Commit Graph

611 Commits

Author SHA1 Message Date
Deng Weishi
b542825066 Enable deterministic support for oneDNN (#127277)
This PR is a part of RFC https://github.com/pytorch/pytorch/issues/114848.
For the request for Torchbenchmark models, this PR enables the deterministic attribute for the oneDNN operators for XPU backends, like convolution, deconvolution and matmult.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127277
Approved by: https://github.com/jgong5, https://github.com/EikanWang, https://github.com/desertfire, https://github.com/gujinghui
2024-06-21 05:21:24 +00:00
PyTorch MergeBot
846bb30e13 Revert "[1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)"
This reverts commit bd72e28314.

Reverted https://github.com/pytorch/pytorch/pull/128301 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it fails XLA build bd72e28314. Please rebase your PR before relanding because I think the failure is hidden by an unrelated broken trunk XLA failure from your current base commit ([comment](https://github.com/pytorch/pytorch/pull/128301#issuecomment-2169035822))
2024-06-15 01:58:20 +00:00
cyy
bd72e28314 [1/N] Change #include <c10/util/Optional.h> to #include <optional> (#128301)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128301
Approved by: https://github.com/ezyang
2024-06-14 23:21:01 +00:00
PyTorch MergeBot
817ce6835b Revert "[cuDNN][SDPA] Remove TORCH_CUDNN_SDPA_ENABLED=1, enable cuDNN SDPA by default on H100 and 2nd on other archs >= sm80 (#125343)"
This reverts commit 4c971932e8.

Reverted https://github.com/pytorch/pytorch/pull/125343 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/125343#issuecomment-2163690162))
2024-06-12 18:47:52 +00:00
Oguz Ulgen
5b5d269d34 Speed up fx graph iteration by implementing it in C++ (#128288)
Before this change
```
python benchmarks/dynamo/microbenchmarks/fx_microbenchmarks.py
iterating over 100000000 FX nodes took 19.5s (5132266 nodes/s)
```

After this change
```
python benchmarks/dynamo/microbenchmarks/fx_microbenchmarks.py
iterating over 100000000 FX nodes took 3.4s (29114001 nodes/s)
```

5.7x improvement

Differential Revision: [D58343997](https://our.internmc.facebook.com/intern/diff/D58343997)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128288
Approved by: https://github.com/jansel, https://github.com/albanD
2024-06-11 05:48:31 +00:00
eqy
4c971932e8 [cuDNN][SDPA] Remove TORCH_CUDNN_SDPA_ENABLED=1, enable cuDNN SDPA by default on H100 and 2nd on other archs >= sm80 (#125343)
Looks like one of the first failures seen is `test_causal_variants_compile_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` when `test_causal_variants_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` passes.

What seems interesting here is that the `torch.compile` version fails while the eager version passes. Not sure what the difference would be here...

Nevertheless, is there a recommended mechanism to skip cuDNN SDPA as a backend for this test? CC @drisspg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125343
Approved by: https://github.com/Skylion007
2024-06-09 06:53:34 +00:00
Mikayla Gawarecki
a135776307 Remove tensor subclass detection logic from weights_only unpickler (#127808)
Remove logic to auto-detect and allow subclasses that did not override certain methods from the weights_only unpickler from https://github.com/pytorch/pytorch/pull/124331 for 2.4 release

Subclasses should be loadable using `torch.serialization.add_safe_globals`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127808
Approved by: https://github.com/malfet
2024-06-05 02:14:30 +00:00
Shan19900305
3bcc3cddb5 Using scalarType instead string in function _group_tensors_by_device_and_dtype. (#127869)
Now torch.dtype can pass through pybind11, so modify function _group_tensors_by_device_and_dtype to using scalar type. And without convert torch.dtype and string in python and c++ side.
@ezyang @bdhirsh
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127869
Approved by: https://github.com/ezyang
2024-06-04 18:19:33 +00:00
Mikayla Gawarecki
cd06ae0cb8 Relax use_count constraints for swap_tensors when AccumulateGrad holds a reference (#127313)
### Before this PR:
`torch.utils.swap_tensors(a, b)` required the `use_count` of `a` and `b` to be 1

```python
a = torch.randn(2, 3, requires_grad=True)
b = torch.randn(2, 4)
out = a * 2
out.sum().backward()
# Calling swap_tensors here would fail due to the reference held by AccumulateGrad node, which is not cleaned up after backward
# torch.utils.swap_tensors(a, b)
del out
# Calling swap_tensors here would pass
torch.utils.swap_tensors(a, b)
```
### After this PR:
`torch.utils.swap_tensors(a, b)` requires the `use_count` of `a` and `b` to be 1 or 2 IF the second reference is held by `AccumulateGrad`

A pre-hook will be registered on the `AccumulateGrad` node so that it will fail if it is called (i.e. if user attempts to backward through the graph).

```python
a = torch.randn(2, 3, requires_grad=True)
b = torch.randn(2, 4)
out = a * 2
out.sum().backward()
# Calling swap_tensors here is ok
torch.utils.swap_tensors(a, b)
# If we ever backward to the AccumulateGrad node it will error that it was poisoned by swap_tensors
```

### Application to `nn.Module`

This issue is especially pertinent in context of `nn.Module` where parameters will have `AccumulateGrad` nodes initialized after forward. Specifically, this is intended to address https://github.com/pytorch/pytorch/pull/126814#issuecomment-2127777866. Previously, this would fail at the `m.cpu()` but we want users to be able to do something like the following, and instead raise an error if the user ever attempts to backward through the poisoned `AccumulateGrad` node

```python
import torch
import torch.nn as nn
m = nn.Linear(3, 5)
inp = torch.randn(2, 3)
out = m(inp)
out.sum().backward()
m.cpu()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127313
Approved by: https://github.com/soulitzer
2024-05-30 07:06:55 +00:00
Mikayla Gawarecki
66dc8fb7ff Allow tensor subclasses and add torch.serialization.add_safe_globals that allows users to allowlist classes for weights_only load (#124331)
#### Conditions for allowlisting tensor subclasses
We allow tensor subclasses types that
(1) Do not override `__setstate__`, `__getattr__`, `__setattr__`, `__get__`, `__set__` or `__getattribute__` of `torch.Tensor` (`torch.Tensor` does not have a definition of `__getattr__`, `__get__` or `__set__` so we check that these are `None`)
(2) Use the generic `tp_alloc`
(3) Are in a module that *has been imported by the user*
to be pushed onto the stack as strings by `GLOBAL` instructions, while storing the type in a dict

The strings will be converted to the classes as appropriate when executing `REBUILD` with `_rebuild_from_type_v2`

*Note that we use `inspect.getattr_static(sys.modules[module], name)` to get the class/function as this method claims to have no code execution.

The rationale for the 3 conditions above is as follows:

The rebuild func provided by `Tensor.__reduce_ex__` is `torch._tensor._rebuild_from_type_v2`, which is defined as such (note the call to `getattr`, `Tensor.__setstate__` and the call to `as_subclass` as well as the call to `_set_obj_state` which calls `setattr`)

4e66aaa010/torch/_tensor.py (L57-L71)

`as_subclass` is implemented with a call to `THPVariable_NewWithVar`

that will eventually call `tp_alloc` here
4e66aaa010/torch/csrc/autograd/python_variable.cpp (L2053)

The `func` arg to `_rebuild_from_type_v2` for wrapper subclasses is `Tensor.rebuild_wrapper_subclass`, which will similarly call into `THPVariable_NewWithVar` and hit the above `tp_alloc`

**Note that we do not call `tp_init` or `tp_new` (i.e. `cls.__init__` or `cls.__new__`) when unpickling**

### How do we check something is a tensor subclass/constraints around imports

In order to check whether `bla` is a tensor subclass in the bytecode `GLOBAL module.name`, we need to do an `issubclass` check, which entails converting the global string to the appropriate type. We *do not* arbitrarily import modules but will perform this check as long as the given subclass (given by `module.name`) has already been imported by the user (i.e. `module in sys.modules` and `issubclass(getattr(sys[modules], name), torch.Tensor)`

This PR also allowlisted  `torch._utils._rebuild_wrapper_subclass` and `torch.device` (used by `_rebuild_wrapper_subclass`)

### API for allow listing
This PR also added `torch.serialization.{add/get/clear}_safe_globals` that enables user to allowlist globals they have deemed safe and manipulate this list (for example they could allowlist a tensor subclass with a custom `__setstate__` if they have checked that this is safe).

Next steps:
- Add testing and allowlist required classes for all in-core tensor subclasses (e.g. `DTensor`, `FakeTensor` etc.)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124331
Approved by: https://github.com/albanD
2024-05-17 17:56:57 +00:00
zdevito
352a893b0c Fast standalone symbolize for unwinding (#123966)
We've had issues using addr2line. On certain versions of
CentOS it is on a version that has a performance regression making it very slow,
and even normallly it is not that fast, taking several seconds even when parallelized
for a typical memory trace dump.

Folly Symbolize or LLVMSymbolize are fast but it requires PyTorch take a dependency on those libraries to do this, and given the number of environments we run stuff in, we end up hitting cases where we fallback to slow addr2line behavior.

This adds a standalone symbolizer to PyTorch similar to the unwinder which has
no external dependencies and is ~20x faster than addr2line for unwinding PyTorch frames.

I've tested this on some memory profiling runs using all combinations of {gcc, clang} x {dwarf4, dwarf5} and it seems to do a good job at getting line numbers and function names right. It is also careful to route all reads of library data through the `CheckedLexer` object, which ensure it is not reading out of bounds of the section. Errors are routed through UnwindError so that those exceptions get caught and we produce a ?? frame rather than crash. I also added a fuzz test which gives all our symbolizer options random addresses in the process to make sure they do not crash.

Differential Revision: [D56828968](https://our.internmc.facebook.com/intern/diff/D56828968)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123966
Approved by: https://github.com/ezyang, https://github.com/aaronenyeshi
2024-05-14 19:39:17 +00:00
Richard Barnes
ed327876f5 [codemod] c10:optional -> std::optional (#126135)
Generated by running the following from PyTorch root:
```
find . -regex ".*\.\(cpp\|h\|cu\|hpp\|cc\|cxx\)$" | grep -v "build/" | xargs -n 50 -P 4 perl -pi -e 's/c10::optional/std::optional/'
```

`c10::optional` is just an alias for `std::optional`. This removes usages of that alias in preparation for eliminating it entirely.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126135
Approved by: https://github.com/Skylion007, https://github.com/malfet, https://github.com/albanD, https://github.com/aaronenyeshi
2024-05-14 19:35:51 +00:00
Nikita Shulga
744f341aa4 Fix ref leak in dtype.to_complex()/to_real() (#125154)
By using `Py_NewRef`

Also, wrap `THPDtype_to_real`/`THPDtype_to_complex` calls with `HANDLE_TH_ERRORS`

Add regression test for the above issues, by calling to_complex for integral dtypes, that raises an exception and by preserving reference count to the same to_complex/to_real call to detect if leak is happeneing.

Replace
```cpp
auto dtype = (PyObject*)torch::getTHPDtype(current_dtype);
Py_INCREF(dtype);
return dtype;
```
with a more compact/streamlined equivalent
```cpp
return Py_NewRef(torch::getTHPDtype(current_dtype));
```

Fixes https://github.com/pytorch/pytorch/issues/124868

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125154
Approved by: https://github.com/Skylion007, https://github.com/albanD
2024-04-29 23:59:27 +00:00
egienvalue
73744a2c00 torch.mtia module for MTIA device backend (#123612)
MTIA device has its own Module in PyTorch now.
torch.mtia has following APIs similar to other backends. The lazy_init is also supported.
```
__all__ = [
    "init",
    "is_available",
    "synchronize",
    "device_count",
    "current_device",
    "current_stream",
    "default_stream",
    "set_stream",
    "stream",
    "device",
]

```
------------
For device management. We expand AccleratorHooksInterface to support generic device management and it can be used in both C++ and PyThon.
```
def _accelerator_hooks_device_count() -> _int: ...
def _accelerator_hooks_set_current_device(device_index: _int) -> None: ...
def _accelerator_hooks_get_current_device() -> _int : ...
def _accelerator_hooks_exchange_device(device_index: _int) -> _int : ...
def _accelerator_hooks_maybe_exchange_device(device_index: _int) -> _int : ...
```

---------
Adding get_device_module API to retrieve device modules for different device types.
```
def get_device_module(device: Optional[Union[torch.device, str]] = None)
```
---------

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123612
Approved by: https://github.com/albanD
ghstack dependencies: #123611
2024-04-26 16:17:54 +00:00
PyTorch MergeBot
e04c7b19f4 Revert "torch.mtia module for MTIA device backend (#123612)"
This reverts commit 381653de63.

Reverted https://github.com/pytorch/pytorch/pull/123612 on behalf of https://github.com/jeffdaily due to this PR broke ROCm with message RuntimeError: Cannot have MTIA with other devices ([comment](https://github.com/pytorch/pytorch/pull/123612#issuecomment-2077649762))
2024-04-25 16:06:46 +00:00
PyTorch MergeBot
c0fd7894cc Revert "Fast standalone symbolize for unwinding (#123966)"
This reverts commit 772ae6da1e.

Reverted https://github.com/pytorch/pytorch/pull/123966 on behalf of https://github.com/jeanschmidt due to Breaking internal builds, check D56522678 ([comment](https://github.com/pytorch/pytorch/pull/123966#issuecomment-2076821043))
2024-04-25 10:04:48 +00:00
egienvalue
381653de63 torch.mtia module for MTIA device backend (#123612)
MTIA device has its own Module in PyTorch now.
torch.mtia has following APIs similar to other backends. The lazy_init is also supported.
```
__all__ = [
    "init",
    "is_available",
    "synchronize",
    "device_count",
    "current_device",
    "current_stream",
    "default_stream",
    "set_stream",
    "stream",
    "device",
]

```
------------
For device management. We expand AccleratorHooksInterface to support generic device management and it can be used in both C++ and PyThon.
```
def _accelerator_hooks_device_count() -> _int: ...
def _accelerator_hooks_set_current_device(device_index: _int) -> None: ...
def _accelerator_hooks_get_current_device() -> _int : ...
def _accelerator_hooks_exchange_device(device_index: _int) -> _int : ...
def _accelerator_hooks_maybe_exchange_device(device_index: _int) -> _int : ...
```

---------
Adding get_device_module API to retrieve device modules for different device types.
```
def get_device_module(device: Optional[Union[torch.device, str]] = None)
```
---------

Differential Revision: [D56443356](https://our.internmc.facebook.com/intern/diff/D56443356)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123612
Approved by: https://github.com/albanD
ghstack dependencies: #123611
2024-04-24 20:51:20 +00:00
egienvalue
408aa0182c Build device generic torch.Stream and torch.Event based on c10::Stream/Event (#123611)
This diff intends to build device generic torch.Stream and torch.Event for newly added accelerators in PyTorch.
------------
**torch.Stream APIs**
```
# Defined in torch/csrc/Stream.cpp
class Stream(_StreamBase):
    stream_id: _int  # Stream id
    device_index: _int
    device_type: _int

