Today, if you run DTensor (or any tensor subclass) under __torch_dispatch__, you will start seeing `CompositeImplicitAutograd` ops show up in the torch_dispatch.
"handling" these ops is trivial: you can just tell them to decompose into their constituent ops. Normally this decomposing happens in autograd, above DTensor, but inference_mode turns autograd off, forcing the subclass to handle the op directly.
It looks like previously we manually added a few CompositeImplicitAutograd entries to DTensor (e.g. linear), but this PR tries to support these ops a bit more generically.
The main difference is that DTensor now needs to check if a given op is `CompositeImplicitAutograd` before attempting to run sharding prop. I ran a quick microbenchmark for the below code with `timeit`, which gave me overhead on the order of ~1us, which is hopefully not too bad for eager mode:
```
def fast_function():
return torch._C._dispatch_has_kernel_for_dispatch_key(op_call.name(), torch._C.DispatchKey.CompositeImplicitAutograd)
import timeit
time_taken = timeit.timeit(fast_function, number=1000)
# printed 0.12..., aka 1.2us
print(f'func={str(op_call)}, time={str(time_taken)}')
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149514
Approved by: https://github.com/kwen2501, https://github.com/albanD, https://github.com/wanchaol
as titled, this PR moves the same mesh check from the sharding propagation level to each individual operator level.
This is to allow more flexibility for each individual operator to check the operator can be run on the same mesh or not. For example, before this PR if user have two DTensor params that lives on different DeviceMesh, and want to run `for_each` operator on them individually, it would error out with cross mesh error. But for foreach computation there could be DTensors that live on different meshes, as long as the the mesh are the same in a "zipped way".
This should also fix https://github.com/pytorch/pytorch/issues/134212
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147869
Approved by: https://github.com/tianyu-l
Resolves https://github.com/pytorch/pytorch/issues/146767.
May also resolve https://github.com/pytorch/pytorch/issues/147584.
### Summary
This PR removes the RNG tracker init from the `distribute_tensor` call for the following reasons:
1. if the user does not use random ops on DTensor, there's no need to init DTensor RNG which currently requires CUDA device to be present.
2. this complies with the 0-communication semantic of `src_data_rank=None` shard distribution.
Besides, `OffsetBasedRNGTracker` only accepts `DeviceMesh` argument to its constructor method.
### Consequence
DTensor RNG initialization is delayed till the first DTensor random ops call or `torch.distributed.tensor.random.manual_seed`.
### Test
`pytest test/distributed/tensor/test_random_ops.py`
`pytest test/distributed/tensor/parallel/test_tp_random_state.py`
`pytest test/distributed/tensor/parallel/test_tp_style.py`
Differential Revision: [D70201856](https://our.internmc.facebook.com/intern/diff/D70201856)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147025
Approved by: https://github.com/kwen2501
**Summary**
Added tests for model meta init on 1-d mesh (TP) and 2-d mesh (FSDP+TP). This exploits the issue where DTensor RNG failed to initialize weights differently across FSDP ranks.
**Test**
`pytest test/distributed/_tensor/test_random_ops.py -s -k meta_init`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141731
Approved by: https://github.com/wconstab
reland of https://github.com/pytorch/pytorch/pull/133113
I have to create a new PR because the previous reverted PR could not either be rebased, or imported successfully :(
----
Moving DTensor to be in the public namespace, to formally add the documentation page that includes all the public APIs. This includes:
* many path renames and path import fixes
* a dedicated doc page without too much content yet (adding in the next PRs)
* To preserve the BC for users still using the torch.distributed._tensor, I added a shim script to redirect old path calls to the new module
The BC preserving is evidented by the fact that all DTensor tests are still working without changing the public imports. So it's safe to land the changes
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134203
Approved by: https://github.com/tianyu-l
Moving DTensor to be in the public namespace, to formally add the
documentation page that includes all the public APIs. This includes:
* many path renames and path import fixes
* a dedicated doc page without too much content yet (adding in the next
PRs)
* To preserve the BC for users still using the `torch.distributed._tensor`,
I added a shim script to redirect old path calls to the new module
The BC preserving is evidented by the fact that all DTensor tests are still
working without changing the public imports. So it's safe to land the
changes
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133113
Approved by: https://github.com/XilunWu
ghstack dependencies: #133305, #133306