Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45377
This PR adds a C++ implementation of the TripletMarginWithDistanceLoss, for which the Python implementation was introduced in PR #43680. It's based on PR #44072, but I'm resubmitting this to unlink it from Phabricator.
Test Plan: Imported from OSS
Reviewed By: izdeby
Differential Revision: D24003973
fbshipit-source-id: 2d9ada7260a6f27425ff2fdbbf623dad0fb79405
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44433
Not entirely sure why, but changing the type of beta from `float` to `double in autocast_mode.cpp and FunctionsManual.h fixes my compiler errors, failing instead at link time
fixing some type errors, updated fn signature in a few more files
removing my usage of Scalar, making beta a double everywhere instead
Test Plan: Imported from OSS
Reviewed By: mrshenli
Differential Revision: D23636720
Pulled By: bdhirsh
fbshipit-source-id: caea2a1f8dd72b3b5fd1d72dd886b2fcd690af6d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35163
This PR is BC-breaking in the following way:
Renaming:
- `torch::nn::functional::MultiLabelMarginLossFuncOptions` -> `torch::nn::functional::MultilabelMarginLossFuncOptions`
- `torch::nn::functional::MultiLabelSoftMarginLossFuncOptions` -> `torch::nn::functional::MultilabelSoftMarginLossFuncOptions`
Reason for renaming: to be consistent with the corresponding functional name after camel case to snake case conversion (e.g. the `multilabel_margin_loss` functional should use `MultilabelMarginLossFuncOptions` as options)
Test Plan: Imported from OSS
Differential Revision: D20582598
Pulled By: yf225
fbshipit-source-id: 0f5bdb8249d901b310875a14320449a2fdfa8ecd
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35025
This PR fixes `F::interpolate` and `torch::nn::Upsample` implementation to match the Python API implementation.
**This PR is BC-breaking in the following way:**
There are changes to `UpsampleOptions` and `InterpolateFuncOptions`:
- `size` is changed from `std::vector<int64_t>` to `c10::optional<std::vector<int64_t>>`. If you want to pass a list of `int64_t` to this argument, you must pass it as `std::vector<int64_t>`.
- `scale_factor` is changed from `std::vector<double>` to `c10::optional<std::vector<double>>`. If you want to pass a list of `double` to this argument, you must pass it as `std::vector<double>`.
**TODO**: cherry-pick this PR into v1.5 release branch.
Test Plan: Imported from OSS
Differential Revision: D20559892
Pulled By: yf225
fbshipit-source-id: ac18609e351a9f2931eaeced8966b9491b2995f7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30146
This PR fixes naming for kl_div and binary_cross_entropy functional options, to be more consistent with the naming scheme of other functional options.
Test Plan: Imported from OSS
Differential Revision: D18618971
Pulled By: yf225
fbshipit-source-id: 2af62c1a0ace2cd0c36c2f1071639bf131d8fe61
Summary:
Hi yf225,
I have a few doubts related to implementation:
1) What tests do I have to write?
2) What does _load_state_from_dict does?
3) Do I need to override reset() function as I can not see it's utility?
4) InstanceNormOptions could be removed with BatchNormOptions, but I find that
`track_running_status` is not defined instead `stateful` is defined.
InstanceNorm{1,2,3}d https://github.com/pytorch/pytorch/issues/25883
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28790
Differential Revision: D18588666
Pulled By: yf225
fbshipit-source-id: bb9b81f01f62c3fc8765fa0ba0716768087ee155
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30112
Currently, we have torch::nn functionals that takes `input` as `Tensor&` in order to be able to in-place change `input`'s value. We likely shouldn't do this because it will prevent the following use case:
```cpp
F::elu(torch::tensor(1), F::ELUFuncOptions().inplace(true))
```
The solution is to change the type of `input` to `Tensor`, so that we can pass an rvalue into the functional.
