern/diff/D66799565)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142068
Approved by: https://github.com/c00w
2024-12-06 16:11:57 +00:00
James Wu
288b73cb14 [Redo] Set remote cache version and backend type once in compilation metrics (#141967)
(Got reverted due to a silly bug, fixed now.)

This is causing FbFxGraphRemoteCache.init to no longer be idempotent, i.e. only safe to call once per compile. AOTAutogradCache initializes a new remote cache for the forward and the backward.
Technically, we could make AOTAutogradCache smart and globally thread through a single FbFxGraphRemoteCache everywhere. But there's no reason to do so, as this class is just the handle to access the cache. Plus, it's very brittle for FbFxGraphRemoteCache to not be safe to call multiple times

Differential Revision: [D66701970](https://our.internmc.facebook.com/intern/diff/D66701970/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141967
Approved by: https://github.com/laithsakka
2024-12-04 03:07:53 +00:00
Colin L. Rice
6b620423a3 dynamo_timed: Add a log_waitcounter option. (#141402)
This logs a waitcounter of the name pytorch.dynamo_timed.{key}.

Primarily sending this now to make sure everyone likes the API, then
I'll add tests, and migrate one dynamo_timed to use it. (likely starting
with
https://github.com/pytorch/pytorch/pull/141379).

Testing is a bit harder, since we don't normally have any way to read
_WaitCounter state AFAICT. I want to poke around and see if I can figure
out a way to read the state, otherwise I'll just mock it to at least
make sure it's mostly working.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141402
Approved by: https://github.com/jamesjwu, https://github.com/masnesral
2024-12-03 19:24:29 +00:00
Ryan Guo
7c3c8a662e [dynamo] Add RANGE_ITERATOR_MATCH to properly guard on range iterators (#141902)
A subsequeunt patch attempts to fix a side-effect issue for range
iterators, which in turn exposed an exising issue on guards for range
iterators -- the following test started failing:
```
PYTORCH_TEST_WITH_DYNAMO=1 python test/test_tensor_creation_ops.py TestTensorCreationCPU.test_hstack_column_stack_cpu_int16
```

This patch adds a `RANGE_ITERATOR_MATCH` guard to make sure that we
properly guard on range iterators, and adds a regression test.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141902
Approved by: https://github.com/jansel
ghstack dependencies: #141713, #141714, #141715
2024-12-03 09:18:06 +00:00
PyTorch MergeBot
ce86119503 Revert "Set remote cache version and backend type once in compilation metrics (#141707)"
This reverts commit d633cf1f55.

Reverted https://github.com/pytorch/pytorch/pull/141707 on behalf of https://github.com/malfet due to It breaks tests by referencing FbRemoteFxGraphCache, but CI was green ([comment](https://github.com/pytorch/pytorch/pull/141707#issuecomment-2513555185))
2024-12-03 05:01:02 +00:00
Aaron Gokaslan
08db735629 [BE]: Update mypy to 1.13.0 (#140808)
Update mypy to 1.13.0 . Should hopefully reduce linting time. Has support for orjson cache serialization which should improve mypy cache perf if orjson is installed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140808
Approved by: https://github.com/ezyang, https://github.com/malfet
2024-12-03 02:50:10 +00:00
James Wu
d633cf1f55 Set remote cache version and backend type once in compilation metrics (#141707)
This is causing FbFxGraphRemoteCache.init to no longer be idempotent, i.e. only safe to call once per compile. AOTAutogradCache initializes a new remote cache for the forward and the backward.
Technically, we could make AOTAutogradCache smart and globally thread through a single FbFxGraphRemoteCache everywhere. But there's no reason to do so, as this class is just the handle to access the cache. Plus, it's very brittle for FbFxGraphRemoteCache to not be safe to call multiple times.

(Same problem, different fix of D66502138)

Differential Revision: [D66508492](https://our.internmc.facebook.com/intern/diff/D66508492/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141707
Approved by: https://github.com/ezyang
2024-12-03 01:49:11 +00:00
PyTorch MergeBot
daa77f3d9f Revert "[BE]: Update mypy to 1.13.0 (#140808)"
This reverts commit 00134d68af.

