Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53304
With the introduction of ONNX shape inference, shape and type are inferred on the fly as operators get converted from ATen to ONNX when running symbolic function. This resolves the shape/type requirement for the symbolic functions. The pre-onnx passes however, can not be supported by shape inference, since at that stage the operators in the graph are still ATen operators.
This PR is to update the design of ONNX pass, to enable a mechanism of capturing subgraphs of ATen operators of certain patterns, and convert them later, when shape/type information of upstream operators are available.
The new design will require pre-onnx passes that need shape/type to be written in two parts, encapsulation and conversion.
The encapsulation part will find the nodes of patterns, like how pre-onnx passes were written previously. But instead of converting the nodes, it will encapsulate them into a sub-block of a new placeholder node. This part is called before onnx pass, so it runs before calling symbolic functions.
The conversion part will be called inside the onnx pass. In onnx pass, run_symbolic_func will be called for each node in topological order. When it reaches the placeholder node, the conversion part will be invoked. It will convert the nodes inside the sub-block based on pattern. By that time, it will have shape/type of upstream operators available. After the conversion is complete, the placeholder node will be removed, and nodes inside its sub-block converted. Run_symbolic_func will be called for these nodes, and they will be converted from ATen operator to ONNX operator.
This PR includes several other fixes, listed below.
* ~~replace helper.cpp with onnx_utils.cpp for holding utility functions.~~
* fix EraseNumberTypes on Bool type, the code was outdated that back then Bool type doesn't exist.
* ~~enable onnx shape inference in export with parameter/initializer data.~~
* other code clean ups.
* fix insertion of identity nodes for loop opset 13 sequence output.
~~PR depends on #51603~~
Test Plan: Imported from OSS
Reviewed By: SplitInfinity
Differential Revision: D26922417
Pulled By: malfet
fbshipit-source-id: 14ed06158d539e2451c2e5e63ba1b32fb0f75095
Summary:
This PR adds an implementation for `aten::cat` in NNC without any conditionals. This version is not enabled by default.
Here is the performance of some micro benchmarks with and without conditionals. There is up to 50% improvement in performance without conditionals for some of the shapes.
aten::cat implementation in NNC **with** conditionals
```
$ python -m benchmarks.tensorexpr --device cpu --mode fwd --jit_mode trace --cpu_fusion concat
pt: concat2d2input_fwd_cpu_1_160_1_14_1: 5.44 us, SOL 0.26 GB/s, algorithmic 0.51 GB/s
pt: concat2d2input_fwd_cpu_1_580_1_174_1: 5.75 us, SOL 1.05 GB/s, algorithmic 2.10 GB/s
pt: concat2d2input_fwd_cpu_20_160_20_14_1: 6.87 us, SOL 4.05 GB/s, algorithmic 8.11 GB/s
pt: concat2d2input_fwd_cpu_20_580_20_174_1: 14.52 us, SOL 8.31 GB/s, algorithmic 16.62 GB/s
pt: concat2d2input_fwd_cpu_8_512_8_512_1: 9.58 us, SOL 6.84 GB/s, algorithmic 13.68 GB/s
```
aten::cat implementation in NNC **without** conditionals
```
$ python -m benchmarks.tensorexpr --device cpu --mode fwd --jit_mode trace --cpu_fusion --cat_wo_conditionals concat
pt: concat2d2input_fwd_cpu_1_160_1_14_1: 4.67 us, SOL 0.30 GB/s, algorithmic 0.60 GB/s
pt: concat2d2input_fwd_cpu_1_580_1_174_1: 5.65 us, SOL 1.07 GB/s, algorithmic 2.14 GB/s
pt: concat2d2input_fwd_cpu_20_160_20_14_1: 6.10 us, SOL 4.56 GB/s, algorithmic 9.12 GB/s
pt: concat2d2input_fwd_cpu_20_580_20_174_1: 7.44 us, SOL 16.22 GB/s, algorithmic 32.44 GB/s
pt: concat2d2input_fwd_cpu_8_512_8_512_1: 6.46 us, SOL 10.14 GB/s, algorithmic 20.29 GB/s
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53128
Reviewed By: bertmaher
Differential Revision: D26758613
Pulled By: navahgar
fbshipit-source-id: 00f56b7da630b42bc6e7ddd4444bae0cf3a5780a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51564
Constructor logic was spread throughout InferenceModule and StaticRuntime. This diff unifies the two. After a lot of discussion on this diff D25961626 it became apparent that `clone` is uglier than a cheap StaticRuntime.
