MTIA device has its own Module in PyTorch now.
torch.mtia has following APIs similar to other backends. The lazy_init is also supported.
```
__all__ = [
"init",
"is_available",
"synchronize",
"device_count",
"current_device",
"current_stream",
"default_stream",
"set_stream",
"stream",
"device",
]
```
------------
For device management. We expand AccleratorHooksInterface to support generic device management and it can be used in both C++ and PyThon.
```
def _accelerator_hooks_device_count() -> _int: ...
def _accelerator_hooks_set_current_device(device_index: _int) -> None: ...
def _accelerator_hooks_get_current_device() -> _int : ...
def _accelerator_hooks_exchange_device(device_index: _int) -> _int : ...
def _accelerator_hooks_maybe_exchange_device(device_index: _int) -> _int : ...
```
---------
Adding get_device_module API to retrieve device modules for different device types.
```
def get_device_module(device: Optional[Union[torch.device, str]] = None)
```
---------
Differential Revision: [D56443356](https://our.internmc.facebook.com/intern/diff/D56443356)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123612
Approved by: https://github.com/albanD
ghstack dependencies: #123611
This diff intends to build device generic torch.Stream and torch.Event for newly added accelerators in PyTorch.
------------
**torch.Stream APIs**
```
# Defined in torch/csrc/Stream.cpp
class Stream(_StreamBase):
stream_id: _int # Stream id
device_index: _int
device_type: _int
device: _device # The device of the stream
@overload
def __new__(self, device: Optional[DeviceLikeType] = None, priority: _int = 0) -> Stream: ...
@overload
def __new__(self, stream_id: _int, device_index: _int, device_type: _int, priority: _int = 0) -> Stream: ...
def wait_event(self, event: Event) -> None: ...
def wait_stream(self, other: Stream) -> None: ...
def record_event(self, event: Optional[Event] = None) -> Event: ...
def query(self) -> None: ...
def synchronize(self) -> None: ...
def __hash__(self) -> _int: ...
def __repr__(self) -> str: ...
def __eq__(self, other: object) -> _bool: ...
```
------------------
**torch.Event APIs**:
- IPC related APIs are not implemented, since many device backends don't support it, but we leave interfaces there for future adaption of torch.cuda.Stream.
- currently only the enable_timing is supported, since it is the most common one used in other device backends. We have to refactor the event flag system in PyTorch to support more fancy flag.
- elapsedTime API is added to c10::Event
```
# Defined in torch/csrc/Event.cpp
class Event(_EventBase):
device: _device # The device of the Event
event_id: _int # The raw event created by device backend
def __new__(self,
device: Optional[DeviceLikeType] = None,
enable_timing: _bool = False,
blocking: _bool = False,
interprocess: _bool = False) -> Event: ...
@classmethod
def from_ipc_handle(self, device: DeviceLikeType, ipc_handle: bytes) -> Event: ...
def record(self, stream: Optional[Stream] = None) -> None: ...
def wait(self, stream: Optional[Stream] = None) -> None: ...
def query(self) -> _bool: ...
def elapsed_time(self, other: Event) -> _float: ...
def synchronize(self) -> None: ...
def ipc_handle(self) -> bytes: ...
def __repr__(self) -> str: ...
```
-----------
c10::Event provides new APIs
- calculate **elapsedTime**.
- Get raw event id
- Synchronize event.
```
double elapsedTime(const Event& event) const {
return impl_.elapsedTime(event.impl_);
}
void* eventId() const {
return impl_.eventId();
}
void synchronize() const {
return impl_.synchronize();
}
```
----------
TODO: need to find a good way to test them in PyTorch with API mocks.
Differential Revision: [D56443357](https://our.internmc.facebook.com/intern/diff/D56443357)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123611
Approved by: https://github.com/albanD, https://github.com/jeffdaily
We've had issues using addr2line. On certain versions of
CentOS it is on a version that has a performance regression making it very slow,
and even normallly it is not that fast, taking several seconds even when parallelized
for a typical memory trace dump.
Folly Symbolize or LLVMSymbolize are fast but it requires PyTorch take a dependency on those libraries to do this, and given the number of environments we run stuff in, we end up hitting cases where we fallback to slow addr2line behavior.
This adds a standalone symbolizer to PyTorch similar to the unwinder which has
no external dependencies and is ~20x faster than addr2line for unwinding PyTorch frames.
I've tested this on some memory profiling runs using all combinations of {gcc, clang} x {dwarf4, dwarf5} and it seems to do a good job at getting line numbers and function names right. It is also careful to route all reads of library data through the `CheckedLexer` object, which ensure it is not reading out of bounds of the section. Errors are routed through UnwindError so that those exceptions get caught and we produce a ?? frame rather than crash. I also added a fuzz test which gives all our symbolizer options random addresses in the process to make sure they do not crash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123966
Approved by: https://github.com/ezyang
Following the example of PyTorch supporting a preferred Linalg library (cusolver or magma), this PR introduces a preferred blas library selector of either cublas or cublaslt for CUDA and hipblas or hipblaslt for ROCm via normal hipification of sources.
The default blas implementation remains cublas or hipblas. cublaslt or hipblaslt can be enabled using environment variable TORCH_BLAS_PREFER_CUBLASLT=1 (or TORCH_BLAS_PREFER_HIPBLASLT=1 as an alias) or by calling `torch.backends.cuda.preferred_blas_library(backend="cublaslt")` or as an alias `backend="hipblaslt"`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122106
Approved by: https://github.com/lezcano
MTIA device has its own Module in PyTorch now.
torch.mtia has following APIs similar to other backends. The lazy_init is also supported.
```
__all__ = [
"init",
"is_available",
"synchronize",
"device_count",
"current_device",
"current_stream",
"default_stream",
"set_stream",
"stream",
"device",
]
```
------------
For device management. We expand AccleratorHooksInterface to support generic device management and it can be used in both C++ and PyThon.