Test Plan: Imported from OSS
Differential Revision: D18601580
Pulled By: yf225
fbshipit-source-id: 639a86eb62f6c986b0f20bf7e201983e83126e73
Summary:
Hi yf225 , I have added **NLLLoss and CrossEntropyLoss.**
```
Also, while using log_softmax in cross_entropy_loss, I am getting an error
../caffe2/../torch/csrc/api/include/torch/nn/functional/loss.h:537:63: error: no matching function for call to log_softmax(const at::Tensor&)’
const Tensor& log_softmax_input = torch::log_softmax(input);
aten/src/ATen/Functions.h:5551:22: note: candidate: at::Tensor at::log_softmax(const at::Tensor&, int64_t, c10::optional<c10::ScalarType>)
static inline Tensor log_softmax(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype) {
^~~~~~~~~~~
aten/src/ATen/Functions.h:5551:22: note: candidate expects 3 arguments, 1 provided
```
I think the other two parameters should be optional as in python frontend(shown in documentation here at https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.log_softmax ). Rest, there were no errors in build and tests have passed
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29812
Differential Revision: D18548249
Pulled By: yf225
fbshipit-source-id: 2ab350abd2a6f498d4dba2345f51ad87471f3038
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29673
Following https://github.com/pytorch/pytorch/pull/29364 and https://github.com/pytorch/pytorch/pull/29404, this PR makes `F::EmbeddingFuncOptions` and `F::EmbeddingBagFuncOptions` separate classes from `torch::nn::EmbeddingOptions` and `torch::nn::EmbeddingBagOptions`, so that it's easier to enforce that arguments such as `num_embeddings` and `embedding_dim` are required for `torch::nn::EmbeddingOptions` and `torch::nn::EmbeddingBagOptions`.
Test Plan: Imported from OSS
Differential Revision: D18462540
Pulled By: yf225
fbshipit-source-id: f2abf431e48675b0a9d7f6f398cdb90ff9037c35
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29632
This PR is BC-breaking in the following way:
Previously, C++ `torch::tensor` with a floating-point literal with no suffix (e.g. `torch::tensor(1.1)`) or a (nested) braced-init-list of
floating-point literals with no suffix (e.g. `torch::tensor({{1.1, 2.2}})` produces a tensor with dtype `at::kDouble`. After this PR, it produces a tensor with dtype `torch::get_default_dtype()`, matching Python `torch.tensor` behavior.
Test Plan: Imported from OSS
Differential Revision: D18465819
Pulled By: yf225
fbshipit-source-id: 6834fe50335c677bc3832f2a5e9cf8d1ede9f665
Summary:
This PR changes the implementation of C++ Conv{1,2,3}d layers to exactly match the Python version, and add F::conv{1,2,3}d functionals. For more thorough testing, I will rely on the parity test mechanism which uses values from `common_nn.py` to generate the inputs and options that we are interested in testing.
This PR is BC-breaking in the following way:
In `Conv{1,2,3}dOptions`:
- `with_bias` is renamed to `bias`.
- `input_channels` is renamed to `in_channels`.
- `output_channels` is renamed to `out_channels`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28917
Differential Revision: D18471526
Pulled By: yf225
fbshipit-source-id: 7a33f60654ad93cc2e043245e7ff9e0ef9da15b3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29404
This PR makes all non-input arguments to functionals part of its options parameters, so that we won't break backward compatibility even if we add or reorder some of the non-input arguments to functionals in the future.
Test Plan: Imported from OSS
Differential Revision: D18378526
Pulled By: yf225
fbshipit-source-id: f5cf6bdfb844e75bf94fdee58c121e0955631b6e
Summary:
Fixes https://github.com/pytorch/pytorch/issues/17662
I'm not sure if `arange` needs to be in python_arg_parser at all, given the schemas in native_functions.yaml. In any case this at least fixes the dytpe mismatch.