This means StaticRuntime is effectively StaticModule and the only code in the new StaticRuntime is the `run` functions.
```
graph, schema = PrepareForStaticModule(torchscript_module)
sm = StaticModule(graph, schema, options)
sm(inputs)
// or create many cheap runtimes with the module
sr = StaticRuntime(sm)
sr(inputs)
```
Changelist:
- Rename InferenceModule StaticModule
- Move all logic for construction into StaticModule
- Create a new StaticRuntime that only has a unique memory planner (everything else is in StaticModule)
- Update comments with explanation
- Propagate all changes to predictor integration
- Propagate all changes to python integration
- Change semantics to be a bit more PyTorch-standard (no "run" calls, no "get_" getters).
Test Plan:
buck test //caffe2/test:static_runtime
buck test caffe2/benchmarks/static_runtime:static_runtime_cpptest
Reviewed By: hlu1
Differential Revision: D25592967
fbshipit-source-id: 8233bed03137ce129137af2d44bce0095033ef0f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51483
This PR moves the conv weights of a frozen model to MKLDNN, and AOT reorders the weights. When the weights are already in MKLDNN, just computing a single conv by converting the input and output from/to mkldnn provides large speedups. I benchmark'd the results of the top 200 shapes in predictor [here](https://www.internalfb.com/phabricator/paste/view/P171537938), as well as verified that it sped up popular models in torchvision.
Test Plan: Imported from OSS
Reviewed By: navahgar
Differential Revision: D26696703
Pulled By: eellison
fbshipit-source-id: 0b4441bee4f6e0890a4540fbca3bb5e58b8c5adf
Summary:
This is a second attempt to use graph executor to run forward on a gradient. This allows a secondary chance to profile intermediate tensor introduced by autodiff.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52136
Reviewed By: pbelevich
Differential Revision: D26693978
Pulled By: Krovatkin
fbshipit-source-id: 91dde8009a210950af8e5173668ada241e16dd52
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52910
**Summary**
PR #52158 tried to move all JIT bindings from `torch._C` to a new
submodule `torch._C._jit`, but that...did not go well. This pull request
adds the new `torch._C._jit` submodule, but does not migrate the
existing bindings. Instead, it adds a unit test that fails if any new
bindings are added to `torch._C`. A comment in the test instructs
developers to add their new binding to the allowlist if it really should
be in `torch._C`, or to add it to the appropriate submodule (e.g
`torch._C._jit`, for example). The idea is to prevent the issue
described in #51691 from getting *worse* if it cannot be fixed.
**Test Plan**
Continuous integration.
**Fixes**
This commit fixes#51691.
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D26698373
Pulled By: SplitInfinity
fbshipit-source-id: ec9f5426051227a513d4fd09512b624420e0100b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51754
This API allows you to manage multiple python interpreters in a single
process to deploy PyTorch models packaged with torch.package.
torch/csrc/deploy/deploy.h contains the API definition
torch/csrc/deploy/test_deploy.cpp has some examples.
Notes:
* mutex is added to PyTorchStreamReader to make it safe to use from multiple threads at once.
* USE_DEPLOY is only true for the special libtorch_deployinterpreter.so library, when enabled
we use a hash table to maintain PyObject <> at::Tensor mappping rather than the internal pointer
in Tensor since >1 interpreter may have a reference to the tensor.