```
def _accelerator_hooks_device_count() -> _int: ...
def _accelerator_hooks_set_current_device(device_index: _int) -> None: ...
def _accelerator_hooks_get_current_device() -> _int : ...
def _accelerator_hooks_exchange_device(device_index: _int) -> _int : ...
def _accelerator_hooks_maybe_exchange_device(device_index: _int) -> _int : ...
```
---------
Adding get_device_module API to retrieve device modules for different device types.
```
def get_device_module(device: Optional[Union[torch.device, str]] = None)
```
---------
@exported-using-ghexport
Differential Revision: [D52923602](https://our.internmc.facebook.com/intern/diff/D52923602/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123612
Approved by: https://github.com/albanD
ghstack dependencies: #123611
This diff intends to build device generic torch.Stream and torch.Event for newly added accelerators in PyTorch.
------------
**torch.Stream APIs**
```
# Defined in torch/csrc/Stream.cpp
class Stream(_StreamBase):
stream_id: _int # Stream id
device_index: _int
device_type: _int
device: _device # The device of the stream
@overload
def __new__(self, device: Optional[DeviceLikeType] = None, priority: _int = 0) -> Stream: ...
@overload
def __new__(self, stream_id: _int, device_index: _int, device_type: _int, priority: _int = 0) -> Stream: ...
def query(self) -> _bool: ...
def synchronize(self) -> None: ...
def wait_event(self, event: Event) -> None: ...
def wait_stream(self, other: Stream) -> None: ...
def record_event(self, event: Optional[Event] = None) -> Event: ...
def query(self) -> None: ...
def synchronize(self) -> None: ...
def __hash__(self) -> _int: ...
def __repr__(self) -> str: ...
def __eq__(self, other: object) -> _bool: ...
```
------------------
**torch.Event APIs**:
- IPC related APIs are not implemented, since many device backends don't support it, but we leave interfaces there for future adaption of torch.cuda.Stream.
- currently only the enable_timing is supported, since it is the most common one used in other device backends. We have to refactor the event flag system in PyTorch to support more fancy flag.
- elapsedTime API is added to c10::Event
```
# Defined in torch/csrc/Event.cpp
class Event(_EventBase):
device: _device # The device of the Event
event_id: _int # The raw event created by device backend
def __new__(self,
device: Optional[DeviceLikeType] = None,
enable_timing: _bool = False,
blocking: _bool = False,
interprocess: _bool = False) -> Event: ...
@classmethod
def from_ipc_handle(self, device: DeviceLikeType, ipc_handle: bytes) -> Event: ...
def record(self, stream: Optional[Stream] = None) -> None: ...
def wait(self, stream: Optional[Stream] = None) -> None: ...
def query(self) -> _bool: ...
def elapsed_time(self, other: Event) -> _float: ...
def synchronize(self) -> None: ...
def ipc_handle(self) -> bytes: ...
def __repr__(self) -> str: ...
```
-----------
c10::Event provides new APIs
- calculate **elapsedTime**.
- Get raw event id
- Synchronize event.
```
double elapsedTime(const Event& event) const {
return impl_.elapsedTime(event.impl_);
}
void* eventId() const {
return impl_.eventId();
}
void synchronize() const {
return impl_.synchronize();
}
```
----------
TODO: need to find a good way to test them in PyTorch with API mocks.
Differential Revision: [D55351839](https://our.internmc.facebook.com/intern/diff/D55351839/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123611
Approved by: https://github.com/albanD
**Summary:**
This commit simplifies the existing decomposition hierarchy
of batch norm ops by adding a single, backend agnostic op:
`batch_norm_with_update`. The existing hierarchy looks like:
```
aten.batch_norm ->
aten._batch_norm_impl_index ->
[
aten.native_batch_norm ->
aten._native_batch_norm_legit (export only) ->
_batch_norm_legit_cpu/cuda (kernels, export only) ->
_batch_norm_cpu/cuda (kernels)
] OR
[ aten.cudnn_batch_norm ] OR
[ aten.miopen_batch_norm ]
```
Aside from complexity, an important problem with the
above decomposition hierarchy is cuda numerics in
export flows. We observed significantly worse convergence
when training a mobilenetv2-like model when using the
`_batch_norm_cuda` kernel instead of the `cudnn_batch_norm`
kernel. This means users who export their models on CPU
first then move the models to cuda later may silently
see worse accuracies even when cudnn is installed,
because they are using the worse kernel. This issue is
summarized in https://github.com/pytorch/pytorch/issues/111384.
Instead, the new hierarchy proposed by consolidating
existing batch norm ops will look like:
```
aten.batch_norm ->
aten.batch_norm_with_update ->
[ _batch_norm_cpu (kernel) ] OR
[ _batch_norm_cuda (kernel) ] OR
[ cudnn_batch_norm (kernel) ] OR
[ miopen_batch_norm (kernel) ]
```
The new op `batch_norm_with_update` hides backend
implementation details and automatically picks the right
kernel based on what is installed. This commit also adds
the following variants to this op:
```
batch_norm_with_update_functional
batch_norm_with_update.out
batch_norm_no_update
batch_norm_no_update.out
batch_norm_backward
```
Note that this commit only adds this op and its variants,
but does not actually change the decomps to produce these
ops in the graph. This will be done after the 2 week FC
window, and the ops used in the old stack is planned to
be removed after the 6 month BC window.
Test Plan: `OpInfo` tests for `batch_norm_with_update`.