    device: _device  # The device of the stream

    @overload
    def __new__(self, device: Optional[DeviceLikeType] = None, priority: _int = 0) -> Stream: ...
    @overload
    def __new__(self, stream_id: _int, device_index: _int, device_type: _int, priority: _int = 0) -> Stream: ...
    def wait_event(self, event: Event) -> None: ...
    def wait_stream(self, other: Stream) -> None: ...
    def record_event(self, event: Optional[Event] = None) -> Event: ...
    def query(self) -> None: ...
    def synchronize(self) -> None: ...
    def __hash__(self) -> _int: ...
    def __repr__(self) -> str: ...
    def __eq__(self, other: object) -> _bool: ...
```
------------------
**torch.Event APIs**:
- IPC related APIs are not implemented, since many device backends don't support it, but we leave interfaces there for future adaption of torch.cuda.Stream.
- currently only the enable_timing is supported, since it is the most common one used in other device backends. We have to refactor the event flag system in PyTorch to support more fancy flag.
- elapsedTime API is added to c10::Event

```
# Defined in torch/csrc/Event.cpp
class Event(_EventBase):

    device: _device  # The device of the Event
    event_id: _int # The raw event created by device backend

    def __new__(self,
        device: Optional[DeviceLikeType] = None,
        enable_timing: _bool = False,
        blocking: _bool = False,
        interprocess: _bool = False) -> Event: ...
    @classmethod
    def from_ipc_handle(self, device: DeviceLikeType, ipc_handle: bytes) -> Event: ...
    def record(self, stream: Optional[Stream] = None) -> None: ...
    def wait(self, stream: Optional[Stream] = None) -> None: ...
    def query(self) -> _bool: ...
    def elapsed_time(self, other: Event) -> _float: ...
    def synchronize(self) -> None: ...
    def ipc_handle(self) -> bytes: ...
    def __repr__(self) -> str: ...
```

-----------

c10::Event provides new APIs
- calculate **elapsedTime**.
- Get raw event id
- Synchronize event.

```
  double elapsedTime(const Event& event) const {
    return impl_.elapsedTime(event.impl_);
  }

  void* eventId() const {
    return impl_.eventId();
  }

  void synchronize() const {
    return impl_.synchronize();
  }
```
----------
TODO: need to find a good way to test them in PyTorch with API mocks.

Differential Revision: [D56443357](https://our.internmc.facebook.com/intern/diff/D56443357)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123611
Approved by: https://github.com/albanD, https://github.com/jeffdaily
2024-04-24 20:51:17 +00:00
zdevito
772ae6da1e Fast standalone symbolize for unwinding (#123966)
We've had issues using addr2line. On certain versions of
CentOS it is on a version that has a performance regression making it very slow,
and even normallly it is not that fast, taking several seconds even when parallelized
for a typical memory trace dump.

Folly Symbolize or LLVMSymbolize are fast but it requires PyTorch take a dependency on those libraries to do this, and given the number of environments we run stuff in, we end up hitting cases where we fallback to slow addr2line behavior.

This adds a standalone symbolizer to PyTorch similar to the unwinder which has
no external dependencies and is ~20x faster than addr2line for unwinding PyTorch frames.

I've tested this on some memory profiling runs using all combinations of {gcc, clang} x {dwarf4, dwarf5} and it seems to do a good job at getting line numbers and function names right. It is also careful to route all reads of library data through the `CheckedLexer` object, which ensure it is not reading out of bounds of the section. Errors are routed through UnwindError so that those exceptions get caught and we produce a ?? frame rather than crash. I also added a fuzz test which gives all our symbolizer options random addresses in the process to make sure they do not crash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123966
Approved by: https://github.com/ezyang
2024-04-23 15:27:18 +00:00
Jeff Daily
6ede882c0b preferred blas library; cublaslt gemm implementation (#122106)
Following the example of PyTorch supporting a preferred Linalg library (cusolver or magma), this PR introduces a preferred blas library selector of either cublas or cublaslt for CUDA and hipblas or hipblaslt for ROCm via normal hipification of sources.

The default blas implementation remains cublas or hipblas.  cublaslt or hipblaslt can be enabled using environment variable TORCH_BLAS_PREFER_CUBLASLT=1 (or TORCH_BLAS_PREFER_HIPBLASLT=1 as an alias) or by calling `torch.backends.cuda.preferred_blas_library(backend="cublaslt")` or as an alias `backend="hipblaslt"`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122106
Approved by: https://github.com/lezcano
2024-04-22 15:38:22 +00:00
PyTorch MergeBot
0feab7d6c3 Revert "Build device generic torch.Stream and torch.Event based on c10::Stream/Event (#123611)"
This reverts commit cb17721899.

Reverted https://github.com/pytorch/pytorch/pull/123611 on behalf of https://github.com/jeffdaily due to This broke ROCm. see test_overrides.py ([comment](https://github.com/pytorch/pytorch/pull/123611#issuecomment-2067363780))
2024-04-19 22:44:26 +00:00
PyTorch MergeBot
929242a15c Revert "torch.mtia module for MTIA device backend (#123612)"
This reverts commit d7e1bf9ff9.

Reverted https://github.com/pytorch/pytorch/pull/123612 on behalf of https://github.com/jeffdaily due to This broke ROCm. see test_overrides.py ([comment](https://github.com/pytorch/pytorch/pull/123611#issuecomment-2067363780))
2024-04-19 22:44:26 +00:00
egienvalue
d7e1bf9ff9 torch.mtia module for MTIA device backend (#123612)
MTIA device has its own Module in PyTorch now.
torch.mtia has following APIs similar to other backends. The lazy_init is also supported.
```
__all__ = [
    "init",
    "is_available",
    "synchronize",
    "device_count",
    "current_device",
    "current_stream",
    "default_stream",
    "set_stream",
    "stream",
    "device",
]

```
------------
For device management. We expand AccleratorHooksInterface to support generic device management and it can be used in both C++ and PyThon.
```
def _accelerator_hooks_device_count() -> _int: ...
def _accelerator_hooks_set_current_device(device_index: _int) -> None: ...
def _accelerator_hooks_get_current_device() -> _int : ...
def _accelerator_hooks_exchange_device(device_index: _int) -> _int : ...
def _accelerator_hooks_maybe_exchange_device(device_index: _int) -> _int : ...
```

---------
Adding get_device_module API to retrieve device modules for different device types.
```
def get_device_module(device: Optional[Union[torch.device, str]] = None)
```
---------
@exported-using-ghexport

Differential Revision: [D52923602](https://our.internmc.facebook.com/intern/diff/D52923602/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123612
Approved by: https://github.com/albanD
ghstack dependencies: #123611
2024-04-18 17:38:06 +00:00
egienvalue
cb17721899 Build device generic torch.Stream and torch.Event based on c10::Stream/Event (#123611)
This diff intends to build device generic torch.Stream and torch.Event for newly added accelerators in PyTorch.
------------
**torch.Stream APIs**
```
# Defined in torch/csrc/Stream.cpp
class Stream(_StreamBase):
    stream_id: _int  # Stream id
    device_index: _int
    device_type: _int

    device: _device  # The device of the stream

    @overload
    def __new__(self, device: Optional[DeviceLikeType] = None, priority: _int = 0) -> Stream: ...
    @overload
    def __new__(self, stream_id: _int, device_index: _int, device_type: _int, priority: _int = 0) -> Stream: ...
    def query(self) -> _bool: ...
    def synchronize(self) -> None: ...
    def wait_event(self, event: Event) -> None: ...
    def wait_stream(self, other: Stream) -> None: ...
    def record_event(self, event: Optional[Event] = None) -> Event: ...
    def query(self) -> None: ...
    def synchronize(self) -> None: ...
    def __hash__(self) -> _int: ...
    def __repr__(self) -> str: ...
    def __eq__(self, other: object) -> _bool: ...
```
------------------
**torch.Event APIs**:
- IPC related APIs are not implemented, since many device backends don't support it, but we leave interfaces there for future adaption of torch.cuda.Stream.
- currently only the enable_timing is supported, since it is the most common one used in other device backends. We have to refactor the event flag system in PyTorch to support more fancy flag.
- elapsedTime API is added to c10::Event

```
# Defined in torch/csrc/Event.cpp
class Event(_EventBase):

    device: _device  # The device of the Event
    event_id: _int # The raw event created by device backend

    def __new__(self,
        device: Optional[DeviceLikeType] = None,
        enable_timing: _bool = False,
        blocking: _bool = False,
        interprocess: _bool = False) -> Event: ...
    @classmethod
    def from_ipc_handle(self, device: DeviceLikeType, ipc_handle: bytes) -> Event: ...
    def record(self, stream: Optional[Stream] = None) -> None: ...
    def wait(self, stream: Optional[Stream] = None) -> None: ...
    def query(self) -> _bool: ...
    def elapsed_time(self, other: Event) -> _float: ...
    def synchronize(self) -> None: ...
    def ipc_handle(self) -> bytes: ...
    def __repr__(self) -> str: ...
```

-----------

c10::Event provides new APIs
- calculate **elapsedTime**.
- Get raw event id
- Synchronize event.