* serialization.py has some additional functions for creating pickle objects
but keeping storages in memory for use transfering tensors between interpreters
Test Plan: Imported from OSS
Reviewed By: wconstab
Differential Revision: D26329468
Pulled By: zdevito
fbshipit-source-id: d75f4ebb9a27f1d911179d9996041bcb3ca04a07
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51826
Looks like this:
```
resnet.pt
├── .data # Data folder named so it can't clash with torch.package codemodules.
│ │ # Names/extensions automatically added to avoid namingconflicts.
│ ├── 94286146172688.storage # tensor data
│ ├── 94286146172784.storage
│ ├── extern_modules # torch.package metadata
│ ├── version # version metadata
│ └── ...
├── model # package pickled model created w/
│ │ # exporter.save_pickel('model','model.pkl', resnet_model)
│ └── model.pkl
└── torchvision # all code dependencies for packaged picked
└── models # models are captured as source files
├── resnet.py
└── utils.py
```
Since `version` is hardcoded in our zip reader/writer implementation,
add it as an option that defaults to "version" but accepts other
locations for putting the version metadata.
Test Plan: Imported from OSS
Reviewed By: zdevito
Differential Revision: D26295649
Pulled By: suo
fbshipit-source-id: 2d75feeb7de0f78196b4d0b6e2b814a7d58bd1dd
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50983
There is currently no way to handle/propagate errors with the python-based futures API (they are raised correctly if set with an error, but this is only possible from C++).
This diff allows the Future's `unwrap_func` to be set in python optionally, so users can set futures completed with an exception and the error will throw as expected. This is mostly to support the following use case in the next diff:
```
ret_fut = torch.futures.Future(unwrap_func = lambda python_result: {
# throw exception if needed
if isinstance(python_result, Exception):
throw python_result
})
rpc_fut = rpc.rpc_async(...) # RPC future that times out
# Goal is to propagate RPC error to this future
rpc_fut.add_done_callback(
res => {
# Note that ret_fut.set_result(res.wait()) won't propagate the error
try:
ret_fut.set_result(res.wait())
except Exception as e:
ret_fut.set_result(e)
}
)
```
ghstack-source-id: 121021434
Test Plan:
unittest
```
buck test mode/dev-nosan mode/no-gpu //caffe2/test:futures -- te
st_unwrap --print-passing-details
```
Reviewed By: mrshenli
Differential Revision: D25950304
fbshipit-source-id: 7ee61e98fcd783b3f515706fa141d538e6d2174d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50870
**Summary**
Module attributes whose types cannot be determined based on annotations
or inference based on their values at script time are added to the
concrete type of the corresponding module as "failed attributes". Any
attempt to access them in scripted code produces an error with a message
explaining that the attribute could not be contributed to a
corresponding attribute on the TorchScript module. However, this error
is not more specific than that.
This commit modifies `infer_type` in `_recursive.py` so that it returns
`c10::InferredType` instead, which allows more information about typing
failures to be communicated to the caller through the `reason()` method
on this class. This information is appended to the hint added to the
module concrete type for failed attributes.
**Testing**
This commit adds a unit test to `test_module_containers.py` that checks
that extra information is provided about the reason for the failure
when a module attribute consisting of a list of `torch.nn.Module` fails to convert.
Test Plan: Imported from OSS
Reviewed By: pbelevich
Differential Revision: D26091472
Pulled By: SplitInfinity
fbshipit-source-id: fcad6588b937520f250587f3d9e005662eb9af0d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50905
Adds an additional run of onnx shape inference after constant folding, since initializer may have changed and affected shape inference.
Test Plan: Imported from OSS
Reviewed By: pbelevich
Differential Revision: D26050881
Pulled By: SplitInfinity
fbshipit-source-id: 9e5d69c52b647133cd3a0781988e2ad1d1a9c09d
Summary:
Handle sequence output shape and type inference.