Reviewers: albanD, bdhirsh
Subscribers: albanD, bdhirsh, supriyar
Tasks: https://github.com/pytorch/pytorch/issues/111384
Differential Revision: [D54805279](https://our.internmc.facebook.com/intern/diff/D54805279)
Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116092
Approved by: https://github.com/bdhirsh, https://github.com/albanD
This reduces `torch.mv` time for 256x768 matrix by 256 element vector from 209 usec to 16 usec for nontransposed case and from 104 to 18 usec if transposed
Also, add fp16-accumulation flavor to the same ops (controlled by private `torch._C._set_cpu_allow_fp16_reduced_precision_reduction` which yields a slightly better numbers), summarized in the following table
| op | original | F32+NEON | F16+NEON|
| ---| -------- | ---------- | ----- |
| torch.mv(m, v) | 209.53 usec | 16.25 usec | 14.68 usec |
| torch.mv(m.t(), v) | 104.80 usec | 28.68 usec | 24.82 usec |
Test plan: CI on MacOS for both CPU and MPS test fp32<->fp16 matmul consistency ( For example "test_output_grad_match_nn_functional_linear_cpu_float16" passes if fp32-reductions are performed, but fails if fp16 accumulation is used)
To investigate:
- why replacing `sum0Vec = vaddq_f32(sum0Vec, vmulq_f32(a0Vec, xVec));` with `sum0Vec = vfmaq_f32(sum0Vec, a0Vec, xVec);` slows down gemv from 16.2 to 18.2 usec
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119992
Approved by: https://github.com/mikekgfb
**Summary:**
This commit simplifies the existing decomposition hierarchy
of batch norm ops by adding a single, backend agnostic op:
`batch_norm_with_update`. The existing hierarchy looks like:
```
aten.batch_norm ->
aten._batch_norm_impl_index ->
[
aten.native_batch_norm ->
aten._native_batch_norm_legit (export only) ->
_batch_norm_legit_cpu/cuda (kernels, export only) ->
_batch_norm_cpu/cuda (kernels)
] OR
[ aten.cudnn_batch_norm ] OR
[ aten.miopen_batch_norm ]
```
Aside from complexity, an important problem with the
above decomposition hierarchy is cuda numerics in
export flows. We observed significantly worse convergence
when training a mobilenetv2-like model when using the
`_batch_norm_cuda` kernel instead of the `cudnn_batch_norm`
kernel. This means users who export their models on CPU
first then move the models to cuda later may silently
see worse accuracies even when cudnn is installed,
because they are using the worse kernel. This issue is
summarized in https://github.com/pytorch/pytorch/issues/111384.
Instead, the new hierarchy proposed by consolidating
existing batch norm ops will look like:
```
aten.batch_norm ->
aten.batch_norm_with_update ->
[ _batch_norm_cpu (kernel) ] OR
[ _batch_norm_cuda (kernel) ] OR
[ cudnn_batch_norm (kernel) ] OR
[ miopen_batch_norm (kernel) ]
```
The new op `batch_norm_with_update` hides backend
implementation details and automatically picks the right
kernel based on what is installed. This commit also adds
the following variants to this op:
```
batch_norm_with_update_functional
batch_norm_with_update.out
batch_norm_no_update
batch_norm_no_update.out
batch_norm_backward
```
Note that this commit only adds this op and its variants,
but does not actually change the decomps to produce these
ops in the graph. This will be done after the 2 week FC
window, and the ops used in the old stack is planned to
be removed after the 6 month BC window.
Test Plan: `OpInfo` tests for `batch_norm_with_update`.
Reviewers: albanD, bdhirsh
Subscribers: albanD, bdhirsh, supriyar
Tasks: https://github.com/pytorch/pytorch/issues/111384
Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116092
Approved by: https://github.com/bdhirsh, https://github.com/albanD
**Summary:**
This commit simplifies the existing decomposition hierarchy
of batch norm ops by adding a single, backend agnostic op:
`batch_norm_with_update`. The existing hierarchy looks like:
```
aten.batch_norm ->
aten._batch_norm_impl_index ->
[
aten.native_batch_norm ->
aten._native_batch_norm_legit (export only) ->
_batch_norm_legit_cpu/cuda (kernels, export only) ->
_batch_norm_cpu/cuda (kernels)
] OR
[ aten.cudnn_batch_norm ] OR
[ aten.miopen_batch_norm ]
```
Aside from complexity, an important problem with the
above decomposition hierarchy is cuda numerics in
export flows. We observed significantly worse convergence
when training a mobilenetv2-like model when using the
`_batch_norm_cuda` kernel instead of the `cudnn_batch_norm`
kernel. This means users who export their models on CPU
first then move the models to cuda later may silently
see worse accuracies even when cudnn is installed,
because they are using the worse kernel. This issue is
summarized in https://github.com/pytorch/pytorch/issues/111384.
Instead, the new hierarchy proposed by consolidating
existing batch norm ops will look like:
```
aten.batch_norm ->
aten.batch_norm_with_update ->
[ _batch_norm_cpu (kernel) ] OR
[ _batch_norm_cuda (kernel) ] OR
[ cudnn_batch_norm (kernel) ] OR
[ miopen_batch_norm (kernel) ]
```
The new op `batch_norm_with_update` hides backend
implementation details and automatically picks the right
kernel based on what is installed. This commit also adds
the following variants to this op:
```
batch_norm_with_update_functional
batch_norm_with_update.out
batch_norm_no_update
batch_norm_no_update.out
batch_norm_backward
```
Note that this commit only adds this op and its variants,
but does not actually change the decomps to produce these
ops in the graph. This will be done after the 2 week FC
window, and the ops used in the old stack is planned to
be removed after the 6 month BC window.
Test Plan: `OpInfo` tests for `batch_norm_with_update`.
Reviewers: albanD, bdhirsh
Subscribers: albanD, bdhirsh, supriyar
Tasks: https://github.com/pytorch/pytorch/issues/111384
Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116092
Approved by: https://github.com/bdhirsh, https://github.com/albanD
The main thread and the autograd one are latency critical threads. They launch CPU/GPU/Accelerator kernels and if for some reason they get preempted, the rank can become a straggler in a distributed training application. By naming these threads we can debug performance issues that impact the latency sensitive threads.