```
  double elapsedTime(const Event& event) const {
    return impl_.elapsedTime(event.impl_);
  }

  void* eventId() const {
    return impl_.eventId();
  }

  void synchronize() const {
    return impl_.synchronize();
  }
```
----------
TODO: need to find a good way to test them in PyTorch with API mocks.

Differential Revision: [D55351839](https://our.internmc.facebook.com/intern/diff/D55351839/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123611
Approved by: https://github.com/albanD
2024-04-18 17:35:09 +00:00
andrewor14
773ae817f7 Batch Norm Consolidation (#116092)
**Summary:**

This commit simplifies the existing decomposition hierarchy
of batch norm ops by adding a single, backend agnostic op:
`batch_norm_with_update`. The existing hierarchy looks like:

```
aten.batch_norm ->
aten._batch_norm_impl_index ->
[
  aten.native_batch_norm ->
  aten._native_batch_norm_legit (export only) ->
  _batch_norm_legit_cpu/cuda (kernels, export only) ->
  _batch_norm_cpu/cuda (kernels)
] OR
[ aten.cudnn_batch_norm ] OR
[ aten.miopen_batch_norm ]
```

Aside from complexity, an important problem with the
above decomposition hierarchy is cuda numerics in
export flows. We observed significantly worse convergence
when training a mobilenetv2-like model when using the
`_batch_norm_cuda` kernel instead of the `cudnn_batch_norm`
kernel. This means users who export their models on CPU
first then move the models to cuda later may silently
see worse accuracies even when cudnn is installed,
because they are using the worse kernel. This issue is
summarized in https://github.com/pytorch/pytorch/issues/111384.

Instead, the new hierarchy proposed by consolidating
existing batch norm ops will look like:

```
aten.batch_norm ->
aten.batch_norm_with_update ->
[ _batch_norm_cpu (kernel) ] OR
[ _batch_norm_cuda (kernel) ] OR
[ cudnn_batch_norm (kernel) ] OR
[ miopen_batch_norm (kernel) ]
```

The new op `batch_norm_with_update` hides backend
implementation details and automatically picks the right
kernel based on what is installed. This commit also adds
the following variants to this op:

```
batch_norm_with_update_functional
batch_norm_with_update.out
batch_norm_no_update
batch_norm_no_update.out
batch_norm_backward
```

Note that this commit only adds this op and its variants,
but does not actually change the decomps to produce these
ops in the graph. This will be done after the 2 week FC
window, and the ops used in the old stack is planned to
be removed after the 6 month BC window.

Test Plan: `OpInfo` tests for `batch_norm_with_update`.

Reviewers: albanD, bdhirsh

Subscribers: albanD, bdhirsh, supriyar

Tasks: https://github.com/pytorch/pytorch/issues/111384

Differential Revision: [D54805279](https://our.internmc.facebook.com/intern/diff/D54805279)
Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116092
Approved by: https://github.com/bdhirsh, https://github.com/albanD
2024-03-18 21:01:30 +00:00
PyTorch MergeBot
fd0dbcd891 Revert "Batch Norm Consolidation (#116092)"
This reverts commit 7b4f70eda5.

Reverted https://github.com/pytorch/pytorch/pull/116092 on behalf of https://github.com/osalpekar due to Causes build failure in //caffe2:aten-hip (AMD build) target. See [D54707318](https://www.internalfb.com/diff/D54707318) for more details, may require internal build system changes to resolve. ([comment](https://github.com/pytorch/pytorch/pull/116092#issuecomment-1989542965))
2024-03-11 22:22:41 +00:00
Nikita Shulga
e29004615f Add NEON accelerated torch.mv kernel (#119992)
This reduces `torch.mv` time for 256x768 matrix by 256 element vector from 209 usec to 16 usec for nontransposed case and from 104 to 18 usec if transposed

Also, add fp16-accumulation flavor to the same ops (controlled by private `torch._C._set_cpu_allow_fp16_reduced_precision_reduction` which yields a slightly better numbers), summarized in the following table

| op | original | F32+NEON | F16+NEON|
| ---| -------- | ---------- | ----- |
| torch.mv(m, v) | 209.53 usec | 16.25 usec | 14.68 usec |
| torch.mv(m.t(), v) |  104.80 usec | 28.68 usec | 24.82 usec |

Test plan: CI on MacOS for both CPU and MPS test fp32<->fp16 matmul consistency ( For example "test_output_grad_match_nn_functional_linear_cpu_float16" passes if fp32-reductions are performed, but fails if fp16 accumulation is used)

To investigate:
 - why replacing `sum0Vec = vaddq_f32(sum0Vec, vmulq_f32(a0Vec, xVec));` with `sum0Vec = vfmaq_f32(sum0Vec, a0Vec, xVec);` slows down gemv from 16.2 to 18.2 usec

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119992
Approved by: https://github.com/mikekgfb
2024-03-11 16:00:01 +00:00
andrewor14
7b4f70eda5 Batch Norm Consolidation (#116092)
**Summary:**

This commit simplifies the existing decomposition hierarchy
of batch norm ops by adding a single, backend agnostic op:
`batch_norm_with_update`. The existing hierarchy looks like:

```
aten.batch_norm ->
aten._batch_norm_impl_index ->
[
  aten.native_batch_norm ->
  aten._native_batch_norm_legit (export only) ->
  _batch_norm_legit_cpu/cuda (kernels, export only) ->
  _batch_norm_cpu/cuda (kernels)
] OR
[ aten.cudnn_batch_norm ] OR
[ aten.miopen_batch_norm ]
```

Aside from complexity, an important problem with the
above decomposition hierarchy is cuda numerics in
export flows. We observed significantly worse convergence
when training a mobilenetv2-like model when using the
`_batch_norm_cuda` kernel instead of the `cudnn_batch_norm`
kernel. This means users who export their models on CPU
first then move the models to cuda later may silently
see worse accuracies even when cudnn is installed,
because they are using the worse kernel. This issue is
summarized in https://github.com/pytorch/pytorch/issues/111384.

Instead, the new hierarchy proposed by consolidating
existing batch norm ops will look like:

```
aten.batch_norm ->
aten.batch_norm_with_update ->
[ _batch_norm_cpu (kernel) ] OR
[ _batch_norm_cuda (kernel) ] OR
[ cudnn_batch_norm (kernel) ] OR
[ miopen_batch_norm (kernel) ]
```

The new op `batch_norm_with_update` hides backend
implementation details and automatically picks the right
kernel based on what is installed. This commit also adds
the following variants to this op:

```
batch_norm_with_update_functional
batch_norm_with_update.out
batch_norm_no_update
batch_norm_no_update.out
batch_norm_backward
```

Note that this commit only adds this op and its variants,
but does not actually change the decomps to produce these
ops in the graph. This will be done after the 2 week FC
window, and the ops used in the old stack is planned to
be removed after the 6 month BC window.

Test Plan: `OpInfo` tests for `batch_norm_with_update`.

Reviewers: albanD, bdhirsh

Subscribers: albanD, bdhirsh, supriyar

Tasks: https://github.com/pytorch/pytorch/issues/111384

Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116092
Approved by: https://github.com/bdhirsh, https://github.com/albanD
2024-03-08 15:07:15 +00:00
PyTorch MergeBot
b529c19bdf Revert "Batch Norm Consolidation (#116092)"
This reverts commit 5680f565d5.

Reverted https://github.com/pytorch/pytorch/pull/116092 on behalf of https://github.com/jeffdaily due to broke ROCm, PR signal was clean but trunk was not, the merge should have been blocked but wasn't ([comment](https://github.com/pytorch/pytorch/pull/116092#issuecomment-1981373237))
2024-03-06 17:10:01 +00:00
Tugsbayasgalan Manlaibaatar
5680f565d5 Batch Norm Consolidation (#116092)
**Summary:**

This commit simplifies the existing decomposition hierarchy
of batch norm ops by adding a single, backend agnostic op:
`batch_norm_with_update`. The existing hierarchy looks like:

```
aten.batch_norm ->
aten._batch_norm_impl_index ->
[
  aten.native_batch_norm ->
  aten._native_batch_norm_legit (export only) ->
  _batch_norm_legit_cpu/cuda (kernels, export only) ->
  _batch_norm_cpu/cuda (kernels)
] OR
[ aten.cudnn_batch_norm ] OR
[ aten.miopen_batch_norm ]
```

Aside from complexity, an important problem with the
above decomposition hierarchy is cuda numerics in
export flows. We observed significantly worse convergence
when training a mobilenetv2-like model when using the
`_batch_norm_cuda` kernel instead of the `cudnn_batch_norm`
kernel. This means users who export their models on CPU
first then move the models to cuda later may silently
see worse accuracies even when cudnn is installed,
because they are using the worse kernel. This issue is
summarized in https://github.com/pytorch/pytorch/issues/111384.

Instead, the new hierarchy proposed by consolidating
existing batch norm ops will look like:

```
aten.batch_norm ->
aten.batch_norm_with_update ->
[ _batch_norm_cpu (kernel) ] OR
[ _batch_norm_cuda (kernel) ] OR
[ cudnn_batch_norm (kernel) ] OR
[ miopen_batch_norm (kernel) ]
```

The new op `batch_norm_with_update` hides backend
implementation details and automatically picks the right
kernel based on what is installed. This commit also adds
the following variants to this op:

```
batch_norm_with_update_functional
batch_norm_with_update.out
batch_norm_no_update
batch_norm_no_update.out
batch_norm_backward
```

Note that this commit only adds this op and its variants,
but does not actually change the decomps to produce these
ops in the graph. This will be done after the 2 week FC
window, and the ops used in the old stack is planned to
be removed after the 6 month BC window.

Test Plan: `OpInfo` tests for `batch_norm_with_update`.

Reviewers: albanD, bdhirsh

Subscribers: albanD, bdhirsh, supriyar

Tasks: https://github.com/pytorch/pytorch/issues/111384

Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116092
Approved by: https://github.com/bdhirsh, https://github.com/albanD
2024-03-06 04:50:46 +00:00
Valentin Andrei
8bb3e0b643 [pytorch] Name the main and autograd threads for better debugging (#121170)
The main thread and the autograd one are latency critical threads. They launch CPU/GPU/Accelerator kernels and if for some reason they get preempted, the rank can become a straggler in a distributed training application. By naming these threads we can debug performance issues that impact the latency sensitive threads.

I used Kineto traces to verify if the thread names were propagated:

<img width="851" alt="Screenshot 2024-03-04 at 3 07 43 PM" src="https://github.com/pytorch/pytorch/assets/23515689/68b4a09c-b8e5-4f14-a5c0-6593f866c03f">

Also:

```
nvidia-smi
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A   3065920      C   ...me#python#py_version_3_10     1968MiB |
|    1   N/A  N/A   3065926      C   ...me#python#py_version_3_10     1978MiB |
|    2   N/A  N/A   3065930      C   ...me#python#py_version_3_10     2084MiB |
|    3   N/A  N/A   3065936      C   ...me#python#py_version_3_10     2016MiB |
|    4   N/A  N/A   3065939      C   ...me#python#py_version_3_10     1998MiB |
|    5   N/A  N/A   3065943      C   ...me#python#py_version_3_10     2070MiB |
|    6   N/A  N/A   3065948      C   ...me#python#py_version_3_10     2026MiB |
|    7   N/A  N/A   3065952      C   ...me#python#py_version_3_10     2070MiB |
+-----------------------------------------------------------------------------+
[me@myhost ~]$ ps -T -p 3065920
    PID    SPID TTY          TIME CMD
3065920 3065920 pts/14   00:01:04 pt_main_thread
...
3065920 3092181 pts/14   00:00:40 pt_autograd_d0
3065920 3092182 pts/14   00:00:00 pt_autograd_d1
3065920 3092183 pts/14   00:00:00 pt_autograd_d2
3065920 3092184 pts/14   00:00:00 pt_autograd_d3
3065920 3092185 pts/14   00:00:00 pt_autograd_d4
3065920 3092186 pts/14   00:00:00 pt_autograd_d5
3065920 3092187 pts/14   00:00:00 pt_autograd_d6
3065920 3092188 pts/14   00:00:00 pt_autograd_d7
...

```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121170
Approved by: https://github.com/albanD
2024-03-05 22:15:39 +00:00
PyTorch MergeBot
a9d9077f12 Revert "Increased compile time max GPUs to 512. Switched to int16_t DeviceIndex. (#119639)"
This reverts commit 7c556428c7.

Reverted https://github.com/pytorch/pytorch/pull/119639 on behalf of https://github.com/kit1980 due to breaking internal builds, see D54286923 ([comment](https://github.com/pytorch/pytorch/pull/119639#issuecomment-1969634480))
2024-02-28 18:57:09 +00:00
Tobias Ringwald
7c556428c7 Increased compile time max GPUs to 512. Switched to int16_t DeviceIndex. (#119639)
Fixes #115331.

This PR increases the number of valid GPU devices to 512 (from 64) in order to future-proof PyTorch for providers that offer [single nodes with a large device count](https://www.tensorwave.com/). Until now, `DeviceIndex` was an `int8_t`, thus multiple changes were necessary:

- `DeviceIndex` changed to `int16_t`. Updated consumers that assume it to be an `int8_t`.
- Updated bounds checking for `torch.device()` in the Python frontend. Right now, we allow funny things like `torch.device('cpu', 200).index == -56`, which is undefined behavior. I inserted some checks to only allow values between 0 and `c10::Device::MAX_NUM_DEVICES - 1`.
- Updated the `ArgumentInfo` struct as it hardcodes the device index as 8 bit field [^1]. Might be a breaking change, not sure if users rely on this.
- Introduced `c10::Device::MAX_NUM_DEVICES` as a replacement for the old `C10_COMPILE_TIME_MAX_GPUS`

[^1]: This field was unsigned, so I guess this has also been undef behavior the whole time? Our default device index is -1, so this always wrapped around to 255 when written to the `ArgumentInfo` struct. When I switched the `DeviceIndex` to `int16_t`, it actually stayed 255 after unpacking from `ArgumentInfo` again, as the `DeviceIndex` was now wide enough that it didn't wrap back to -1.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119639
Approved by: https://github.com/cyyever, https://github.com/albanD, https://github.com/huydhn
2024-02-27 07:05:48 +00:00
Yu, Guangye
4dc75f9084 Intel GPU Runtime Upstreaming for Event (#117734)
# Motivation
As mentioned in [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), the next runtime component we would like to upstream is `Event` which handles the status of an operation that is being executed. Typically, in some circumstances, we can fine-grain control of the operation execution via `Event`.

# Design
`XPUEvent` is a movable but not a copyable wrapper around sycl event. It should be created lazily on an XPU device when recording an `XPUStream`. Meanwhile, `XPUEvent` can wait for another `XPUEvent` or all the submitted kernels on an `XPUStream` to complete. Align to the other backend, the C++ files related to `Event` will be placed in `aten/src/ATen/xpu` folder. For frontend code, `XPUEvent` runtime API will be bound to Python `torch.xpu.Event`. The corresponding C++ code will be placed in `torch/csrc/xpu/Event.cpp` and Python code will be placed in `torch/xpu/streams.py` respectively.

# Additional Context
It is worth mentioning that the `elapsed_time` method is temporarily not supported by `XPUEvent`. We will be adding support for it soon. Meanwhile `XPUEvent` doesn't support IPC from different processes. For the other parts, we have almost a 1:1 mapping with CUDA.

lack of the below APIs:
- `torch.cuda.Event.ipc_handle`
- `CUDAEvent`'s constructor with `IpcEventHandle`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117734
Approved by: https://github.com/EikanWang, https://github.com/gujinghui, https://github.com/jgong5, https://github.com/malfet
ghstack dependencies: #117611, #117619
2024-02-16 06:28:26 +00:00
Eddie Yan
cd380c794f [CUDNN][SDPA] Experimental cuDNN Flash Attention v2 Inference (#115663)
#113713

Going to clean up some of the checks and will remove draft status after.
Can be tested on SM80+ with `TORCH_CUDNN_MHA_ENABLED=1`.

CC @drisspg @ptrblck
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115663
Approved by: https://github.com/drisspg
2024-02-14 22:02:06 +00:00
Yu, Guangye
8fd11cb307 [2/2] Intel GPU Runtime Upstreaming for Stream (#117619)
# Motivation
According to [[1/2] Intel GPU Runtime Upstreaming for Stream](https://github.com/pytorch/pytorch/pull/117611), as mentioned in [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), the second PR covers the changes under `python frontend`.

# Design
Currently, it primarily offers stream-related APIs, including
 - `torch.xpu.StreamContext`
 - `torch.xpu.current_stream`
 - `torch.xpu.set_stream`
 - `torch.xpu.synchronize`
 - `torch._C._xpu_getCurrentRawStream`

# Additional Context
We will implement functions like `torch.xpu.Stream.wait_event`, `torch.xpu.Stream.wait_stream`, and `torch.xpu.Stream.record_event` in the next PR related with `Event`.

The differences with CUDA:
no default and external stream in XPU and lack of below APIs:
- `torch.cuda.ExternalStream`
- `torch.cuda.default_stream`
- `toch.cuda.is_current_stream_capturing`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117619
Approved by: https://github.com/EikanWang, https://github.com/jgong5, https://github.com/gujinghui, https://github.com/albanD
ghstack dependencies: #117611
2024-02-10 03:39:42 +00:00
Yu, Guangye
a205e7bf56 [3/4] Intel GPU Runtime Upstreaming for Device (#116850)
# Motivation
According to [[1/4] Intel GPU Runtime Upstreaming for Device](https://github.com/pytorch/pytorch/pull/116019), As mentioned in [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), this third PR  covers the changes under `libtorch_python`.

# Design
This PR primarily offers device-related APIs in python frontend, including
- `torch.xpu.is_available`
- `torch.xpu.device_count`
- `torch.xpu.current_device`
- `torch.xpu.set_device`
- `torch.xpu.device`
- `torch.xpu.device_of`
- `torch.xpu.get_device_name`
- `torch.xpu.get_device_capability`
- `torch.xpu.get_device_properties`
- ====================
- `torch.xpu._DeviceGuard`
- `torch.xpu._is_compiled`
- `torch.xpu._get_device`

# Additional Context
We will implement the support of lazy initialization in the next PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116850
Approved by: https://github.com/EikanWang, https://github.com/jgong5, https://github.com/gujinghui, https://github.com/malfet
2024-02-01 12:31:26 +00:00
drisspg
4e29f01bf2 Remove sdp_kernel and replace with sdpa_kernel in attention namespace (#114689)
# Summary
Simplification of Backend Selection

This PR deprecates the `torch.backends/cuda/sdp_kernel` context manager and replaces it with a new context manager `torch.nn.attention.sdpa_kernel`. This context manager also changes the api for this context manager.

For `sdp_kernel` one would specify the backend choice by taking the negation of what kernel they would like to run. The purpose of this backend manager was to only to be a debugging tool, "turn off the math backend" and see if you can run one of the fused implementations.

Problems:
- This pattern makes sense if majority of users don't care to know anything about the backends that can be run. However, if users are seeking to use this context manager then they are explicitly trying to run a specific backend.
- This is not scalable. We are working on adding the cudnn backend and this API makes it so so that more implementations will need to be turned off if user wants to explicitly run a given backend.
- Discoverability of the current context manager. It is somewhat un-intutive that this backend manager is in backends/cuda/init when this now also controls the CPU fused kernel behavior. I think centralizing to attention namespace will be helpful.

Other concerns:
- Typically backends (kernels) for operators are entirely hidden from users and implementation details of the framework. We have exposed this to users already, albeit not by default and with beta warnings. Does making backends choices even more explicit lead to problems when we potentially want to remove existing backends, (perhaps inputs shapes will get covered by newer backends).

A nice side effect is now that we aren't using the `BACKEND_MAP` in test_transformers many, many dynamo failures are passing for CPU tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114689
Approved by: https://github.com/cpuhrsch
2024-01-24 22:28:04 +00:00
Mikayla Gawarecki
41a56f7828 Fix swap_tensors to swap PyObjects associated with TensorImpl (#116955)
This PR intends to fix the following issue when swapping two tensors

```python
>>> import torch
>>> torch.manual_seed(5)
>>> t1 = torch.randn(2)
>>> t2 = torch.randn(3)
>>> t1
tensor([-0.4868, -0.6038])
>>> t2
tensor([-0.5581,  0.6675, -0.1974])
>>> torch.utils.swap_tensors(t1, t2)
>>> t1
tensor([-0.5581,  0.6675, -0.1974])
>>> t2
tensor([-0.4868, -0.6038])
>>> t1.fill_(0.5) # t1 back to its unswapped state :o
tensor([-0.4868, -0.6038])
```

What happens here is that in `THPVariable_Wrap` (which is used when going back from C++ --> Python), we check if the TensorImpl of the tensor to be returned already has a pointer to a PyObject in its PyObject slot. If this is the case then this object is returned.

57491d2046/torch/csrc/autograd/python_variable.cpp (L271-L292)

When we run any operation that returns the same TensorImpl (e.g. inplace op, `t.to(dtype=t.dtype)`, etc.), although `t1` now has `t2`'s TensorImpl, `t2`'s TensorImpl still has a reference to `t2`, so when we do the op on `t1` and `THPVariable_Wrap` attempts to return the pointer to the TensorImpl's PyObject, we return a pointer to `t2` instead.

The TensorImpl should have the PyObjects in their PyObjectSlots swapped as well in `swap_tensors`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116955
Approved by: https://github.com/albanD
2024-01-24 01:40:18 +00:00
PyTorch MergeBot
2f84a9d37c Revert "[CUDNN][SDPA] Experimental cuDNN Flash Attention v2 Inference (#115663)"
This reverts commit 5aa92b5090.

Reverted https://github.com/pytorch/pytorch/pull/115663 on behalf of https://github.com/PaliC due to Unfortunately, this pr breaks cuda builds internally ([comment](https://github.com/pytorch/pytorch/pull/115663#issuecomment-1899388813))
2024-01-18 23:40:30 +00:00
Eddie Yan
5aa92b5090 [CUDNN][SDPA] Experimental cuDNN Flash Attention v2 Inference (#115663)
#113713

Going to clean up some of the checks and will remove draft status after.
Can be tested on SM80+ with `TORCH_CUDNN_MHA_ENABLED=1`.

CC @drisspg @ptrblck
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115663
Approved by: https://github.com/drisspg
2024-01-18 01:20:36 +00:00
Edward Z. Yang
edec54b9de Add torch._lazy_clone to create COW tensors (#113397)
Part of #109833

Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom):
* __->__ #113397
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113397
Approved by: https://github.com/ezyang
2024-01-11 01:32:44 +00:00
Bin Bao
70f3a530d7 [AOTI] Add pybind for AOTIModelContainerRunnerCpu and AOTIModelContainerRunnerCuda (#116269)
Summary: Now we can allocate an AOTIModelContainerRunner object instead of relying on torch.utils.cpp_extension.load_inline. Also renamed AOTInductorModelRunner to AOTIRunnerUtil in this PR.

Test Plan: CI

Reviewed By: khabinov

Differential Revision: D52339116

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116269
Approved by: https://github.com/khabinov
2024-01-04 18:58:24 +00:00
cyy
91bbcf8c71 [1/N] replace THPUtils_assert with TORCH_CHECK (#116675)
This PR replaces THPUtils_assert with TORCH_CHECK.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116675
Approved by: https://github.com/albanD
2024-01-04 11:15:33 +00:00
angelayi
6b91e6907e Add setUserEnabledNNPACK config (#116152)
When exporting a model with a convolution kernel on cpu, if mkldnn is disabled and nnpack is enabled, export will go down the nnpack optimized convolution kernel for certain shapes ((code pointer)[cd449e260c/aten/src/ATen/native/Convolution.cpp (L542-L552)]). This means that we will automatically create a guard on that certain shape. If users want to export without any restrictions, one option is to disable nnpack. However, no config function exists for this, so this PR is adding a config function, similar to the `set_mkldnn_enabled` function.

Original context is in https://fb.workplace.com/groups/1075192433118967/posts/1349589822345892/?comment_id=1349597102345164&reply_comment_id=1349677642337110.

To test the flag, the following script runs successfully:
```
import os

import torch
from torchvision.models import ResNet18_Weights, resnet18

torch.set_float32_matmul_precision("high")