In follow up PRs I will try to handle some of the other ops that do type inference at the python level, like randint.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27629
Differential Revision: D17885939
Pulled By: eellison
fbshipit-source-id: f97a8bc722b7ab77de1c42a992e49a4a3175ad60
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29364
Currently, we use `torch::nn::*Options` both as module options and functional options. However, this makes it very hard to manage the parameters in `torch::nn::*Options`, because a module's constructor can take a different set of arguments than the module's equivalent functional (e.g. `torch.nn.BatchNorm1d` takes `num_features, eps=1e-5, momentum=0.1, affine=True,
track_running_stats=True`, while `F::batch_norm` takes `running_mean, running_var, weight=None, bias=None, training=False, momentum=0.1, eps=1e-5`).
This PR resolves the above problem by making `F::*FuncOptions` a different class from `torch::nn::*Options` when necessary (i.e. when a module's constructor takes a different set of arguments than the module's equivalent functional). In the rest of the cases where the module constructor takes the same set of arguments as the module's equivalent functional, `F::*FuncOptions` is an alias of `torch::nn::*Options`.
Also as part of this PR, we change all functional options to pass-by-value, to make the semantics consistent across all functionals.
Test Plan: Imported from OSS
Differential Revision: D18376977
Pulled By: yf225
fbshipit-source-id: 8d9c240d93bfd5af0165b6884fdc912476b1d06b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28523
New features:
1. Previously, `torch::tensor({true, false, true})` throws `"tensor_cpu" not implemented for 'Bool'`. After this PR, it produces the correct bool tensor, matching the Python API behavior.
2. Tensors with zero-size dimensions are now supported, e.g. `torch::tensor({{}, {}})` produces a tensor with sizes `{2, 0}`, matching the Python API behavior.
BC-breaking bug fixes:
1. Previously, `torch::tensor({{1}, {2}})` produces a tensor of sizes `{2}`. After this PR, it produces a tensor of sizes `{2, 1}`, matching the Python API behavior.
2. Fixed semantics of `torch::tensor(1.1)`: it now returns a 0-dim tensor instead of a 1-dim tensor, matching the Python API behavior.
3. Previously, when passed a non-dtype `TensorOptions` to the `torch::tensor` constructor, it always produces a tensor of dtype `float`. After this PR, it produces tensor of different dtypes based on the dtype of the braced-init-list, matching the behavior of the no-options case.
```cpp
// Previously:
torch::tensor({1, 2, 3}, torch::TensorOptions(/*non-dtype-options*/)).dtype() -> float
torch::tensor({{1, 2, 3}}, torch::TensorOptions(/*non-dtype-options*/)).dtype() -> float
torch::tensor({1., 2., 3.}, torch::TensorOptions(/*non-dtype-options*/)).dtype() -> float
torch::tensor({{1., 2., 3.}}, torch::TensorOptions(/*non-dtype-options*/)).dtype() -> float
// Now:
torch::tensor({1, 2, 3}, torch::TensorOptions(/*non-dtype-options*/)).dtype() -> int
torch::tensor({{1, 2, 3}}, torch::TensorOptions(/*non-dtype-options*/)).dtype() -> int
torch::tensor({1., 2., 3.}, torch::TensorOptions(/*non-dtype-options*/)).dtype() -> double
torch::tensor({{1., 2., 3.}}, torch::TensorOptions(/*non-dtype-options*/)).dtype() -> double
// As comparison, currently:
torch::tensor({1, 2, 3}).dtype() -> int
torch::tensor({{1, 2, 3}}).dtype() -> int
torch::tensor({1., 2., 3.}).dtype() -> double
torch::tensor({{1., 2., 3.}}).dtype() -> double
```
Notes:
1. From now on, the behavior of `at::tensor(scalar_value)` (which produces a 1-dim tensor) would be different from `torch::tensor(scalar_value)` (which produces a 0-dim tensor). I will fix the behavior of `at::tensor(scalar_value)` in a follow-up PR.
2. From now on, the behavior of `at::tensor({1, 2, 3}, torch::TensorOptions(/*non-dtype-options*/))` (which produces a `float` tensor) would be different from `torch::tensor({1, 2, 3}, torch::TensorOptions(/*non-dtype-options*/))` (which produces a an `int` tensor). I will fix this behavior of `at::tensor` constructor in a follow-up PR.