I used Kineto traces to verify if the thread names were propagated:
<img width="851" alt="Screenshot 2024-03-04 at 3 07 43 PM" src="https://github.com/pytorch/pytorch/assets/23515689/68b4a09c-b8e5-4f14-a5c0-6593f866c03f">
Also:
```
nvidia-smi
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 3065920 C ...me#python#py_version_3_10 1968MiB |
| 1 N/A N/A 3065926 C ...me#python#py_version_3_10 1978MiB |
| 2 N/A N/A 3065930 C ...me#python#py_version_3_10 2084MiB |
| 3 N/A N/A 3065936 C ...me#python#py_version_3_10 2016MiB |
| 4 N/A N/A 3065939 C ...me#python#py_version_3_10 1998MiB |
| 5 N/A N/A 3065943 C ...me#python#py_version_3_10 2070MiB |
| 6 N/A N/A 3065948 C ...me#python#py_version_3_10 2026MiB |
| 7 N/A N/A 3065952 C ...me#python#py_version_3_10 2070MiB |
+-----------------------------------------------------------------------------+
[me@myhost ~]$ ps -T -p 3065920
PID SPID TTY TIME CMD
3065920 3065920 pts/14 00:01:04 pt_main_thread
...
3065920 3092181 pts/14 00:00:40 pt_autograd_d0
3065920 3092182 pts/14 00:00:00 pt_autograd_d1
3065920 3092183 pts/14 00:00:00 pt_autograd_d2
3065920 3092184 pts/14 00:00:00 pt_autograd_d3
3065920 3092185 pts/14 00:00:00 pt_autograd_d4
3065920 3092186 pts/14 00:00:00 pt_autograd_d5
3065920 3092187 pts/14 00:00:00 pt_autograd_d6
3065920 3092188 pts/14 00:00:00 pt_autograd_d7
...
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121170
Approved by: https://github.com/albanD
Fixes#115331.
This PR increases the number of valid GPU devices to 512 (from 64) in order to future-proof PyTorch for providers that offer [single nodes with a large device count](https://www.tensorwave.com/). Until now, `DeviceIndex` was an `int8_t`, thus multiple changes were necessary:
- `DeviceIndex` changed to `int16_t`. Updated consumers that assume it to be an `int8_t`.
- Updated bounds checking for `torch.device()` in the Python frontend. Right now, we allow funny things like `torch.device('cpu', 200).index == -56`, which is undefined behavior. I inserted some checks to only allow values between 0 and `c10::Device::MAX_NUM_DEVICES - 1`.
- Updated the `ArgumentInfo` struct as it hardcodes the device index as 8 bit field [^1]. Might be a breaking change, not sure if users rely on this.
- Introduced `c10::Device::MAX_NUM_DEVICES` as a replacement for the old `C10_COMPILE_TIME_MAX_GPUS`
[^1]: This field was unsigned, so I guess this has also been undef behavior the whole time? Our default device index is -1, so this always wrapped around to 255 when written to the `ArgumentInfo` struct. When I switched the `DeviceIndex` to `int16_t`, it actually stayed 255 after unpacking from `ArgumentInfo` again, as the `DeviceIndex` was now wide enough that it didn't wrap back to -1.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119639
Approved by: https://github.com/cyyever, https://github.com/albanD, https://github.com/huydhn
# Motivation
As mentioned in [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), the next runtime component we would like to upstream is `Event` which handles the status of an operation that is being executed. Typically, in some circumstances, we can fine-grain control of the operation execution via `Event`.
# Design
`XPUEvent` is a movable but not a copyable wrapper around sycl event. It should be created lazily on an XPU device when recording an `XPUStream`. Meanwhile, `XPUEvent` can wait for another `XPUEvent` or all the submitted kernels on an `XPUStream` to complete. Align to the other backend, the C++ files related to `Event` will be placed in `aten/src/ATen/xpu` folder. For frontend code, `XPUEvent` runtime API will be bound to Python `torch.xpu.Event`. The corresponding C++ code will be placed in `torch/csrc/xpu/Event.cpp` and Python code will be placed in `torch/xpu/streams.py` respectively.
# Additional Context
It is worth mentioning that the `elapsed_time` method is temporarily not supported by `XPUEvent`. We will be adding support for it soon. Meanwhile `XPUEvent` doesn't support IPC from different processes. For the other parts, we have almost a 1:1 mapping with CUDA.
lack of the below APIs:
- `torch.cuda.Event.ipc_handle`
- `CUDAEvent`'s constructor with `IpcEventHandle`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117734
Approved by: https://github.com/EikanWang, https://github.com/gujinghui, https://github.com/jgong5, https://github.com/malfet
ghstack dependencies: #117611, #117619
# Motivation
According to [[1/2] Intel GPU Runtime Upstreaming for Stream](https://github.com/pytorch/pytorch/pull/117611), as mentioned in [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), the second PR covers the changes under `python frontend`.
# Design
Currently, it primarily offers stream-related APIs, including
- `torch.xpu.StreamContext`
- `torch.xpu.current_stream`
- `torch.xpu.set_stream`
- `torch.xpu.synchronize`
- `torch._C._xpu_getCurrentRawStream`
# Additional Context
We will implement functions like `torch.xpu.Stream.wait_event`, `torch.xpu.Stream.wait_stream`, and `torch.xpu.Stream.record_event` in the next PR related with `Event`.
The differences with CUDA:
no default and external stream in XPU and lack of below APIs:
- `torch.cuda.ExternalStream`
- `torch.cuda.default_stream`
- `toch.cuda.is_current_stream_capturing`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117619
Approved by: https://github.com/EikanWang, https://github.com/jgong5, https://github.com/gujinghui, https://github.com/albanD
ghstack dependencies: #117611
# Motivation
According to [[1/4] Intel GPU Runtime Upstreaming for Device](https://github.com/pytorch/pytorch/pull/116019), As mentioned in [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), this third PR covers the changes under `libtorch_python`.