Reverted https://github.com/pytorch/pytorch/pull/140808 on behalf of https://github.com/huydhn due to This is failing a distributed test in trunk, target determination missed this test and did not run it on PR ([comment](https://github.com/pytorch/pytorch/pull/140808#issuecomment-2512788426))
2024-12-02 20:47:43 +00:00
Aaron Gokaslan
00134d68af [BE]: Update mypy to 1.13.0 (#140808)
Update mypy to 1.13.0 . Should hopefully reduce linting time. Has support for orjson cache serialization which should improve mypy cache perf if orjson is installed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140808
Approved by: https://github.com/ezyang, https://github.com/malfet
2024-12-02 18:47:54 +00:00
Ryan Guo
3141e038f0 [dynamo] Fix VariableBuilder._wrap on frozenset and enforce invariants on ConstantVariable (#141504)
Prior to this patch, we are using `ConstantVariable.create` to create VT
for frozenset objects, and intended yet failed to predicate that on all
itmes being literals (see https://github.com/pytorch/pytorch/pull/140984#discussion_r1847393736).

The code was from https://github.com/pytorch/torchdynamo/commit/7c03434 and
the original goal was to help DBR quantization, but as the new test in
this patch shows, it could lead to silent incorrectness.

Upon a closer look, this exposes some subtleties in how Dynamo handles
`ConstantVariable` and `LOAD_CONST`, so this patch both fixes the
aforementioned issue and documents, enforces, and makes explicit the
invariants around `ConstantVariable` and `LOAD_CONST` -- only immutable
objects are supported.

Specifically, this patch:
1. refine the checks for wrapping a `frozenset` object, document why we
   can't just wrap its items directly due to lack of `Sourcec` for set
   items, and use a safe workaround (`SourcelessBuilder`) to ensure
   soundness while keeping the DBR quantization support.
2. Adds more types to `common_constant_types`, thereby making
   `ConstantVariable.is_base_literal` more lenient, and strictly checks
   this property in the constructor of `ConstantVariable`.
3. Change relevant uses of `create_instruction("LOAD_CONST", ...)` to
   `create_load_const` which checks `is_safe_constant`, and makes
   developer overrides explicit by using `create_load_const_unchecked`
   when needed.
4. In a few places, use more specific `VariableTracker`, e.g.,
   `TypingVariable` rather than `ConstantVariable`, and
   `FrozensetVariable` rather than `SetVariable`.

(2) and (3) are mainly to future-proof Dynamo against bugs like (1).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141504
Approved by: https://github.com/jansel
2024-11-27 21:58:35 +00:00
James Wu
a7ca6a9113 Enable autograd cache on inductor tests (#140890)
This turns on AOTAutogradCache for all inductor tests. It clears AOTAutogradCache on each test as well, by virtue of the local cache using the same directory to store cache entries.

I've also tested with INDUCTOR_TEST_DISABLE_FRESH_CACHE=1, running all the tests. AOTAutogradCache successfully caches 99% of these. There are a few tests that use view_replay and therefore save functional tensors, which cause AOTAutogradCache to fail to pickle its result. Will look into next steps there, but for now, it seems okay if the cache just misses on those cases where it can't serialize the result. It would be better to check before pickling, though.

I've made the following small bugfixes to get this working:
- Inductor is sometimes used in a standalone mode without dynamo, which leads to attribute errors in check_can_cache. In general, we should *never* crash in cache checking, only bypass. So I change a try catch to check Exception instead of just a specific exception.
- Add extra structured logging for metadata on cache hits

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140890
Approved by: https://github.com/bdhirsh
2024-11-27 20:41:43 +00:00
Xuehai Pan
cdde73033e [dynamo] fix generic namedtuple support when the class is created via class MyTuple(NamedTuple, Generic[T]): ... (#141360)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141360
Approved by: https://github.com/jansel
2024-11-27 00:21:58 +00:00
Sam Larsen
07906f2f2b [logging] Move population of common MetricsContext fields to record_compilation_metrics (#141291)
Summary: Fix outstanding TODOs related to logging of CompilationMetrics by moving the population of common fields to record_compilation_metrics() instead of populating those independently wherever we use a the metrics_context contextmanager:
* Keep track of start and end time in MetricsContext and pass those to record_compilation_metrics() and populate those fields in that function.
* Pass exception info to record_compilation_metrics() and populate those field in that function.
* Add a new contextmanager, chromium_event_timed, to create the start/end "dynamo" event. This is important because I want this contextmanager to complete _after_ building the CompilationMetrics.
* Populate the compile_id field centrally in record_compilation_metrics().
* Populate the structured_logging_overhead centrally in record_compilation_metrics().
* Add the CompilationMetrics to the current chromium event in record_compilation_metrics(), after all common fields have been added. In a future diff, I can also add _all_ compilation metrics to the chromium event.