This PR fixes value type of sequence outputs. Prior to this, all model sequence type outputs were unfolded for ONNX models.
This PR also enable shape inference for sequence outputs to represent the dynamic shape of these values.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46542
Reviewed By: ezyang
Differential Revision: D24924236
Pulled By: bzinodev
fbshipit-source-id: 506e70a38cfe31069191d7f40fc6375239c6aafe
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49698
Reincarnation of #47620 by jamesr66a.
It's just an initial bunch of things that we're exposing to python, more
is expected to come in future. Some things can probably be done better,
but I'm putting this out anyway, since some other people were interested
in using and/or developing this.
Differential Revision: D25668694
Test Plan: Imported from OSS
Reviewed By: bertmaher
Pulled By: ZolotukhinM
fbshipit-source-id: fb0fd1b31e851ef9ab724686b9ac2d172fa4905a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50222
This PR adds a pass which runs a set of optimizations to be done after freezing. Currently this encompasses Conv-BN folding, Conv->Add/Sub/Mul/Div folding and i'm also planning on adding dropout removal.
I would like some feedback on the API. torch.jit.freeze is technically in \~prototype\~ phase so we have some leeway around making changes. I think in the majority of cases, the user is going to want to freeze their model, and then run in inference. I would prefer if the optimization was opt-out instead of opt-in. All internal/framework use cases of freezing all use `freeze_module`, not the python API, so this shouldn't break anything.
I have separated out the optimization pass as a separate API to make things potentially modular, even though I suspect that is an unlikely case. In a future PR i would like to add a `torch::jit::freeze` which follows the same api as `torch.jit.freeze` intended for C++ use, and runs the optimizations.
Test Plan: Imported from OSS
Reviewed By: tugsbayasgalan
Differential Revision: D25856264
Pulled By: eellison
fbshipit-source-id: 56be1f12cfc459b4c4421d4dfdedff8b9ac77112
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50075
Adds Conv - Add/Sub/Mul/Div fusion for frozen models. This helps cover models like torchvision maskrcnn, which use a hand-rolled batchnorm implementation: 90645ccd0e/torchvision/ops/misc.py (L45).
I haven't tested results yet but I would expect a somewhat similar speed up as conv-bn fusion (maybe a little less).
Test Plan: Imported from OSS
Reviewed By: tugsbayasgalan
Differential Revision: D25856265
Pulled By: eellison
fbshipit-source-id: 2c36fb831a841936fe4446ed440185f59110bf68
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50074
Adds Conv-BN fusion for models that have been frozen. I haven't explicitly tested perf yet but it should be equivalent to the results from Chillee's PR [here](https://github.com/pytorch/pytorch/pull/476570) and [here](https://github.com/pytorch/pytorch/pull/47657#issuecomment-725752765). Click on the PR for details but it's a good speed up.
In a later PR in the stack I plan on making this optimization on by default as part of `torch.jit.freeze`. I will also in a later PR add a peephole so that there is not conv->batchnorm2d doesn't generate a conditional checking # dims.
Zino was working on freezing and left the team, so not really sure who should be reviewing this, but I dont care too much so long as I get a review �
Test Plan: Imported from OSS
Reviewed By: tugsbayasgalan
Differential Revision: D25856261
Pulled By: eellison
fbshipit-source-id: da58c4ad97506a09a5c3a15e41aa92bdd7e9a197
Summary:
Pull Request resolved: https://github.com/pytorch/glow/pull/5062
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45556
User defined classes can be used as constants. This is useful when freezing and removing the module from the graph.