model = resnet18(weights=ResNet18_Weights.DEFAULT)
model.eval()

with torch.no_grad():
    # device = "cuda" if torch.cuda.is_available() else "cpu"
    torch.backends.mkldnn.set_flags(False)
    torch.backends.nnpack.set_flags(False)   # <--- Added config
    device = "cpu"
    model = model.to(device=device)
    example_inputs = (torch.randn(2, 3, 224, 224, device=device),)
    batch_dim = torch.export.Dim("batch", min=2, max=32)
    so_path = torch._export.aot_compile(
        model,
        example_inputs,
        # Specify the first dimension of the input x as dynamic
        dynamic_shapes={"x": {0: batch_dim}},
        # Specify the generated shared library path
        options={
            "aot_inductor.output_path": os.path.join(os.getcwd(), "resnet18_pt2.so"),
            "max_autotune": True,
        },
    )

```

I'm not sure who to add as reviewer, so please feel free to add whoever is relevant!

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116152
Approved by: https://github.com/malfet
2023-12-27 06:00:16 +00:00
Nikita Shulga
0aa185f394 [BE] Make torch.cuda.has_magma a build time check (#116299)
Perhaps originally one needed to query about GPU capability, but right now it's a simple check for a build time flag: 52f0457d7d/aten/src/ATen/cuda/detail/CUDAHooks.cpp (L165-L171)

Alternative, to avoid `at::hasMAGMA()` call  one can implement it as follows:
```cpp
  const auto use_magma = caffe2::GetBuildOptions().at("USE_MAGMA");
  return PyBool_FromLong(use_magma == "1");
```

Make this check very similar to `_has_mkldnn`
0978482afa/torch/csrc/Module.cpp (L1793-L1794)

Test plan:
 Run `lldb -- python3 -c "import torch;print(torch.cuda.has_magma)"` and make sure it returns True and that `cuInit` is not called

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116299
Approved by: https://github.com/seemethere, https://github.com/albanD
2023-12-26 23:37:23 +00:00
Aaron Gokaslan
cc2c2c6ca9 [Easy][BE]: Enable clang-tidy check for duplicate includes (#116193)
Adds a clang-tidy check to flag duplicate include files
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116193
Approved by: https://github.com/albanD, https://github.com/malfet
2023-12-21 14:58:12 +00:00
PyTorch MergeBot
f71d302c63 Revert "[Easy][BE]: Enable clang-tidy check for duplicate includes (#116193)"
This reverts commit 71cb13869b.

Reverted https://github.com/pytorch/pytorch/pull/116193 on behalf of https://github.com/jeanschmidt due to Breaking internal test (bolt_nn_espresso_operator_test_eureka-scheduler) and job (build-rdk-diff-windows-debug-cuda11) @malfet and @albanD, please help the author get this PR merged by providing more information ([comment](https://github.com/pytorch/pytorch/pull/116193#issuecomment-1866391726))
2023-12-21 14:43:07 +00:00
Aaron Gokaslan
71cb13869b [Easy][BE]: Enable clang-tidy check for duplicate includes (#116193)
Adds a clang-tidy check to flag duplicate include files
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116193
Approved by: https://github.com/albanD, https://github.com/malfet
2023-12-20 17:56:21 +00:00
mantaionut
d521857411 Terminate handler (#101332)
Fixes #50051.
This PR is based on #50320 and I address the last feedback.
On Windows it is enabled by default. Can be enabled or disabled via USE_CUSTOM_TERMINATE env variable.

This PR adds support for overriding the terminate handler in order to log uncaught exceptions in the threads.
If an exception is thrown and not caught, it will print <Unhandled exception caught in c10/util/AbortHandler.h>
The point of doing this is that in issue #50051, exceptions were thrown but not logged. With this logging system it will be easier to debug it in the future.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101332
Approved by: https://github.com/albanD, https://github.com/malfet
2023-12-12 17:55:27 +00:00
albanD
a2b89154bf New swap function (#111747)
This PR is proposing a new approach to solve the nn/optim only linked by python object identity problem.
The idea is to have a function that can swap the content of two Tensors t1 and t2 while preserving all the old references.
This would allow us to swap the `model.weight` with a new Tensor (can be any subclass of Tensor and any TensorImpl (xla, sparse, nested tensorimpl would work)). The use within nn will be done in a follow up.

This is done by swapping the whole content of the PyObject and then putting back the fields associated with external references (refcount, gc tracking and weakrefs).
Note that we have to properly handle all the cases where there is memory used before the public pointer PyObject* and where the PyObject is bigger due to dict/weakref being inlined (older CPython version) or due to slots.

The main limitation of this approach is that the number of slots need to match for the objects being swapped and thus limit usage of slots in subclasses.

Draft right now to see what @colesbury thinks about doing this?

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111747
Approved by: https://github.com/colesbury
2023-12-08 18:49:35 +00:00
PyTorch MergeBot
fe428a284b Revert "Add torch._lazy_clone to create COW tensors (#113397)"
This reverts commit 9916d8a9ea.

Reverted https://github.com/pytorch/pytorch/pull/113397 on behalf of https://github.com/DanilBaibak due to Unfortunately, I need to revert your PR because the lower [PR in the stack](https://github.com/pytorch/pytorch/pull/113396) is failing a bunch of internal build jobs. ([comment](https://github.com/pytorch/pytorch/pull/113397#issuecomment-1818761224))
2023-11-20 10:21:09 +00:00
Kurt Mohler
9916d8a9ea Add torch._lazy_clone to create COW tensors (#113397)
Part of #109833

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113397
Approved by: https://github.com/ezyang
ghstack dependencies: #113396
2023-11-17 01:58:51 +00:00
drisspg
9b0f2f8d94 expose sdpa helpers to python (#110496)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110496
Approved by: https://github.com/jbschlosser
2023-11-15 07:34:34 +00:00
Nikita Shulga
78f3937ee8 [BE] Handle errors in set_num_threads (#113684)
and `set_num_interop_threads`

Before that, call `torch.set_num_threads(2**65)` resulted in segmentation fault, afterwards it becomes a good old runtime error:
```
% python -c "import torch;torch.set_num_threads(2**65)"
Traceback (most recent call last):
  File "<string>", line 1, in <module>
RuntimeError: Overflow when unpacking long
```

Similar to https://github.com/pytorch/pytorch/pull/60073

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113684
Approved by: https://github.com/Skylion007, https://github.com/albanD
2023-11-15 06:17:41 +00:00
Edward Z. Yang
f98ba596f1 Use CapturedTraceback symbolizer for C++ exceptions from Python library (#113207)
This is the cheap and cheerful implementation, which is only enabled on TORCH_SHOW_CPP_STACKTRACES, because it *eagerly* symbolizes immediately at exception throw time, even if the exception will end up getting caught. It would be better to do this lazily and only symbolize when we try to print the exception, but that requires a more involved refactor of c10::Error that I don't feel like doing.

Compare the output before:

```
frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x95 (0x7fa21b99d975 in /data/users/ezyang/c/pytorch/torch/lib/libc10.so)
frame #1: c10::TensorImpl::throw_cannot_call_with_symbolic(char const*) const + 0x8d (0x7fa21b951269 in /data/users/ezyang/c/pytorch/torch/lib/libc10.so)
frame #2: c10::TensorImpl::sizes_custom() const + 0x9f (0x7fa21b9770df in /data/users/ezyang/c/pytorch/torch/lib/libc10.so)
frame #3: at::meta::structured_mm::meta(at::Tensor const&, at::Tensor const&) + 0x31e (0x7fa20a202a8e in /data/users/ezyang/c/pytorch/torch/lib/libtorch_cpu.so)
frame #4: <unknown function> + 0x29f34de (0x7fa20b5f34de in /data/users/ezyang/c/pytorch/torch/lib/libtorch_cpu.so)
frame #5: <unknown function> + 0x2a1fd8e (0x7fa20b61fd8e in /data/users/ezyang/c/pytorch/torch/lib/libtorch_cpu.so)
frame #6: <unknown function> + 0x6b907b (0x7fa2142b907b in /data/users/ezyang/c/pytorch/torch/lib/libtorch_python.so)
frame #7: <unknown function> + 0x6b6175 (0x7fa2142b6175 in /data/users/ezyang/c/pytorch/torch/lib/libtorch_python.so)
```

and after:

```
#4 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0
#5 c10::TensorImpl::throw_cannot_call_with_symbolic(char const*) const from ??:0
#6 c10::TensorImpl::sizes_custom() const [clone .localalias] from TensorImpl.cpp:0
#7 at::meta::structured_mm::meta(at::Tensor const&, at::Tensor const&) from ??:0
#8 at::(anonymous namespace)::wrapper_Meta_mm_out_out(at::Tensor const&, at::Tensor const&, at::Tensor&) from RegisterMeta.cpp:0
#9 c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor& (at::Tensor const&, at::Tensor const&, at::Tensor&), &at::(anonymous namespace)::wrapper_Meta_mm_out_out>, at::Tensor&, c10::guts::typelist::typelist<at::Tensor const&, at::Tensor const&, at::Tensor&> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) from RegisterMeta.cpp:0
```

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113207
Approved by: https://github.com/Skylion007
2023-11-09 15:06:08 +00:00
Kurt Mohler
fd209543d5 Add torch.utils.deterministic.fill_uninitialized_memory flag (#111377)
Part of #109802

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111377
Approved by: https://github.com/albanD, https://github.com/aaronenyeshi
2023-11-01 16:10:09 +00:00
PyTorch MergeBot
ace2713d1e Revert "Add torch.utils.deterministic.fill_uninitialized_memory flag (#111377)"
This reverts commit f1785373c0.

Reverted https://github.com/pytorch/pytorch/pull/111377 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/111377#issuecomment-1784179040))
2023-10-29 17:41:55 +00:00
Kurt Mohler
f1785373c0 Add torch.utils.deterministic.fill_uninitialized_memory flag (#111377)
Part of #109802

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111377
Approved by: https://github.com/albanD
2023-10-26 02:39:06 +00:00
Edward Z. Yang
c84c86f018 SymIntify convolution (#111599)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111599
Approved by: https://github.com/wanchaol, https://github.com/bdhirsh
2023-10-21 03:03:20 +00:00
Nikita Shulga
ad8aef0f98 [BE] [3/N] Use nested namespaces (#110314)
Mostly in torch/csrc/jit/runtime and in `ATen/cuda/`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110314
Approved by: https://github.com/seemethere
2023-09-30 02:23:48 +00:00
Peter Bell
7ce69d5dbe [RELAND] Remove some unnecessary <iostream> includes from headers (#108150)
In almost all cases this is only included for writing the output formatter, which
only uses `std::ostream` so including `<ostream>` is sufficient.

The istream header is ~1000 lines so the difference is non-trivial.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108150
Approved by: https://github.com/albanD, https://github.com/malfet
ghstack dependencies: #108149
2023-09-20 21:55:15 +00:00
Andrei Gheorghe
00908475e6 Use global variables to register the return_types namedtuples (#108832)
Fixes #69221. Builds on top of #107000, fixing the buck build issue linked [here](https://github.com/pytorch/pytorch/pull/107000#issuecomment-1708857375).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108832
Approved by: https://github.com/zou3519
2023-09-13 17:42:46 +00:00
PyTorch MergeBot
27d5dcf589 Revert "Use global variables to register the return_types namedtuples (#107000)"
This reverts commit ae8eb7a3f9.

Reverted https://github.com/pytorch/pytorch/pull/107000 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but it is failing internal build ([comment](https://github.com/pytorch/pytorch/pull/107000#issuecomment-1708862325))
2023-09-06 18:13:23 +00:00
Andrei Gheorghe
ae8eb7a3f9 Use global variables to register the return_types namedtuples (#107000)
Fixes #69221

@pytorchbot label "topic: not user facing"
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107000
Approved by: https://github.com/zou3519
2023-09-05 20:00:29 +00:00
PyTorch MergeBot
378ffde8c1 Revert "Remove some unnecessary <iostream> includes from headers (#106914)"
This reverts commit a6c29b7227.

Reverted https://github.com/pytorch/pytorch/pull/106914 on behalf of https://github.com/izaitsevfb due to Causing metal breakage internally, see D48709279 ([comment](https://github.com/pytorch/pytorch/pull/106914#issuecomment-1696670027))
2023-08-29 02:22:33 +00:00
FFFrog
010064159b Fix the issue described by #106532 (#108036)
Fixes #106532

As the title says
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108036
Approved by: https://github.com/albanD
2023-08-28 16:23:47 +00:00
cyy
1fd4e787ce [2/N] fix clang-tidy warnings in torch/csrc (#107966)
Apply fixes to some found issues by clang-tidy in torch/csrc.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107966
Approved by: https://github.com/Skylion007
2023-08-27 18:06:21 +00:00
Peter Bell
a6c29b7227 Remove some unnecessary <iostream> includes from headers (#106914)
In almost all cases this is only included for writing the output formatter, which
only uses `std::ostream` so including `<ostream>` is sufficient.

The istream header is ~1000 lines so the difference is non-trivial.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106914
Approved by: https://github.com/lezcano
2023-08-25 18:24:05 +00:00
PyTorch MergeBot
28dc1a093f Revert "Remove some unnecessary <iostream> includes from headers (#106914)"
This reverts commit 60936e4c29.

Reverted https://github.com/pytorch/pytorch/pull/106914 on behalf of https://github.com/ZainRizvi due to Sorry, but this is breaking internal builds. Seems like a lot of internal code depends on some of the removed imports ([comment](https://github.com/pytorch/pytorch/pull/106914#issuecomment-1688605975))
2023-08-22 17:16:48 +00:00
Peter Bell
60936e4c29 Remove some unnecessary <iostream> includes from headers (#106914)
In almost all cases this is only included for writing the output formatter, which
only uses `std::ostream` so including `<ostream>` is sufficient.

The istream header is ~1000 lines so the difference is non-trivial.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106914
Approved by: https://github.com/lezcano
2023-08-19 20:21:58 +00:00
Aaron Gokaslan
4baac20117 [BE] switch fprintf to fmt::print (#104640)
Testing out the new automated clang-tidy check in master. Code should be faster, more modern, and more efficient.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104640
Approved by: https://github.com/malfet
2023-07-05 21:11:39 +00:00
Nikita Shulga
6d2887cc06 Reland "Move tensor grouping to ATen" (#103912)
This is a reland of https://github.com/pytorch/pytorch/pull/100007 with a build fix for Windows debug builds.
`at::native::ParamsHash` only works on structs with standard layout, but `std::string` isn't one in Visual C++ debug builds, which one can easily verified by running something like:
```cpp
#define _DEBUG
#include <type_traits>
#include <string>
static_assert(std::is_standard_layout_v<std::string>, "Oh noes");
```
If above conditon is not met, instead of printing a static_assert output, VC++ raises a very cryptic compilation errors,  see https://github.com/pytorch/pytorch/pull/100007#discussion_r1227116292 for more detail.

Also, using `std::hash` for string should result in a faster hash function.

(cherry picked from commit 74b7a6c75e)

<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at 5914771</samp>

This pull request introduces a new function `_group_tensors_by_device_and_dtype` that can group tensors by their device and dtype, and updates the `foreach` utilities and several optimizers to use this function. The goal is to improve the performance, readability, and compatibility of the code that handles tensors with different properties. The pull request also adds a test case and type annotations for the new function, and some error checks for the `fused` argument in Adam and AdamW.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103912
Approved by: https://github.com/janeyx99
2023-06-21 09:26:33 +00:00
leslie-fang-intel
9832cfbbfe Quantization oneDNN backend only support VNNI CPU (#103653)
**Summary**

- Update the quantization document that default qconfig with oneDNN backend is recommended to be used on CPUs with Vector Neural Network Instruction support.
- Add the warning message when user uses default qconfig with oneDNN backend on CPU without Vector Neural Network Instruction support.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103653
Approved by: https://github.com/jgong5, https://github.com/malfet
2023-06-19 09:50:07 +00:00
PyTorch MergeBot
0cb5bc3b04 Revert "Move tensor grouping to ATen (#100007)"
This reverts commit 74b7a6c75e.

Reverted https://github.com/pytorch/pytorch/pull/100007 on behalf of https://github.com/izaitsevfb due to Breaks internal builds, see D46629727 ([comment](https://github.com/pytorch/pytorch/pull/100007#issuecomment-1587861598))
2023-06-12 18:30:33 +00:00
Nikita Shulga
4cfa06f706 [BE] Deprecate has_XYZ attributes (#103279)
Use [`__getattr__`](https://peps.python.org/pep-0562/) to raise warningwhen one tries to access `has_XYZ` methods and recommend appropriate `torch.backends.XYZ` methods

Make respective properties in `torch._C` private (by prefixing them with underscore), to exclude from `from torch._C import *`.

Added `warnings.simplefilter` to workaround Python-3.11 torch.compile lineinfo issue.

Fixes https://github.com/pytorch/pytorch/issues/102484

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103279
Approved by: https://github.com/janeyx99, https://github.com/Skylion007
2023-06-10 05:17:17 +00:00
Masaki Kozuki
74b7a6c75e Move tensor grouping to ATen (#100007)
rel: #94344
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100007
Approved by: https://github.com/janeyx99
2023-06-09 15:44:46 +00:00
atannous
b469ed72d0 Integrating new API usage metadata logger (#101762)
Summary: The new logger allows passing metadata into the api usage logger. The immediate use case is to pass the serialization_id to the save and load events to be enable tracking serialized models in API events. It could be extended to add more metadata in the future.

Test Plan:
```
buck2 test @//mode/dev //caffe2/caffe2/serialize:inline_container_test
```

Reviewed By: davidberard98

Differential Revision: D45683697

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101762
Approved by: https://github.com/davidberard98
2023-05-26 00:24:26 +00:00
Benson Ma
66a2600b6a [T153220354] Fix header inclusions in c10 (#1541) (#101846)
Summary:
This is a re-attempt to land the iwyu header changes, by taking the diff from [PR 100304](https://github.com/pytorch/pytorch/pull/100304), and adding the bare minimal changes to make the diff build corectly in the internal builds.

X-link: https://github.com/facebookresearch/pytorch3d/pull/1541

X-link: https://github.com/fairinternal/pytorch3d/pull/44

- Re-work D45769819 to fix header inclusions in c10

Test Plan:
```
buck2 build --no-remote-cache mode/dev-nosan //caffe2/c10/...

buck2 build --no-remote-cache mode/dev-nosan //deeplearning/fbgemm/fbgemm_gpu/...