Test plan: Unit tests. Also see internal testing:
* dynamo_compile: https://fburl.com/scuba/dynamo_compile/sandbox/jrascnf9
* pt2_compile_events: https://fburl.com/scuba/pt2_compile_events/l3jnla06
* tlparse: https://fburl.com/bq5a9nqs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141291
Approved by: https://github.com/jamesjwu
2024-11-25 13:18:40 +00:00
Colin L. Rice
1aea642393 pytorch/feature: Record if inductor fx cache is enabled (#141059)
This uses the underlying infrastructure and records if the fx cache is
enabled.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141059
Approved by: https://github.com/masnesral
2024-11-23 01:55:27 +00:00
Jovian Anthony Jaison
45d62d6fc5 [dynamo] Added cuda and triton versions to dynamo_compile (#141290)
Opening another PR since #141140 was reverted.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141290
Approved by: https://github.com/masnesral
2024-11-22 20:04:42 +00:00
Simon Fan
db4e8a1d8a [ca] expose option to collect sizes as dynamic (#141153)
This is to address recompiles from eager nodes that saved dynamic activations

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141153
Approved by: https://github.com/jansel
ghstack dependencies: #141152
2024-11-22 19:26:27 +00:00
Colin L. Rice
f5d00f1456 pytorch/features: Make a feature logger and record triton bundling (#141056)
This modifies metrics_context to allow us to store whether a feature was
used or not.

This also starts recording this for triton bundling.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141056
Approved by: https://github.com/masnesral
2024-11-22 01:31:08 +00:00
Prajesh Praveen Anchalia
4e34fbdcbc Add inductor_fx_graph_cache stats to dynamo_utils (#141190)
Summary:
Add the following inductor fx graph cache stats to dynamo compile

- inductor_fx_cache_hit_count
- inductor_fx_cache_miss_count
- inductor_fx_cache_backend_type
- inductor_fx_cache_hit_keys
- inductor_fx_cache_miss_keys
- remote_cache_version

Test Plan: Run local tests and staging logger: P1683061460

Differential Revision: D66232206

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141190
Approved by: https://github.com/masnesral
2024-11-21 20:59:10 +00:00
Ivan Zaitsev
149677e30c Revert "[dynamo] Added cuda and triton versions to dynamo_compile" (#141280)
Reverts pytorch/pytorch#141140

reason: conflicts with https://github.com/pytorch/pytorch/pull/141190 and wasn't merged using mergebot

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141280
Approved by: https://github.com/clee2000, https://github.com/kit1980
2024-11-21 20:50:06 +00:00
Jovian Anthony Jaison
11d0ba068f
[dynamo] Added cuda and triton versions to dynamo_compile (#141140)
[dynamo] Added cuda and triton versions to dynamo_compile (#141140)

Summary:

Add cuda and triton versions to dynamo_compile logging site.

Test Plan:
$ buck2 run mode/opt //scripts/oulgen:runner
File changed: fbcode//caffe2/torch/_dynamo/convert_frame.py
Buck UI: https://www.internalfb.com/buck2/1a8ada1f-d54e-44b2-a368-b2ff2030e113
Network: Up: 65KiB  Down: 0B  (reSessionID-8f4d1d6d-a680-4ecc-8e73-c29c932d824b)
Jobs completed: 2166. Time elapsed: 7.0s.
Cache hits: 0%. Commands: 3 (cached: 0, remote: 0, local: 3)
BUILD SUCCEEDED
...
Cuda: 12.4.0
Triton: 3.0.0

Reviewed By: masnesral

Differential Revision: D66181508
2024-11-21 12:20:02 -08:00
Aaron Gokaslan
12e95aa4ee [BE]: Apply PERF401 autofixes from ruff (#140980)
* Automatically applies ruff rule 401. Turns loops into equivalent list comprehensions which are faster and do not leak the scope of the loop variables.
* list comprehensions not only often have better typing, but are 50+% faster than for loops on overhead. They also preserve length information etc and are better for the interpreter to optimize.
* Manually went back and made mypy happy after the change.
* Also fixed style lints in files covered by flake8 but not by pyfmt

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140980
Approved by: https://github.com/justinchuby, https://github.com/malfet
2024-11-20 17:52:07 +00:00
Sam Larsen
ff17d2b83e [easy][logging] Remove dynamo_timed fwd_only param (#140993)
Summary: It's ignored; remove it

Test Plan: CI

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140993
Approved by: https://github.com/ezyang
2024-11-20 02:31:51 +00:00
Prajesh Praveen Anchalia
1e234e63b3 [pytorch][dynamo_compile] Log inductor config to dynamo_compile (#140790)
Summary:
Scrubbed inductor config logging to dynamo_compile as json:str.