# Design
This PR primarily offers device-related APIs in python frontend, including
- `torch.xpu.is_available`
- `torch.xpu.device_count`
- `torch.xpu.current_device`
- `torch.xpu.set_device`
- `torch.xpu.device`
- `torch.xpu.device_of`
- `torch.xpu.get_device_name`
- `torch.xpu.get_device_capability`
- `torch.xpu.get_device_properties`
- ====================
- `torch.xpu._DeviceGuard`
- `torch.xpu._is_compiled`
- `torch.xpu._get_device`
# Additional Context
We will implement the support of lazy initialization in the next PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116850
Approved by: https://github.com/EikanWang, https://github.com/jgong5, https://github.com/gujinghui, https://github.com/malfet
# Summary
Simplification of Backend Selection
This PR deprecates the `torch.backends/cuda/sdp_kernel` context manager and replaces it with a new context manager `torch.nn.attention.sdpa_kernel`. This context manager also changes the api for this context manager.
For `sdp_kernel` one would specify the backend choice by taking the negation of what kernel they would like to run. The purpose of this backend manager was to only to be a debugging tool, "turn off the math backend" and see if you can run one of the fused implementations.
Problems:
- This pattern makes sense if majority of users don't care to know anything about the backends that can be run. However, if users are seeking to use this context manager then they are explicitly trying to run a specific backend.
- This is not scalable. We are working on adding the cudnn backend and this API makes it so so that more implementations will need to be turned off if user wants to explicitly run a given backend.
- Discoverability of the current context manager. It is somewhat un-intutive that this backend manager is in backends/cuda/init when this now also controls the CPU fused kernel behavior. I think centralizing to attention namespace will be helpful.
Other concerns:
- Typically backends (kernels) for operators are entirely hidden from users and implementation details of the framework. We have exposed this to users already, albeit not by default and with beta warnings. Does making backends choices even more explicit lead to problems when we potentially want to remove existing backends, (perhaps inputs shapes will get covered by newer backends).
A nice side effect is now that we aren't using the `BACKEND_MAP` in test_transformers many, many dynamo failures are passing for CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114689
Approved by: https://github.com/cpuhrsch
This PR intends to fix the following issue when swapping two tensors
```python
>>> import torch
>>> torch.manual_seed(5)
>>> t1 = torch.randn(2)
>>> t2 = torch.randn(3)
>>> t1
tensor([-0.4868, -0.6038])
>>> t2
tensor([-0.5581, 0.6675, -0.1974])
>>> torch.utils.swap_tensors(t1, t2)
>>> t1
tensor([-0.5581, 0.6675, -0.1974])
>>> t2
tensor([-0.4868, -0.6038])
>>> t1.fill_(0.5) # t1 back to its unswapped state :o
tensor([-0.4868, -0.6038])
```
What happens here is that in `THPVariable_Wrap` (which is used when going back from C++ --> Python), we check if the TensorImpl of the tensor to be returned already has a pointer to a PyObject in its PyObject slot. If this is the case then this object is returned.
57491d2046/torch/csrc/autograd/python_variable.cpp (L271-L292)
When we run any operation that returns the same TensorImpl (e.g. inplace op, `t.to(dtype=t.dtype)`, etc.), although `t1` now has `t2`'s TensorImpl, `t2`'s TensorImpl still has a reference to `t2`, so when we do the op on `t1` and `THPVariable_Wrap` attempts to return the pointer to the TensorImpl's PyObject, we return a pointer to `t2` instead.
The TensorImpl should have the PyObjects in their PyObjectSlots swapped as well in `swap_tensors`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116955
Approved by: https://github.com/albanD
Summary: Now we can allocate an AOTIModelContainerRunner object instead of relying on torch.utils.cpp_extension.load_inline. Also renamed AOTInductorModelRunner to AOTIRunnerUtil in this PR.
Test Plan: CI
Reviewed By: khabinov
Differential Revision: D52339116
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116269
Approved by: https://github.com/khabinov
When exporting a model with a convolution kernel on cpu, if mkldnn is disabled and nnpack is enabled, export will go down the nnpack optimized convolution kernel for certain shapes ((code pointer)[cd449e260c/aten/src/ATen/native/Convolution.cpp (L542-L552)]). This means that we will automatically create a guard on that certain shape. If users want to export without any restrictions, one option is to disable nnpack. However, no config function exists for this, so this PR is adding a config function, similar to the `set_mkldnn_enabled` function.
Original context is in https://fb.workplace.com/groups/1075192433118967/posts/1349589822345892/?comment_id=1349597102345164&reply_comment_id=1349677642337110.
To test the flag, the following script runs successfully:
```
import os
import torch
from torchvision.models import ResNet18_Weights, resnet18
torch.set_float32_matmul_precision("high")
model = resnet18(weights=ResNet18_Weights.DEFAULT)
model.eval()
with torch.no_grad():
# device = "cuda" if torch.cuda.is_available() else "cpu"
torch.backends.mkldnn.set_flags(False)
torch.backends.nnpack.set_flags(False) # <--- Added config
device = "cpu"
model = model.to(device=device)
example_inputs = (torch.randn(2, 3, 224, 224, device=device),)
batch_dim = torch.export.Dim("batch", min=2, max=32)
so_path = torch._export.aot_compile(
model,
example_inputs,
# Specify the first dimension of the input x as dynamic
dynamic_shapes={"x": {0: batch_dim}},
# Specify the generated shared library path
options={
"aot_inductor.output_path": os.path.join(os.getcwd(), "resnet18_pt2.so"),
"max_autotune": True,
},
)
```
I'm not sure who to add as reviewer, so please feel free to add whoever is relevant!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116152
Approved by: https://github.com/malfet
Fixes#50051.
This PR is based on #50320 and I address the last feedback.
On Windows it is enabled by default. Can be enabled or disabled via USE_CUSTOM_TERMINATE env variable.
This PR adds support for overriding the terminate handler in order to log uncaught exceptions in the threads.