Test Plan: waitforsadcastle
Reviewed By: eellison
Differential Revision: D23994974
fbshipit-source-id: 5b4a5c91158aa7f22df39d71f2658afce1d29317
Summary:
1. Added CudaFusionGuard as the custom TypeCheck for nvfuser; enabled dynamic shape support with profiling executor;
2. dropped support for legacy fuser;
3. re-enabled nvfuser tests;
4. added registration for profiling record to allow profiling on user specified nodes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46452
Reviewed By: zou3519, anjali411
Differential Revision: D24364642
Pulled By: ngimel
fbshipit-source-id: daf53a9a6b6636e1ede420a3a6d0397d4a8b450b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45788
We were only running the traced graph once, which would not yet have been fused at that point. We should run for num_profiled_runs + 1, and also assert that all nodes in the graph were fused.
Test Plan: Imported from OSS
Reviewed By: bertmaher
Differential Revision: D24169537
Pulled By: eellison
fbshipit-source-id: 8499bb1a5bd9d2221b1f1c54d6352558cf07ba9a
Summary:
* Support propagating `dim_param` in ONNX by encoding as `ShapeSymbol` in `SymbolicShape` of outputs. If export is called with `dynamic_axes` provided, shape inference will start with these axes set as dynamic.
* Add new test file `test_pytorch_onnx_shape_inference.py`, reusing all test cases from `test_pytorch_onnx_onnxruntime.py`, but focus on validating shape for all nodes in graph. Currently this is not enabled in the CI, since there are still quite some existing issues and corner cases to fix. The test is default to run only at opset 12.
* Bug fixes, such as div, _len, and peephole.cpp passes for PackPadded, and LogSoftmaxCrossEntropy.
* This PR depends on existing PR such as 44332.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44920
Reviewed By: eellison
Differential Revision: D23958398
Pulled By: bzinodev
fbshipit-source-id: 00479d9bd19c867d526769a15ba97ec16d56e51d
Summary:
Export of embedding bag with dynamic list of offsets.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44693
Reviewed By: malfet
Differential Revision: D23831980
Pulled By: bzinodev
fbshipit-source-id: 3eaff1a0f20d1bcfb8039e518d78c491be381e1a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44795
Today, we build our cpp tests twice, once as a standalone gtest binary,
and once linked in `libtorch_python` so we can call them from
`test_jit.py`.
This is convenient (it means that `test_jit.py` is a single entry point
for all our tests), but has a few drawbacks:
1. We can't actually use the gtest APIs, since we don't link gtest into
`libtorch_python`. We're stuck with the subset that we want to write
polyfills for, and an awkward registration scheme where you have to
write a test then include it in `tests.h`).
2. More seriously, we register custom operators and classes in these
tests. In a world where we may be linking many `libtorch_python`s, this
has a tendency to cause errors with `libtorch`.
So now, only tests that explicitly require cooperation with Python are
built into `libtorch_python`. The rest are built into
`build/bin/test_jit`.
There are tests which require that we define custom classes and
operators. In these cases, I've built thm into separate `.so`s that we
call `torch.ops.load_library()` on.
Test Plan: Imported from OSS
Reviewed By: SplitInfinity, ZolotukhinM
Differential Revision: D23735520
Pulled By: suo
fbshipit-source-id: d146bf4e7eb908afa6f96b394e4d395d63ad72ff
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44493
This function allows to execute a graph exactly as it is, without going
through a graph executor which would run passes on the graph before
interpreting it. I found this feature extremely helpful when I worked on
a stress-testing script to shake out bugs from the TE fuser: I needed to
execute a very specific set of passes on a graph and nothing else, and
then execute exactly it.
Test Plan: Imported from OSS
Reviewed By: jamesr66a
Differential Revision: D23632505
Pulled By: ZolotukhinM
fbshipit-source-id: ea81fc838933743e2057312d3156b77284d832ef
Summary:
Duplicate of https://github.com/pytorch/pytorch/issues/41413
This PR initiates the process of updating the torchsciprt backend interface used by ONNX exporter.
Replace jit lower graph pass by freeze module pass
Enable ScriptModule tests for ONNX operator tests (ORT backend) and model tests by default.