Scrub RE: `r'((^TYPE_CHECKING$)|(.*_progress$)|(.*TESTING.*)|(.*(rocm|halide).*)|(^trace\..*)|(^_))'`to save some space.

Test Plan:
Staging logger: https://fburl.com/data/ltkt08zm

P1679697917

{F1958428018}

Differential Revision: D65806399

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140790
Approved by: https://github.com/masnesral
2024-11-19 02:39:33 +00:00
James Wu
8d5b3eeaa6 Remove __start__ stack, log backward compile to empty stack (#140431)
Summary:
This diff removes "__start__" from all stacks in Pt2 Compile Events, as it's unnecessary.

It also starts logging events for backward compile, because otherwise we have no toplevel event representing full backward compilation. This gives us a toplevel event outside of the inductor compile.

Test Plan:
New chromium events:

https://interncache-all.fbcdn.net/manifold/perfetto-artifacts/tree/ui/index.html?url=https%3A%2F%2Finterncache-all.fbcdn.net%2Fmanifold%2Ftlparse_reports%2Ftree%2Flogs%2Fjjwu%2Fcustom%2Fstuff4%2Fchromium_events.json#!/viewer?url=https%3A%2F%2Finterncache-all.fbcdn.net%2Fmanifold%2Ftlparse_reports%2Ftree%2Flogs%2Fjjwu%2Fcustom%2Fstuff4%2Fchromium_events.json&local_cache_key

New tlparse:
https://interncache-all.fbcdn.net/manifold/tlparse_reports/tree/logs/jjwu/custom/stuff4/index.html

New scuba icicle view, still good: https://fburl.com/scuba/pt2_compile_events/z6gr3z53

Differential Revision: D65832045

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140431
Approved by: https://github.com/masnesral
2024-11-18 22:48:31 +00:00
Bob Ren
e1d6c08f3d Specialize symfloats when getting fake value involves complex args (#140832)
Fixed `PYTORCH_TEST_WITH_DYNAMO=1 tlp python test/test_sparse_csr.py TestSparseCSRCPU.test_sampled_addmm_cpu_complex64` when `specialize_float=False`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140832
Approved by: https://github.com/ezyang
ghstack dependencies: #140830
2024-11-17 18:17:54 +00:00
Xuehai Pan
90d3584147 [dyanmo] support subclasses of namedtuple type (#140534)
Allow subclassing namedtuple type. Allow assign attributes to instances of these subtypes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140534
Approved by: https://github.com/jansel
2024-11-17 14:13:40 +00:00
Sam Larsen
e2e67a010a [logging] Add dynamo_compile fields for pre-dispatch/joint/post-dispatch times (#140306)
Tested internally: P1679622670

Differential Revision: [D65986059](https://our.internmc.facebook.com/intern/diff/D65986059)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140306
Approved by: https://github.com/ezyang
2024-11-15 15:02:08 +00:00
Sam Larsen
b11ff3cf60 [logging] Overhaul dynamo_timed and CompilationMetrics logging. (#139849)
Here's the overview:

There's a new contextmanager singleton called MetricsContext. Entering the MetricsContext is how we demarcate the boundary on which we'll create a single CompilationMetrics object, and therefore, a single dynamo_compile log entry. While we're inside the MetricsContext, we can update/set many different metrics. Most importantly: `dynamo_timed` can also update the in-progress MetricsContext. In the proposal here, we tell `dynamo_timed` that we want it to do so by providing the name of the MetricsContext field to increment. There can be many `dynamo_timed` calls in different parts of the code updating different fields. Then when the MetricsContext exits, that's when the logging of everything gathered finally happens. One potential footgun is trying to use `dynamo_timed` when we haven't entered the MetricsContext, but we assert on that problem. Another problem is that we re-enter the context recursively, but we watch for that and do the logging only when the outermost exits.