If an exception is thrown and not caught, it will print <Unhandled exception caught in c10/util/AbortHandler.h>
The point of doing this is that in issue #50051, exceptions were thrown but not logged. With this logging system it will be easier to debug it in the future.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101332
Approved by: https://github.com/albanD, https://github.com/malfet
This PR is proposing a new approach to solve the nn/optim only linked by python object identity problem.
The idea is to have a function that can swap the content of two Tensors t1 and t2 while preserving all the old references.
This would allow us to swap the `model.weight` with a new Tensor (can be any subclass of Tensor and any TensorImpl (xla, sparse, nested tensorimpl would work)). The use within nn will be done in a follow up.
This is done by swapping the whole content of the PyObject and then putting back the fields associated with external references (refcount, gc tracking and weakrefs).
Note that we have to properly handle all the cases where there is memory used before the public pointer PyObject* and where the PyObject is bigger due to dict/weakref being inlined (older CPython version) or due to slots.
The main limitation of this approach is that the number of slots need to match for the objects being swapped and thus limit usage of slots in subclasses.
Draft right now to see what @colesbury thinks about doing this?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111747
Approved by: https://github.com/colesbury
This is the cheap and cheerful implementation, which is only enabled on TORCH_SHOW_CPP_STACKTRACES, because it *eagerly* symbolizes immediately at exception throw time, even if the exception will end up getting caught. It would be better to do this lazily and only symbolize when we try to print the exception, but that requires a more involved refactor of c10::Error that I don't feel like doing.
Compare the output before:
```
frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x95 (0x7fa21b99d975 in /data/users/ezyang/c/pytorch/torch/lib/libc10.so)
frame #1: c10::TensorImpl::throw_cannot_call_with_symbolic(char const*) const + 0x8d (0x7fa21b951269 in /data/users/ezyang/c/pytorch/torch/lib/libc10.so)
frame #2: c10::TensorImpl::sizes_custom() const + 0x9f (0x7fa21b9770df in /data/users/ezyang/c/pytorch/torch/lib/libc10.so)
frame #3: at::meta::structured_mm::meta(at::Tensor const&, at::Tensor const&) + 0x31e (0x7fa20a202a8e in /data/users/ezyang/c/pytorch/torch/lib/libtorch_cpu.so)
frame #4: <unknown function> + 0x29f34de (0x7fa20b5f34de in /data/users/ezyang/c/pytorch/torch/lib/libtorch_cpu.so)
frame #5: <unknown function> + 0x2a1fd8e (0x7fa20b61fd8e in /data/users/ezyang/c/pytorch/torch/lib/libtorch_cpu.so)
frame #6: <unknown function> + 0x6b907b (0x7fa2142b907b in /data/users/ezyang/c/pytorch/torch/lib/libtorch_python.so)
frame #7: <unknown function> + 0x6b6175 (0x7fa2142b6175 in /data/users/ezyang/c/pytorch/torch/lib/libtorch_python.so)
```
and after:
```
#4 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0
#5 c10::TensorImpl::throw_cannot_call_with_symbolic(char const*) const from ??:0
#6 c10::TensorImpl::sizes_custom() const [clone .localalias] from TensorImpl.cpp:0
#7 at::meta::structured_mm::meta(at::Tensor const&, at::Tensor const&) from ??:0
#8 at::(anonymous namespace)::wrapper_Meta_mm_out_out(at::Tensor const&, at::Tensor const&, at::Tensor&) from RegisterMeta.cpp:0
#9 c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor& (at::Tensor const&, at::Tensor const&, at::Tensor&), &at::(anonymous namespace)::wrapper_Meta_mm_out_out>, at::Tensor&, c10::guts::typelist::typelist<at::Tensor const&, at::Tensor const&, at::Tensor&> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) from RegisterMeta.cpp:0
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113207
Approved by: https://github.com/Skylion007
In almost all cases this is only included for writing the output formatter, which
only uses `std::ostream` so including `<ostream>` is sufficient.
The istream header is ~1000 lines so the difference is non-trivial.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106914
Approved by: https://github.com/lezcano
In almost all cases this is only included for writing the output formatter, which
only uses `std::ostream` so including `<ostream>` is sufficient.
The istream header is ~1000 lines so the difference is non-trivial.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106914
Approved by: https://github.com/lezcano
This is a reland of https://github.com/pytorch/pytorch/pull/100007 with a build fix for Windows debug builds.
`at::native::ParamsHash` only works on structs with standard layout, but `std::string` isn't one in Visual C++ debug builds, which one can easily verified by running something like:
```cpp
#define _DEBUG
#include <type_traits>
#include <string>
static_assert(std::is_standard_layout_v<std::string>, "Oh noes");
```
If above conditon is not met, instead of printing a static_assert output, VC++ raises a very cryptic compilation errors, see https://github.com/pytorch/pytorch/pull/100007#discussion_r1227116292 for more detail.
Also, using `std::hash` for string should result in a faster hash function.
(cherry picked from commit 74b7a6c75e)
<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at 5914771</samp>
This pull request introduces a new function `_group_tensors_by_device_and_dtype` that can group tensors by their device and dtype, and updates the `foreach` utilities and several optimizers to use this function. The goal is to improve the performance, readability, and compatibility of the code that handles tensors with different properties. The pull request also adds a test case and type annotations for the new function, and some error checks for the `fused` argument in Adam and AdamW.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103912
Approved by: https://github.com/janeyx99
**Summary**
- Update the quantization document that default qconfig with oneDNN backend is recommended to be used on CPUs with Vector Neural Network Instruction support.
- Add the warning message when user uses default qconfig with oneDNN backend on CPU without Vector Neural Network Instruction support.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103653
Approved by: https://github.com/jgong5, https://github.com/malfet
Summary: The new logger allows passing metadata into the api usage logger. The immediate use case is to pass the serialization_id to the save and load events to be enable tracking serialized models in API events. It could be extended to add more metadata in the future.