buck2 build mode/dev-nosan //vision/fair/pytorch3d/pytorch3d:_C
```

Reviewed By: malfet

Differential Revision: D45920611

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101846
Approved by: https://github.com/malfet, https://github.com/Skylion007
2023-05-20 19:35:14 +00:00
PyTorch MergeBot
4eaaa08623 Revert "Fix header inclusions in c10 by iwyu (#100304)"
This reverts commit 6037ee8cc9.

Reverted https://github.com/pytorch/pytorch/pull/100304 on behalf of https://github.com/jeanschmidt due to Breaking meta internal builds and fbgemm builds ([comment](https://github.com/pytorch/pytorch/pull/100304#issuecomment-1543919257))
2023-05-11 12:37:35 +00:00
cyy
6037ee8cc9 Fix header inclusions in c10 by iwyu (#100304)
This work introduces include-what-you-use  support for c10 by a CMake option defaulting to off. We also remove some unused header inclusions and  fix a trivial inclusion error.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100304
Approved by: https://github.com/ezyang
2023-05-11 05:19:42 +00:00
PyTorch MergeBot
3271413e74 Revert "Fix header inclusions in c10 by iwyu (#100304)"
This reverts commit 39ec5fa722.

Reverted https://github.com/pytorch/pytorch/pull/100304 on behalf of https://github.com/huydhn due to Sorry for reverting your PR, it is almost there but fails on Windows 39ec5fa722, which is in unstable mode after https://github.com/pytorch/pytorch/pull/100548 ([comment](https://github.com/pytorch/pytorch/pull/100304#issuecomment-1542975714))
2023-05-11 00:37:32 +00:00
cyy
39ec5fa722 Fix header inclusions in c10 by iwyu (#100304)
This work introduces include-what-you-use  support for c10 by a CMake option defaulting to off. We also remove some unused header inclusions and  fix a trivial inclusion error.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100304
Approved by: https://github.com/ezyang
2023-05-10 15:42:43 +00:00
vfdev-5
6a12f10b08 Publicly exposing torch.backends.cpu.get_cpu_capability() (#100164)
Description:

- As suggested by Nikita, created `torch.backends.cpu` submodule and exposed `get_cpu_capability`.

- In torchvision Resize method we want to know current cpu capability in order to pick appropriate codepath depending on cpu capablities

Newly coded vectorized resize of uint8 images on AVX2 supported CPUs is now faster than older way (uint8->float->resize->uint8). However, on non-avx hardware (e.g. Mac M1) certain configs are slower using native uint8.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100164
Approved by: https://github.com/albanD, https://github.com/malfet
2023-05-03 19:02:07 +00:00
Zain Rizvi
d5f15d3515 Check for debug mode (#92707)
It works by validating the debug builds actually trigger debug level asserts

Turns out, most of our  debug jobs today don't actually build in debug mode (causing the test to fail). The PR also fixes that

Contributes to https://github.com/pytorch/pytorch/issues/88842
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92707
Approved by: https://github.com/malfet, https://github.com/albanD
2023-04-27 20:57:18 +00:00
cyy
dbc7e919b8 add Wmissing-prototypes to clang-tidy (#96805)
This PR introduces **-Wmissing-prototypes** of clang-tidy to prevent further coding errors such as the one fixed by PR #96714.

<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at fd2cf2a</samp>

This pull request makes several internal functions static to improve performance and avoid name clashes. It also fixes some typos, formatting, and missing includes in various files. It adds a new .clang-tidy check to warn about missing prototypes for non-static functions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96805
Approved by: https://github.com/malfet, https://github.com/albanD
2023-04-25 18:20:36 +00:00
PyTorch MergeBot
f4f1a5b5b3 Revert "Move functional collectives to the right namespace (#97793)"
This reverts commit 184bfbc3d7.

Reverted https://github.com/pytorch/pytorch/pull/97793 on behalf of https://github.com/atalman due to breaks internal builds
2023-03-31 16:02:07 +00:00
Rodrigo Kumpera
184bfbc3d7 Move functional collectives to the right namespace (#97793)
This moves them from `torch._C._nn` to `torch._C._dist`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97793
Approved by: https://github.com/albanD
2023-03-30 22:18:13 +00:00
Sergii Dymchenko
5ab50cf048 Fix shoud/shoudl typos (#97930)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97930
Approved by: https://github.com/clee2000
2023-03-30 08:27:16 +00:00
shibo
6b691b99da add amp support for custom backend (#96188)
Fixes #ISSUE_NUMBER
1、add amp support for custom backend
2、optimize the file `backend_registration.py`, and rename it with `custom_backend_registration.py`. And then we would register other funcs for custom backend.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96188
Approved by: https://github.com/bdhirsh
2023-03-20 20:27:35 +00:00
PyTorch MergeBot
a8f36dd646 Revert "add amp support for custom backend (#96188)"
This reverts commit cf12edee02.

Reverted https://github.com/pytorch/pytorch/pull/96188 on behalf of https://github.com/kit1980 due to Broke some linalg tests : https://github.com/pytorch/pytorch/actions/runs/4420037607/jobs/7750708339
2023-03-15 00:03:19 +00:00
shibo
cf12edee02 add amp support for custom backend (#96188)
Fixes #ISSUE_NUMBER
1、add amp support for custom backend
2、optimize the file `backend_registration.py`, and rename it with `custom_backend_registration.py`. And then we would register other funcs for custom backend.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96188
Approved by: https://github.com/bdhirsh
2023-03-14 20:43:21 +00:00
Elias Ellison
da265652d6 Return Live Data Pointers from Checkpoint, swap onto tensors (#95020)
When we checkpoint the state of the private pool allocator, we will need to make sure that its current live allocated blocks will get properly cleaned up when the tensors they correspond to die. Return DataPtrs for these new allocated blocks that the callee can swap onto live Tensors.

The exact api for setting the checkpoint can be manipulated after this as the cudagraph implementation is built out, but this at least shows its sufficiently general.

This should be the last PR touching cuda caching allocator necessary for new cudagraphs integration.

Differential Revision: [D43999888](https://our.internmc.facebook.com/intern/diff/D43999888)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95020
Approved by: https://github.com/zdevito
2023-03-14 01:22:19 +00:00
cyy
f27e09de04 Cleanup Windows warning suppression in CMake and fix some warnings in the source code (#94927)
This PR do two things:
1. It moves some Windows warning suppression from various CMake files into the main CMakeList.txt, following the conventions of gcc and clang.
2. It fixes some Windows warnings in the source code. Most importantly, it fixes lots of dll warnings by adjusting C10_API to TORCH_API or TORCH_PYTHON_API. There are still some dll warnings because some TORCH_API functions are actually built as part of libtorch_python

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94927
Approved by: https://github.com/malfet
2023-02-27 19:22:20 +00:00
Ramin Azarmehr
bdd8f518d7 [MPS] Add Python Module Bindings for the MPS backend (#94417)
- This PR is a prerequisite for the upcoming Memory Leak Detection PR.
- Enable global manual seeding via `torch.manual_seed()` + test case
- Add `torch.mps.synchronize()` to wait for MPS stream to finish + test case
- Enable the following python interfaces for MPS:
  `torch.mps.[get_rng_state(), set_rng_state(), synchronize(), manual_seed(), seed()]`
- Added some test cases in test_mps.py
- Added `mps.rst` to document the `torch.mps` module.
- Fixed the failure with `test_public_bindings.py`

Description of new files added:
- `torch/csrc/mps/Module.cpp`: implements `torch._C` module functions for `torch.mps` and `torch.backends.mps`.
- `torch/mps/__init__.py`: implements Python bindings for `torch.mps` module.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94417
Approved by: https://github.com/albanD
2023-02-12 21:22:30 +00:00
PyTorch MergeBot
4fe365774a Revert "[MPS] Add Python Module Bindings for the MPS backend (#94417)"
This reverts commit beb4f5bf39.

Reverted https://github.com/pytorch/pytorch/pull/94417 on behalf of https://github.com/huydhn due to Sorry for reverting your PR, but it seems to break MacOS test in trunk bae397ec63
2023-02-11 05:24:45 +00:00
Ramin Azarmehr
beb4f5bf39 [MPS] Add Python Module Bindings for the MPS backend (#94417)
- This PR is a prerequisite for the upcoming Memory Leak Detection PR.
- Enable global manual seeding via `torch.manual_seed()` + test case
- Add `torch.mps.synchronize()` to wait for MPS stream to finish + test case
- Enable the following python interfaces for MPS:
  `torch.mps.[get_rng_state(), set_rng_state(), synchronize(), manual_seed(), seed()]`
- Added some test cases in test_mps.py
- Added `mps.rst` to document the `torch.mps` module.
- Fixed the failure with `test_public_bindings.py`

Description of new files added:
- `torch/csrc/mps/Module.cpp`: implements `torch._C` module functions for `torch.mps` and `torch.backends.mps`.
- `torch/mps/__init__.py`: implements Python bindings for `torch.mps` module.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94417
Approved by: https://github.com/albanD
2023-02-10 23:18:41 +00:00
Elias Ellison
70f4b3551c Add Hook to store arbitrary python objects that are copied over in tls (#89169)
For the cudagraphs implementation, we would like to reuse objects that are defined in python across the forward and backward. The backward is run in a different thread, so to handle this we add an api for copying over arbitrary python objects in pytorch's thread local state, in the same way that C++ objects are copied over currently.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89169
Approved by: https://github.com/albanD
2023-01-24 05:24:57 +00:00
Pearu Peterson
b3e4f5029b Add check-sparse-tensor-invariants flag to Context - 2nd try. (#92094)
This PR is a copy of https://github.com/pytorch/pytorch/pull/90849 that merge was reverted.

The PR adds "check sparse tensor invariants" flag to Context that when enabled will trigger sparse tensor data invariants checks in unsafe methods of constructing sparse COO/CSR/CSC/BSR/BSC tensors. The feature includes the following changes to UI:

`torch.sparse.check_sparse_tensor_invariants` class provides different ways to enable/disable the invariant checking.

`torch.sparse_coo/csr/csc/bsr/bsc/compressed_tensor` functions have a new optional argument `check_invariants` to enable/disable the invariant checks explicitly. When the `check_invariants` argument is specified, the global state of the feature is temporarily overridden.

The PR fixes https://github.com/pytorch/pytorch/issues/90833

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92094
Approved by: https://github.com/cpuhrsch
2023-01-13 14:50:33 +00:00
PyTorch MergeBot
c7a22bb7c7 Revert "Add check-sparse-tensor-invariants flag to Context. (#90849)"
This reverts commit b9a035c1c5.

Reverted https://github.com/pytorch/pytorch/pull/90849 on behalf of https://github.com/DanilBaibak due to Break internal build
2023-01-12 09:58:16 +00:00
samdow
b8252e07c7 [Reland] add DisableTorchFunction that matches DisableTorchDispatch (#88219) (#92012)
Reland of #88219

Closes #87990. This implements a new disable guard that matches DisableTorchDispatch (disables all subclasses and modes)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92012
Approved by: https://github.com/albanD
2023-01-12 01:27:47 +00:00
Pearu Peterson
b9a035c1c5 Add check-sparse-tensor-invariants flag to Context. (#90849)
This PR adds "check sparse tensor invariants" flag to Context that when enabled will trigger sparse tensor data invariants checks in unsafe methods of constructing sparse COO/CSR/CSC/BSR/BSC tensors. The feature includes the following changes to UI:

- `torch.enable_check_sparse_tensor_invariants` and `torch.is_check_sparse_tensor_invariants_enabled` functions to globally enable/disable the invariant checks and to retrieve the state of the feature, respectively
- `torch.sparse_coo/csr/csc/bsr/bsc/compressed_tensor` functions have a new optional argument `check_invariants` to enable/disable the invariant checks explicitly. When the `check_invariants` argument is specified, the global state of the feature is temporarily overridden.

The PR also fixes https://github.com/pytorch/pytorch/issues/90833

# Main issue

*The following content is outdated after merging the PRs in this ghstack but kept for the record.*

The importance of this feature is that when enabling the invariants checks by default, say, via

<details>

```
$ git diff
diff --git a/torch/__init__.py b/torch/__init__.py
index c8543057c7..19a91d0482 100644
--- a/torch/__init__.py
+++ b/torch/__init__.py
@@ -1239,3 +1239,8 @@ if 'TORCH_CUDA_SANITIZER' in os.environ:

 # Populate magic methods on SymInt and SymFloat
 import torch.fx.experimental.symbolic_shapes
+
+# temporarily enable sparse tensor arguments validation in unsafe
+# constructors:
+
+torch._C._set_check_sparse_tensor_invariants(True)
```

</details>

a massive number of test failures/errors occur in test_sparse_csr.py tests:
```
$ pytest -sv test/test_sparse_csr.py
<snip>
==== 4293 failed, 1557 passed, 237 skipped, 2744 errors in 69.71s (0:01:09) ====
```
that means that we are silently constructing sparse compressed tensors that do not satisfy the sparse tensor invariants. In particular, the following errors are raised:

```
AssertionError: "resize_as_sparse_compressed_tensor_: self and src must have the same layout" does not match "expected values to be a strided and contiguous tensor"

RuntimeError: CUDA error: device-side assert triggered

RuntimeError: `col_indices[..., crow_indices[..., i - 1]:crow_indices[..., i]] for all i = 1, ..., nrows are sorted and distinct along the last dimension values` is not satisfied.

RuntimeError: expected col_indices to be a strided and contiguous tensor

RuntimeError: expected row_indices to be a strided and contiguous tensor

RuntimeError: expected values to be a strided and contiguous tensor

RuntimeError: for_each: failed to synchronize: cudaErrorAssert: device-side assert triggered

RuntimeError: tensor dimensionality must be sum of batch, base, and dense dimensionalities (=0 + 2 + 0) but got 3
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90849
Approved by: https://github.com/amjames, https://github.com/cpuhrsch
2023-01-11 01:05:14 +00:00
Samantha Andow
a7749ae177 [reland] rename DisableTorchFunction to DisableTorchFunctionSubclass (#88218) (#89221)
Summary: First half of #87990. This doesn't change any of the behavior and is just a rename

#88218 got reverted for internal breakages. This is the reland of started from internal

Differential Revision:
D41268423

LaMa Project: L1098534

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89221
Approved by: https://github.com/meliy-meyada, https://github.com/zou3519
2023-01-04 18:32:49 +00:00
Eddie Yan
8b617f813d [cuBLAS] Add an option to disable reduced precision reductions for BF16 GEMM (#89172)
Essentially the same change as #67946, except that the default is to disallow reduced precision reductions in `BFloat16` GEMMs (for now). If performance is severely regressed, we can change the default, but this option appears to be necessary to pass some `addmm` `BFloat16` tests on H100.

CC @ptrblck @ngimel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89172
Approved by: https://github.com/ngimel
2022-12-21 18:58:28 +00:00
albanD
28ceccec21 cleanup old python_compat code (#91162)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91162
Approved by: https://github.com/ezyang
2022-12-20 18:13:19 +00:00
albanD
0eb45d546c Bind autograd current Node for debugging purposes (#90867)
This allows to know at any point during the backward pass what is running and where the Node currently running was created at:
```python
import torch
from torch.utils._python_dispatch import TorchDispatchMode
from torch.autograd import detect_anomaly

class MyMode(TorchDispatchMode):
    def __torch_dispatch__(self, func, types, args, kwargs=None):
        node = torch._C._current_autograd_node()
        print(f"Running {func} from within {node}")
        if node is not None:
            print("The Node was created at:")
            print("\n  ".join(node.metadata["traceback_"]))
        return func(*args, **kwargs or {})

with MyMode(), detect_anomaly():
    print("FW")
    a = torch.rand(10, requires_grad=True)
    b = a.mul(2)
    b = b.div(3)
    b = b.sum()
    print("BW")
    b.backward()
```