Some specifics:
* Introduce MetricsContext - a context manager that on exit, records the CompilationMetrics (which also logs to dynamo_compile).
* Completely remove the concept of frame_phase_timing. Instead, update the MetricsContext during compilation, either directly or via dynamo_timed.
* Remove some globals we previously used to accumulate counters to later populate a CompilationMetrics. We use CompilationMetrics set/update/increment APIs instead.
* `record_compilation_metrics` is now called on exit from MetricsContext.
* Populate legacy CompilationMetrics fields right before logging, inside `record_compilation_metrics`.
* Remove the one-off `add_remote_cache_time_saved` helper; capture that timing directly into the MetricsContext.

And specifically, several changes to dynamo_timed:
* "Modernize" the parameters and update all callsites accordingly.
* Move the backwards logging of the CompilationMetrics to the backwards compile location.
* Add a parameter for which CompilationMetrics field to update

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139849
Approved by: https://github.com/ezyang
2024-11-14 19:11:20 +00:00
Prajesh Praveen Anchalia
9ff368c270 [pytorch] Add logger for pt2 compile chromium events to hive (#139941)
Summary:
X-link: https://github.com/pytorch/benchmark/pull/2535

Logging raw chromium events to hive per job run enables us to build combined rank perfetto traces without having to depend on Logarithm and deal with things like rate limits etc.

We can easily build a utility to query hive and upload traces to manifold and view them on perfetto

Test Plan:
Launch a job

```
buck2 run mode/opt //aps_models/examples/dlrm:dlrm_train_app -- --config-name train_mast_fsdp_torchdynamo launcher.data_project=apf_ai_infra launcher.fbl_entitlement=ai_infra_training_rnd_tc  launcher.hardware=TC_ANY_80G
```

Local run
```
Perfetto: ['https://interncache-all.fbcdn.net/manifold/perfetto-artifacts/tree/ui/index.html?url=https://interncache-all.fbcdn.net/manifold/pt2_compile_traces_test/tree/pt2_trace_files/aps-ppanchalia-426838c277/0/0/2bc9975d-921c-4766-9cb2-e7ce9833ae96.json']
```

{F1954710538}

Differential Revision: D65525513

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139941
Approved by: https://github.com/jamesjwu
2024-11-14 18:27:38 +00:00
Laith Sakka
f98c601efe Avoid logging zeros (#139968)
Summary: title

Test Plan: NA

Differential Revision: D65582953

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139968
Approved by: https://github.com/zou3519
2024-11-14 15:46:49 +00:00
PyTorch MergeBot
d63eb3c46c Revert "[logging] Overhaul dynamo_timed and CompilationMetrics logging. (#139849)"
This reverts commit cb15c15157.

Reverted https://github.com/pytorch/pytorch/pull/139849 on behalf of https://github.com/kit1980 due to Breaking an internal tests + there is a bug according to the author ([comment](https://github.com/pytorch/pytorch/pull/139849#issuecomment-2474459094))
2024-11-13 18:47:51 +00:00
Sam Larsen
cb15c15157 [logging] Overhaul dynamo_timed and CompilationMetrics logging. (#139849)
Here's the overview:

There's a new contextmanager singleton called MetricsContext. Entering the MetricsContext is how we demarcate the boundary on which we'll create a single CompilationMetrics object, and therefore, a single dynamo_compile log entry. While we're inside the MetricsContext, we can update/set many different metrics. Most importantly: `dynamo_timed` can also update the in-progress MetricsContext. In the proposal here, we tell `dynamo_timed` that we want it to do so by providing the name of the MetricsContext field to increment. There can be many `dynamo_timed` calls in different parts of the code updating different fields. Then when the MetricsContext exits, that's when the logging of everything gathered finally happens. One potential footgun is trying to use `dynamo_timed` when we haven't entered the MetricsContext, but we assert on that problem. Another problem is that we re-enter the context recursively, but we watch for that and do the logging only when the outermost exits.

Some specifics:
* Introduce MetricsContext - a context manager that on exit, records the CompilationMetrics (which also logs to dynamo_compile).
* Completely remove the concept of frame_phase_timing. Instead, update the MetricsContext during compilation, either directly or via dynamo_timed.
* Remove some globals we previously used to accumulate counters to later populate a CompilationMetrics. We use CompilationMetrics set/update/increment APIs instead.
* `record_compilation_metrics` is now called on exit from MetricsContext.
* Populate legacy CompilationMetrics fields right before logging, inside `record_compilation_metrics`.
* Remove the one-off `add_remote_cache_time_saved` helper; capture that timing directly into the MetricsContext.