Test Plan:
```
buck2 test @//mode/dev //caffe2/caffe2/serialize:inline_container_test
```
Reviewed By: davidberard98
Differential Revision: D45683697
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101762
Approved by: https://github.com/davidberard98
Description:
- As suggested by Nikita, created `torch.backends.cpu` submodule and exposed `get_cpu_capability`.
- In torchvision Resize method we want to know current cpu capability in order to pick appropriate codepath depending on cpu capablities
Newly coded vectorized resize of uint8 images on AVX2 supported CPUs is now faster than older way (uint8->float->resize->uint8). However, on non-avx hardware (e.g. Mac M1) certain configs are slower using native uint8.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100164
Approved by: https://github.com/albanD, https://github.com/malfet
This PR introduces **-Wmissing-prototypes** of clang-tidy to prevent further coding errors such as the one fixed by PR #96714.
<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at fd2cf2a</samp>
This pull request makes several internal functions static to improve performance and avoid name clashes. It also fixes some typos, formatting, and missing includes in various files. It adds a new .clang-tidy check to warn about missing prototypes for non-static functions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96805
Approved by: https://github.com/malfet, https://github.com/albanD
Fixes #ISSUE_NUMBER
1、add amp support for custom backend
2、optimize the file `backend_registration.py`, and rename it with `custom_backend_registration.py`. And then we would register other funcs for custom backend.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96188
Approved by: https://github.com/bdhirsh
Fixes #ISSUE_NUMBER
1、add amp support for custom backend
2、optimize the file `backend_registration.py`, and rename it with `custom_backend_registration.py`. And then we would register other funcs for custom backend.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96188
Approved by: https://github.com/bdhirsh
When we checkpoint the state of the private pool allocator, we will need to make sure that its current live allocated blocks will get properly cleaned up when the tensors they correspond to die. Return DataPtrs for these new allocated blocks that the callee can swap onto live Tensors.
The exact api for setting the checkpoint can be manipulated after this as the cudagraph implementation is built out, but this at least shows its sufficiently general.
This should be the last PR touching cuda caching allocator necessary for new cudagraphs integration.
Differential Revision: [D43999888](https://our.internmc.facebook.com/intern/diff/D43999888)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95020
Approved by: https://github.com/zdevito
This PR do two things:
1. It moves some Windows warning suppression from various CMake files into the main CMakeList.txt, following the conventions of gcc and clang.
2. It fixes some Windows warnings in the source code. Most importantly, it fixes lots of dll warnings by adjusting C10_API to TORCH_API or TORCH_PYTHON_API. There are still some dll warnings because some TORCH_API functions are actually built as part of libtorch_python
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94927
Approved by: https://github.com/malfet
- This PR is a prerequisite for the upcoming Memory Leak Detection PR.
- Enable global manual seeding via `torch.manual_seed()` + test case
- Add `torch.mps.synchronize()` to wait for MPS stream to finish + test case
- Enable the following python interfaces for MPS:
`torch.mps.[get_rng_state(), set_rng_state(), synchronize(), manual_seed(), seed()]`
- Added some test cases in test_mps.py
- Added `mps.rst` to document the `torch.mps` module.
- Fixed the failure with `test_public_bindings.py`
Description of new files added:
- `torch/csrc/mps/Module.cpp`: implements `torch._C` module functions for `torch.mps` and `torch.backends.mps`.
- `torch/mps/__init__.py`: implements Python bindings for `torch.mps` module.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94417
Approved by: https://github.com/albanD
- This PR is a prerequisite for the upcoming Memory Leak Detection PR.
- Enable global manual seeding via `torch.manual_seed()` + test case
- Add `torch.mps.synchronize()` to wait for MPS stream to finish + test case
- Enable the following python interfaces for MPS:
`torch.mps.[get_rng_state(), set_rng_state(), synchronize(), manual_seed(), seed()]`
- Added some test cases in test_mps.py
- Added `mps.rst` to document the `torch.mps` module.
- Fixed the failure with `test_public_bindings.py`
Description of new files added:
- `torch/csrc/mps/Module.cpp`: implements `torch._C` module functions for `torch.mps` and `torch.backends.mps`.
- `torch/mps/__init__.py`: implements Python bindings for `torch.mps` module.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94417
Approved by: https://github.com/albanD
For the cudagraphs implementation, we would like to reuse objects that are defined in python across the forward and backward. The backward is run in a different thread, so to handle this we add an api for copying over arbitrary python objects in pytorch's thread local state, in the same way that C++ objects are copied over currently.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89169
Approved by: https://github.com/albanD
This PR is a copy of https://github.com/pytorch/pytorch/pull/90849 that merge was reverted.
The PR adds "check sparse tensor invariants" flag to Context that when enabled will trigger sparse tensor data invariants checks in unsafe methods of constructing sparse COO/CSR/CSC/BSR/BSC tensors. The feature includes the following changes to UI:
`torch.sparse.check_sparse_tensor_invariants` class provides different ways to enable/disable the invariant checking.
`torch.sparse_coo/csr/csc/bsr/bsc/compressed_tensor` functions have a new optional argument `check_invariants` to enable/disable the invariant checks explicitly. When the `check_invariants` argument is specified, the global state of the feature is temporarily overridden.
The PR fixes https://github.com/pytorch/pytorch/issues/90833
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92094
Approved by: https://github.com/cpuhrsch
This PR adds "check sparse tensor invariants" flag to Context that when enabled will trigger sparse tensor data invariants checks in unsafe methods of constructing sparse COO/CSR/CSC/BSR/BSC tensors. The feature includes the following changes to UI:
- `torch.enable_check_sparse_tensor_invariants` and `torch.is_check_sparse_tensor_invariants_enabled` functions to globally enable/disable the invariant checks and to retrieve the state of the feature, respectively
- `torch.sparse_coo/csr/csc/bsr/bsc/compressed_tensor` functions have a new optional argument `check_invariants` to enable/disable the invariant checks explicitly. When the `check_invariants` argument is specified, the global state of the feature is temporarily overridden.