Replace jit remove_inplace_ops pass with remove_mutation and consolidation all passes for handling inplace ops.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43791
Reviewed By: houseroad
Differential Revision: D23421872
Pulled By: bzinodev
fbshipit-source-id: a98710c45ee905748ec58385e2a232de2486331b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43248
We add the support of __torch_function__ override for C++ custom op. The logic is the same as the other components, like torch.nn.Module.
Refactored some code a little bit to make it reusable.
Test Plan: buck test //caffe2/test:fx -- test_torch_custom_ops
Reviewed By: bradleyhd
Differential Revision: D23203204
fbshipit-source-id: c462a86e407e46c777171da32d7a40860acf061e
Summary:
It is often that the conversion from torch operator to onnx operator requires input rank/dtype/shape to be known. Previously, the conversion depends on tracer to provide these info, leaving a gap in conversion of scripted modules.
We are extending the export with support from onnx shape inference. If enabled, onnx shape inference will be called whenever an onnx node is created. This is the first PR introducing the initial look of the feature. More and more cases will be supported following this PR.
* Added pass to run onnx shape inference on a given node. The node has to have namespace `onnx`.
* Moved helper functions from `export.cpp` to a common place for re-use.
* This feature is currently experimental, and can be turned on through flag `onnx_shape_inference` in internal api `torch.onnx._export`.
* Currently skipping ONNX Sequence ops, If/Loop and ConstantOfShape due to limitations. Support will be added in the future.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40628
Reviewed By: mrshenli
Differential Revision: D22709746
Pulled By: bzinodev
fbshipit-source-id: b52aeeae00667e66e0b0c1144022f7af9a8b2948
Summary:
This patch allows to freeze model that utilizes interfaces. Freezing works
under the user assumption that the interfase module dones not aliases with
any value used in the model.
To enable freezing of such modules, added an extra pramater:
torch._C._freeze_module(module, ignoreInterfaces = True)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41860
Reviewed By: eellison
Differential Revision: D22670566
Pulled By: bzinodev
fbshipit-source-id: 41197a724bc2dca2e8495a0924c224dc569f62a4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42869
We realized that when we invoke a simple callback that divides the tensors by `world_size` after `allreduce`, the performance was almost 50% lower in terms of QPS compared to the case where a simple `allreduce` hook is used with no `then` callback.
The main problem was as we call `work.wait()` before invoking `then` callback, we were synchronizing `work`'s stream with the default PyTorch stream inside [`runHook`](https://github.com/pytorch/pytorch/blob/master/torch/csrc/distributed/c10d/reducer.cpp#L609) and stalling the backward computation.
In that PR, we ensure that FutureNCCL's `then` callback is not stalling the backward computation. Assuming single-process single-device, `FutureNCCL` gets a new stream from device's pool using `at::cuda::getStreamFromPool` to run `callback` and before invoking the `callback` inline it synchronizes `WorkNCCL`'s stream by callback's stream not the default stream.
ghstack-source-id: 110208431
Test Plan: Run performance benchmark tests to validate performance issue is resolved. Also, `python test/distributed/test_c10d.py` to avoid any odd issues.
Reviewed By: pritamdamania87
Differential Revision: D23055807
fbshipit-source-id: 60e50993f1ed97497514eac5cb1018579ed2a4c5
Summary:
The premise of this approach is that a small subset of neural networks are well represented by a data flow graph. The README contains more information.
The name is subject to change, but I thought it was a cute reference to fire.
suo let me know if you'd prefer this in a different spot. Since it lowers a JIT'd module directly I assumed the JIT folder would be appropriate. There is no exposed Python interface yet (but is mocked up in `test_accelerant.py`)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42753
Reviewed By: zou3519
Differential Revision: D23043771
Pulled By: bwasti
fbshipit-source-id: 5353731e3aae31c08b5b49820815da98113eb551