And specifically, several changes to dynamo_timed:
* "Modernize" the parameters and update all callsites accordingly.
* Move the backwards logging of the CompilationMetrics to the backwards compile location.
* Add a parameter for which CompilationMetrics field to update

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139849
Approved by: https://github.com/ezyang
ghstack dependencies: #140094
2024-11-11 14:24:23 +00:00
Animesh Jain
86792a5a8d [invoke_subgraph] User facing API to support arbitrary args and kwargs (#139162)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139162
Approved by: https://github.com/zou3519
2024-11-08 03:31:19 +00:00
Bob Ren
d8afa21ef2 specialize symfloats for wrapped_gradient in get_fake_value (#139935)
Fixes `PYTORCH_TEST_WITH_DYNAMO=1 python test/test_torch.py TestTorchDeviceTypeCPU.test_gradient_type_promotion_cpu` when `specialize_float=False`

Reviewers might wonder why we need to have this whitelist. Can't we rely on python_arg_parser.h to do the specialization generically? Alas this path doesn't actually FFI to C++ so we do need to do the specialization in pythonland.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139935
Approved by: https://github.com/ezyang
ghstack dependencies: #139569, #139457, #139568, #139572, #139846, #139454, #139896
2024-11-07 20:27:02 +00:00
Oguz Ulgen
1270c78268 Add logging for num_triton_bundles (#139807)
Summary: Adding logs for number of inductor cache triton bundles

Test Plan:
Ran adhoc code and looked at dynamo_compile/sandbox

https://fburl.com/scuba/dynamo_compile/sandbox/nhktfy19

Differential Revision: D65490826

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139807
Approved by: https://github.com/masnesral
2024-11-06 21:11:04 +00:00
Laith Sakka
3f248a5735 Classify miss-inplaced tensors in logs. (#139240)
Summary:
use signpost logs,
a followup is to remove the field possibly_missed_reinplacing_opportunities form dynamo compile table.

Differential Revision: D65180194

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139240
Approved by: https://github.com/zou3519
2024-11-04 23:56:14 +00:00
Bob Ren
9919932783 Specialize symfloats that flow through is_integer (#139572)
Fixes `python test/dynamo/test_dynamic_shapes.py DynamicShapesFunctionTests.test_number_method_method_is_integer_num_type6_dynamic_shapes` when specialize_float = False

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139572
Approved by: https://github.com/ezyang
ghstack dependencies: #139569, #139457, #139568
2024-11-04 23:35:35 +00:00
James Wu
c8a648d4df Add option to dynamo_timed and chromium_event_logger for logging pt2 compile events (#139309)
This diff considerably changes the column format of PT2 Compile Events:

- Now, instead of logging one new column per every piece of metadata, we just log a single column, "metadata". This vastly decreases the number of columns we need to log, which should help with retention.

- Now, we only log to scuba for a set of dynamo_timed() events that we actually care about aggregating. To do so, we add a boolean to dynamo_timed() that decides whether or not to log a pt2_compile_event. We'll always log a chromium_event for every dynamo_timed(), but only log a subset of those to scuba.

Differential Revision: [D65225598](https://our.internmc.facebook.com/intern/diff/D65225598/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139309
Approved by: https://github.com/oulgen
2024-11-01 02:40:25 +00:00
James Wu
864beebb41 [easy] Add start event metadata to collected metadata for PT2 Compile Events (#139289)
We should be logging metadata from event starts to PT2 Compile Events too.