The PR also fixes https://github.com/pytorch/pytorch/issues/90833
# Main issue
*The following content is outdated after merging the PRs in this ghstack but kept for the record.*
The importance of this feature is that when enabling the invariants checks by default, say, via
<details>
```
$ git diff
diff --git a/torch/__init__.py b/torch/__init__.py
index c8543057c7..19a91d0482 100644
--- a/torch/__init__.py
+++ b/torch/__init__.py
@@ -1239,3 +1239,8 @@ if 'TORCH_CUDA_SANITIZER' in os.environ:
# Populate magic methods on SymInt and SymFloat
import torch.fx.experimental.symbolic_shapes
+
+# temporarily enable sparse tensor arguments validation in unsafe
+# constructors:
+
+torch._C._set_check_sparse_tensor_invariants(True)
```
</details>
a massive number of test failures/errors occur in test_sparse_csr.py tests:
```
$ pytest -sv test/test_sparse_csr.py
<snip>
==== 4293 failed, 1557 passed, 237 skipped, 2744 errors in 69.71s (0:01:09) ====
```
that means that we are silently constructing sparse compressed tensors that do not satisfy the sparse tensor invariants. In particular, the following errors are raised:
```
AssertionError: "resize_as_sparse_compressed_tensor_: self and src must have the same layout" does not match "expected values to be a strided and contiguous tensor"
RuntimeError: CUDA error: device-side assert triggered
RuntimeError: `col_indices[..., crow_indices[..., i - 1]:crow_indices[..., i]] for all i = 1, ..., nrows are sorted and distinct along the last dimension values` is not satisfied.
RuntimeError: expected col_indices to be a strided and contiguous tensor
RuntimeError: expected row_indices to be a strided and contiguous tensor
RuntimeError: expected values to be a strided and contiguous tensor
RuntimeError: for_each: failed to synchronize: cudaErrorAssert: device-side assert triggered
RuntimeError: tensor dimensionality must be sum of batch, base, and dense dimensionalities (=0 + 2 + 0) but got 3
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90849
Approved by: https://github.com/amjames, https://github.com/cpuhrsch
Essentially the same change as #67946, except that the default is to disallow reduced precision reductions in `BFloat16` GEMMs (for now). If performance is severely regressed, we can change the default, but this option appears to be necessary to pass some `addmm` `BFloat16` tests on H100.
CC @ptrblck @ngimel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89172
Approved by: https://github.com/ngimel
This allows to know at any point during the backward pass what is running and where the Node currently running was created at:
```python
import torch
from torch.utils._python_dispatch import TorchDispatchMode
from torch.autograd import detect_anomaly
class MyMode(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args, kwargs=None):
node = torch._C._current_autograd_node()
print(f"Running {func} from within {node}")
if node is not None:
print("The Node was created at:")
print("\n ".join(node.metadata["traceback_"]))
return func(*args, **kwargs or {})
with MyMode(), detect_anomaly():
print("FW")
a = torch.rand(10, requires_grad=True)
b = a.mul(2)
b = b.div(3)
b = b.sum()
print("BW")
b.backward()
```
Gives
```
$ python foo.py
foo.py:15: UserWarning: Anomaly Detection has been enabled. This mode will increase the runtime and should only be enabled for debugging.
with MyMode(), detect_anomaly():
FW
Running aten.rand.default from within None
Running aten.mul.Tensor from within None
Running aten.div.Tensor from within None
Running aten.sum.default from within None
BW
Running aten.ones_like.default from within None
Running aten.expand.default from within <SumBackward0 object at 0x7fa40c0c6dc0>
The Node was created at:
File "foo.py", line 20, in <module>
b = b.sum()
Running aten.isnan.default from within <SumBackward0 object at 0x7fa40c0c6500>
The Node was created at:
File "foo.py", line 20, in <module>
b = b.sum()
Running aten.any.default from within <SumBackward0 object at 0x7fa32b23a780>
The Node was created at:
File "foo.py", line 20, in <module>
b = b.sum()
Running aten._local_scalar_dense.default from within <SumBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 20, in <module>
b = b.sum()
Running aten.div.Tensor from within <DivBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 19, in <module>
b = b.div(3)
Running aten.isnan.default from within <DivBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 19, in <module>
b = b.div(3)
Running aten.any.default from within <DivBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 19, in <module>
b = b.div(3)
Running aten._local_scalar_dense.default from within <DivBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 19, in <module>
b = b.div(3)
Running aten.mul.Tensor from within <MulBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 18, in <module>
b = a.mul(2)
Running aten.isnan.default from within <MulBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 18, in <module>
b = a.mul(2)
Running aten.any.default from within <MulBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 18, in <module>
b = a.mul(2)
Running aten._local_scalar_dense.default from within <MulBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 18, in <module>
b = a.mul(2)
Running aten.detach.default from within <AccumulateGrad object at 0x7fa40c0c9730>
The Node was created at:
File "foo.py", line 18, in <module>
b = a.mul(2)
Running aten.detach.default from within <AccumulateGrad object at 0x7fa40c0c94b0>
The Node was created at:
File "foo.py", line 18, in <module>
b = a.mul(2)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90867
Approved by: https://github.com/soulitzer
We have an older torch.vmap implementation. It is no longer supported.
It still needs to exist somewhere for the sake of BC with
torch.autograd.functional.
This PR makes it clear what files are meant for implementing the old
vmap implementation. I've seen a couple of PRs recently adding support
for the old vmap implementation, so this will lessen the confusion.
Test Plan:
- CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90324
Approved by: https://github.com/samdow
We will need this to implement a convolution meta function that
is SymInt aware. I use templates so that regular convolution code
is not affected by the change. No tests for symbolic ints directly; that will
come in a subsequent PR which also needs to refactor fake tensors.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89069
Approved by: https://github.com/SherlockNoMad