Context for the changes in this PR:
The motivation comes from fixing the "`torch::tensor({{1}, {2}})` gives tensor of wrong sizes" bug - in order to fix it, I have to move the handling of `at::ArrayRef` and `std::vector` into `InitListTensor` (see below on why we need to do this) and renamed `InitListTensor` to `TensorDataContainer`. After such changes, support for bool values comes out of the box without extra effort, and support for tensors with zero-size dimensions only requires adding a default constructor for `TensorDataContainer`, so I added those two in this PR.
For the semantic change of `torch::tensor(1.1)`, it's actually more effort to preserve the original wrong behavior (i.e. we need to check the sizes of the tensor converted from `TensorDataContainer` and reshape any scalar tensor to a 1-D tensor). I think preserving the original wrong behavior doesn't give us much value, and since the above changes naturally fix the problem, we should just start using the right behavior instead.
For the "constructor with non-dtype options behavior" fix, the code looks simpler and easier to reason about with the fix, so I included it in this PR.
--------
Why we need to move the handling of `at::ArrayRef` and `std::vector` into `TensorDataContainer`:
`torch::tensor({{1}, {2}})` can match this function overload:
`torch::tensor(at::ArrayRef<int> values)`, because `{1}` and `{2}` can be treated as
a list-initialization of an `int` value. However, this will produce a Tensor with sizes `{2}`,
but we actually want a Tensor with sizes `{2, 1}`. In order to avoid matching this function overload,
we removed the function overload and moved the ability to convert `at::ArrayRef<T>`
(and similarly `std::vector<T>`) into `TensorDataContainer`, and since for braced-init-list the
`TensorDataContainer(std::initializer_list<TensorDataContainer>)` constructor is always preferred over all other constructors, it will take the `std::initializer_list` path, and all is good.
Test Plan: Imported from OSS
Differential Revision: D18234625
Pulled By: yf225
fbshipit-source-id: 0f3f6912e82e2117d2103e31b74e7e97baaa8693
Summary:
Adds `torch::nn::functional::fold` support and updates `Fold::pretty_print` in the C++ API for more thorough Python parity.
Note: Small updates in source files to maintain consistency elsewhere.
Reviewer: yf225
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28732
Differential Revision: D18219955
Pulled By: yf225
fbshipit-source-id: fd2e9be8f17db77c1b1f384c0d2e16cc34858c0c
Summary:
Add torch::nn::BatchNorm1d function/module support for the C++ API.
torch::nn::BatchNorm{2,3}d will be added after this PR is merged.
Related Issue: https://github.com/pytorch/pytorch/issues/25883
Reviewer: yf225
I would like to discuss about below items.
* Necessity of `num_batches_tracked` in `BatchNormImplBase`
* `num_batches_tracked` is needed to calculate `momentum` when we do not feed `momentum` argument in Python API. But in C++ API, `momentum` argument has a default value.
* `num_batches_tracked` is only used for counting up `BatchNorm1d::foward()` call. I think it is no necessary for user anymore.
* The design of `BatchNorm{1,2,3}dOptions`
* We have already `BatchNormOptions` used for deprecated `BatchNorm` module. However, it is hard to use it for `BatchNorm{1,2,3}dOptions` because of the arguments disagreement of each modules.
* In this PR, I introduce `BatchNormOptionsv2` template class for the `BatchNorm{1,2,3}dOptions`. But I'm not sure this design is good or not.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28176
Differential Revision: D18196843
Pulled By: yf225
fbshipit-source-id: 667e2b5de4150d5776c41b9088c9e6c2ead24cd4
Summary:
https://github.com/pytorch/pytorch/issues/25883
I put grid_sample in vision.h with affine grid.
I have a question in string argument(interpolation mode, padding mode)
I reuse torch::native::detail::GridSamplerInterpolation in GridSampler.h instead of using string.
It follows the way that uses reduction enum in loss functions.
I am not sure this is right.
yf225
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28354
Differential Revision: D18109333
Pulled By: yf225
fbshipit-source-id: 1bf972b671b107464f73b937bbe0de76fb259fbf