Differential Revision: [D65070086](https://our.internmc.facebook.com/intern/diff/D65070086/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139289
Approved by: https://github.com/oulgen
2024-10-31 16:52:30 +00:00
Simon Fan
fd9f4e6770 Back out "[compiled autograd] tls access helpers (#138061)" and Back out "[compiled autograd] Compiled autograd configs in TLS (#137821)" (#139086)
Summary:
Original commit changeset: 9bf80c1492d7

Original Phabricator Diff: D64796226

Original commit changeset: aa1d9ef8f6e6

Original Phabricator Diff: D64796212

Differential Revision: D65072644

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139086
Approved by: https://github.com/malfet
2024-10-28 23:37:05 +00:00
William Wen
35be6aef69 [dynamo] add some cpython debugging methods (#138030)
This PR enables you to inspect PyObjects in C using `INSPECT(...)` without requiring https://docs.python.org/3/howto/gdb_helpers.html. `torch._dynamo.eval_frame.raise_sigtrap` can also be used to set gdb breakpoints while running Python code, e.g.

```python
x = x + 1
torch._dynamo.eval_frame.raise_sigtrap();
# can breakpoint on ceval.c:CALL to breakpoint the `sin` call in C.
x = torch.sin(x)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138030
Approved by: https://github.com/jansel
2024-10-28 22:25:21 +00:00
Edward Z. Yang
bca696ae81 Switch times to us in CompilationMetrics and improvements (#138975)
Companion logger diff: https://www.internalfb.com/diff/D65012523

* Using float seconds for timestamps is bad because our internal system defaults to float32 precision and you don't even get second precision for timestamps in float32
* We decide to use microseconds instead of milliseconds because millisecond granularity you can end up with the same timestamp if compilation is happening very quickly; much better to force non-overlapping spans
* Because there are so many new fields and I don't feel like reimplementing each on BwdCompilationMetrics, BwdCompilationMetrics is no more, it's just that everything in CompilationMetrics is now optional.
* The actual frame compile times collection is not modified (still float) to reduce blast radius, so I just convert to microseconds before making the record. At float64 precision (Python's default), you get about microsecond precision on timestamps so shouldn't be a data problem (https://www.leebutterman.com/2021/02/01/store-your-unix-epoch-times-as-float64.html)
* I rename some entries for clarity. In particular, whenever a timing contains all of the its lower phases (e.g., how Inductor also contains Triton compilation) we put "cumulative" in its name.  If something doesn't happen at compile time but is delayed until we have actual real inputs, we put "runtime" in its name.

Test plan:

```
buck2 run @mode/opt @mode/inplace //scripts/oulgen:runner
```

And then inspect https://fburl.com/scuba/dynamo_compile/sandbox/mslu7f5w and verify the us columns are populated and meaningful.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138975
Approved by: https://github.com/masnesral
2024-10-28 17:17:18 +00:00
Aaron Gokaslan
49ed365b22 [BE]: Update Typeguard to TypeIs for better type inference (#133814)
Uses TypeIs instead of TypeGuard for better inference. See https://peps.python.org/pep-0742/

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133814
Approved by: https://github.com/ezyang
2024-10-26 15:07:13 +00:00
Sam Larsen
86b45bde19 [pt2] Add logger logging for remote fx graph cache get + put (#138164)
Summary: Capture the timing for the remote fx graph cache get and put operations and add them to the logger logging.

Test Plan:
1) Landed D64483593 and waited for logger actualization.
2) Ran test script on devserver: `buck2 run mode/opt scripts/slarsen/torch_compile_model:run`
3) Queried dynamo_compile/sandbox:
```
(pytorch-3.10_4) devvm2296:~/local/pytorch-3.10_4  $ scuba -e="select time,co_filename,remote_fx_graph_cache_get_time_s,remote_fx_graph_cache_put_time_s from \`dynamo_compile/sandbox\` where remote_fx_graph_cache_put_time_s is not null"
+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------+----------------------------------+
|    time    |                                                                                    co_filename                                                                                    | remote_fx_graph_cache_get_time_s | remote_fx_graph_cache_put_time_s |
+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------+----------------------------------+
| 1729136266 | null                                                                                                                                                                              |              0.05652284622192383 |               0.9691152572631836 |
| 1729136263 | /data/users/slarsen/fbsource/buck-out/v2/gen/fbcode/289bb46b326874c6/scripts/slarsen/torch_compile_model/__run__/run-inplace#link-tree/scripts/slarsen/torch_compile_model/run.py |               0.8298435211181641 |              0.18642282485961914 |
+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------+----------------------------------+
```

Reviewed By: oulgen

Differential Revision: D64484025

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138164
Approved by: https://github.com/jamesjwu, https://github.com/ezyang
2024-10-25 21:30:18 +00:00
Animesh Jain
cfdf658a91 [dynamo][modules] Support overridden __call__ on nn modules (#138619)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138619
Approved by: https://github.com/williamwen42
ghstack dependencies: #138657
2024-10-24 03:49:26 +00:00