Gives
```
$ python foo.py
foo.py:15: UserWarning: Anomaly Detection has been enabled. This mode will increase the runtime and should only be enabled for debugging.
  with MyMode(), detect_anomaly():
FW
Running aten.rand.default from within None
Running aten.mul.Tensor from within None
Running aten.div.Tensor from within None
Running aten.sum.default from within None
BW
Running aten.ones_like.default from within None
Running aten.expand.default from within <SumBackward0 object at 0x7fa40c0c6dc0>
The Node was created at:
  File "foo.py", line 20, in <module>
    b = b.sum()

Running aten.isnan.default from within <SumBackward0 object at 0x7fa40c0c6500>
The Node was created at:
  File "foo.py", line 20, in <module>
    b = b.sum()

Running aten.any.default from within <SumBackward0 object at 0x7fa32b23a780>
The Node was created at:
  File "foo.py", line 20, in <module>
    b = b.sum()

Running aten._local_scalar_dense.default from within <SumBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 20, in <module>
    b = b.sum()

Running aten.div.Tensor from within <DivBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 19, in <module>
    b = b.div(3)

Running aten.isnan.default from within <DivBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 19, in <module>
    b = b.div(3)

Running aten.any.default from within <DivBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 19, in <module>
    b = b.div(3)

Running aten._local_scalar_dense.default from within <DivBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 19, in <module>
    b = b.div(3)

Running aten.mul.Tensor from within <MulBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 18, in <module>
    b = a.mul(2)

Running aten.isnan.default from within <MulBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 18, in <module>
    b = a.mul(2)

Running aten.any.default from within <MulBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 18, in <module>
    b = a.mul(2)

Running aten._local_scalar_dense.default from within <MulBackward0 object at 0x7fa40c0c9190>
The Node was created at:
  File "foo.py", line 18, in <module>
    b = a.mul(2)

Running aten.detach.default from within <AccumulateGrad object at 0x7fa40c0c9730>
The Node was created at:
  File "foo.py", line 18, in <module>
    b = a.mul(2)

Running aten.detach.default from within <AccumulateGrad object at 0x7fa40c0c94b0>
The Node was created at:
  File "foo.py", line 18, in <module>
    b = a.mul(2)

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90867
Approved by: https://github.com/soulitzer
2022-12-20 13:41:43 +00:00
Nikita Shulga
3859aace20 [MPS] Skip tests broken on Ventura (#90843)
Also add `torch.backends.mps.is_macos13_or_newer`
See https://github.com/pytorch/pytorch/issues/85758

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90843
Approved by: https://github.com/kulinseth, https://github.com/albanD
2022-12-14 19:51:00 +00:00
Richard Zou
4b1053497c [vmap] Prepend "legacy" to files for old vmap implementation (#90324)
We have an older torch.vmap implementation. It is no longer supported.
It still needs to exist somewhere for the sake of BC with
torch.autograd.functional.

This PR makes it clear what files are meant for implementing the old
vmap implementation. I've seen a couple of PRs recently adding support
for the old vmap implementation, so this will lessen the confusion.

Test Plan:
- CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90324
Approved by: https://github.com/samdow
2022-12-07 18:46:15 +00:00
Edward Z. Yang
4908a12542 Reland "SymIntify convolution backend calculation (#89069)"" (#89142)
This reverts commit 90db86be10.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89142
Approved by: https://github.com/albanD, https://github.com/malfet
2022-11-16 21:41:47 +00:00
PyTorch MergeBot
90db86be10 Revert "SymIntify convolution backend calculation (#89069)"
This reverts commit 09ed8b67e2.

Reverted https://github.com/pytorch/pytorch/pull/89069 on behalf of https://github.com/DanilBaibak due to breaking internal builds
2022-11-16 16:36:27 +00:00
Edward Z. Yang
09ed8b67e2 SymIntify convolution backend calculation (#89069)
We will need this to implement a convolution meta function that
is SymInt aware.  I use templates so that regular convolution code
is not affected by the change.  No tests for symbolic ints directly; that will
come in a subsequent PR which also needs to refactor fake tensors.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89069
Approved by: https://github.com/SherlockNoMad
2022-11-16 14:02:43 +00:00
PyTorch MergeBot
ba4d5aae06 Revert "rename DisableTorchFunction to DisableTorchFunctionSubclass (#88218)"
This reverts commit 7f28be10e5.

Reverted https://github.com/pytorch/pytorch/pull/88218 on behalf of https://github.com/izaitsevfb due to BC-breaking change, D41211901
2022-11-11 19:13:05 +00:00
PyTorch MergeBot
4e5d7afe84 Revert "add DisableTorchFunction that matches DisableTorchDispatch (#88219)"
This reverts commit c0ecce15b5.

Reverted https://github.com/pytorch/pytorch/pull/88219 on behalf of https://github.com/izaitsevfb due to BC-breaking change, D41211901
2022-11-11 19:08:30 +00:00
samdow
c0ecce15b5 add DisableTorchFunction that matches DisableTorchDispatch (#88219)
Closes #87990. This implements a new disable guard that matches DisableTorchDispatch (disables all subclasses and modes)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88219
Approved by: https://github.com/ezyang
2022-11-10 14:51:13 +00:00
samdow
7f28be10e5 rename DisableTorchFunction to DisableTorchFunctionSubclass (#88218)
First half of #87990. This doesn't change any of the behavior and is just a rename

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88218
Approved by: https://github.com/ezyang, https://github.com/zou3519
2022-11-10 14:51:13 +00:00
kshitij12345
eb9b156019 [fix] MathBits: serialization (#88182)
Fixes #81690

TODO:

* [x] C++ Unpickler Fix (locally tested pickled in Python and unpickled in C++)
* [x] C++ Pickler Fix (locally tested pickled in C++ and unpickled in Python)
* [x] Do quant_tensor, sparse_tensor, etc require similar changes? (Sparse and Quant don't need this)
* [x] Add Comments
* [x] How to make sure C++ and Python are in sync? (Functions in `pickler.h` help in getting and setting Tensor Metadata (math-bits for now) on a tensor. They are the only place which should handle this.)

Notes:
Quant Tensor don't support complex dtypes and for float they segfault with `_neg_view` : https://github.com/pytorch/pytorch/issues/88484

Sparse Tensor:
```python
>>> a = torch.tensor([[0, 2.], [3j, 0]]).to_sparse()
>>> a.conj().is_conj()
False
>>> a._neg_view()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NotImplementedError: Cannot access storage of SparseTensorImpl
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88182
Approved by: https://github.com/ezyang, https://github.com/anjali411
2022-11-09 17:15:12 +00:00
Nikita Shulga
e1c123d29a Add UBSAN to ASAN (#88055)
Add undefined behavior sanitizer to `USE_ASAN` option.
Added `torch._C._crash_if_vptr_ubsan()` that only fails if vptr belongs to a wrong class after typecast
Deleted all ubsan supressions, but disabled `ProtoTest::Basic` as it fails above-mentioned vptr check.

Fixes https://github.com/pytorch/pytorch/issues/88042
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88055
Approved by: https://github.com/ezyang
2022-11-01 17:59:35 +00:00
Elias Ellison
fc21b9db23 Use Eager Code To Determine Conv Layout (#87305)
The logic for determine conv backend and therefore output striding is very complex. It depends on build settings, input striding/contiguity, sizes, etc. Eventually we should port that logic to the meta impl for dynamic shapes but that will require a lot more work and keeping the implementations in sync. See https://github.com/pytorch/torchdynamo/issues/1701

This is a prerequisite to removing the inductor conv stride propagation and more general fake tensor for inductor propagation. In that PR, the meta impls for cpu conv give incorrect striding which led to test failures (https://github.com/pytorch/pytorch/pull/87083).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87305
Approved by: https://github.com/ezyang
2022-10-28 16:37:04 +00:00
Driss Guessous
35c611d30f Add mem efficient backend flag (#87946)
# Summary
Add in a torch.backends.cuda flag and update context manager to pic between the three implementations of the scaled_dot_product_attention.

cc @cpuhrsch @jbschlosser @bhosmer @mikaylagawarecki
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87946
Approved by: https://github.com/cpuhrsch
2022-10-28 15:51:10 +00:00
soulitzer
adb76ef510 Expose API for backward execution order (#87507)
In this PR:
- graph_task stores graph roots on construction so that we can later traverse through the graph
- before the nodes are returned, they needed to be converted from raw_ptr to shared_ptr, and this should be OK because the graph is guaranteed to be alive

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87507
Approved by: https://github.com/albanD
2022-10-26 21:28:45 +00:00
Brian Hirsh
ce0c6e828e Reland "add an API for external backends to register custom device names (#86992)" (#87453)
Re-land of https://github.com/pytorch/pytorch/pull/86992

This reverts commit a895af9250.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87453
Approved by: https://github.com/ezyang, https://github.com/albanD
2022-10-21 16:51:36 +00:00
PyTorch MergeBot
a895af9250 Revert "add an API for external backends to register custom device names (#86992)"
This reverts commit fb6826bfd8.

Reverted https://github.com/pytorch/pytorch/pull/86992 on behalf of https://github.com/jeanschmidt due to breaking internal builds - D40534212 - arstudio-windows-tests-landcastle-0
2022-10-20 14:51:08 +00:00
Brian Hirsh
fb6826bfd8 add an API for external backends to register custom device names (#86992)
This API adds some improvements to external backends who are building C++ backends out of tree using the `PrivateUse1` dispatch key.

The docs and linked examples go over the API in more detail, but you should be able to use it like:
```
# This should probably be in the __init__.py file of a external backend's python package
> torch.register_privateuse1_backend("foo")`
# And it will allow the user to do this:
> a = torch.ones(2, device="foo")
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/86992
Approved by: https://github.com/albanD
2022-10-19 16:44:17 +00:00
Kurt Mohler
1dbc8ad3b7 Add Warning class and refactor C++ warnings to use it (#84101)
Also adds `TORCH_WARN_WITH` and `TORCH_WARN_DEPRECATION` macros

Part of #72948

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84101
Approved by: https://github.com/albanD
2022-10-18 20:02:42 +00:00
Jason Ansel
f1fdb6efbd Manual changes for moving dynamo to core (#86621)
This is the subset of the changes in #86461 not auto-generated by `copy_to_core.sh`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86621
Approved by: https://github.com/albanD
2022-10-11 23:01:21 +00:00
Elias Ellison
d3f7c34cb3 Enable aten-aten decomps (#85921)
Invokes aten-aten decomps with re-entrant FakeMode. These decomps are being used in other places, so it's good to unify the path static fake tensor takes / get additional testing etc. There is also an instance where we return different devices with cpu/cuda which this fixes ([batch_norm](https://github.com/pytorch/pytorch/blob/master/torch/_decomp/decompositions.py#L1374))

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85921
Approved by: https://github.com/ezyang
2022-10-08 05:12:42 +00:00
PyTorch MergeBot
7ec12a559c Revert "Enable aten-aten decomps (#85921)"
This reverts commit 62e4f51efd.

Reverted https://github.com/pytorch/pytorch/pull/85921 on behalf of https://github.com/huydhn due to Sorry for reverting your PR. I think it breaks a dynamo test in trunk 62e4f51efd
2022-10-08 01:59:54 +00:00
soulitzer
ba3fde6aa0 Add multi-grad hooks (#86260)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86260
Approved by: https://github.com/albanD
2022-10-07 21:16:45 +00:00
Elias Ellison
62e4f51efd Enable aten-aten decomps (#85921)
Invokes aten-aten decomps with re-entrant FakeMode. These decomps are being used in other places, so it's good to unify the path static fake tensor takes / get additional testing etc. There is also an instance where we return different devices with cpu/cuda which this fixes ([batch_norm](https://github.com/pytorch/pytorch/blob/master/torch/_decomp/decompositions.py#L1374))

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85921
Approved by: https://github.com/ezyang
2022-10-07 21:04:39 +00:00
Sahan Paliskara
936e93058b Delete torch::deploy from pytorch core (#85953)
As we have migrated torch::deploy over to https://github.com/pytorch/multipy, we can now delete it from pytorch core as ongoing development will happen there.

This PR was created due to syncing issues with https://github.com/pytorch/pytorch/pull/85443 which is where the review history can be found.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85953
Approved by: https://github.com/seemethere, https://github.com/malfet
2022-10-06 07:20:16 +00:00
Elias Ellison
9da5646cdb Add device logic handling for functions which allow scalar inputs as tensors (#86149)
Some functions allow scalars as tensor inputs. Add handling for them in device logic.

Fix for https://github.com/pytorch/torchdynamo/issues/1445
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86149
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
2022-10-04 18:54:00 +00:00
Driss Guessous
cd6477617c Custom sdp implementations dense (#85984)
# Summary

- This code creates the runtime dispatch system for choosing a performant fused SDP kernel. The only choice of fused kernel is flash_attention. It also creates python flags and a context manager that can be used to turn off and on behavior for dispatch.
- This also adds support for flash_attention with dense tensors.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85984
Approved by: https://github.com/cpuhrsch
2022-10-03 17:36:37 +00:00
Elias Ellison
f183a989a2 Fix fake tensor kernel nesting (#85920)
If you e.g. printed within a decomp which would call `in_kernel_invocation_manager`, on the exit from the manager it would unilaterally remove meta from the tls / set the tensor to return its real device. We should just restore what the existing state was.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85920
Approved by: https://github.com/ezyang, https://github.com/bdhirsh, https://github.com/huydhn
2022-10-02 04:19:40 +00:00
PyTorch MergeBot
b562987c28 Revert "Fix fake tensor kernel nesting (#85920)"
This reverts commit c2d9ea7f4b.

Reverted https://github.com/pytorch/pytorch/pull/85920 on behalf of https://github.com/huydhn due to Sorry for reverting your PR but I suspect that it causes a flaky memory leak issue in TestFakeTensorCUDA.test_fake_crossref_backward_amp_linalg_lstsq_cuda_float32
2022-10-01 19:30:21 +00:00
Elias Ellison
c2d9ea7f4b Fix fake tensor kernel nesting (#85920)
If you e.g. printed within a decomp which would call `in_kernel_invocation_manager`, on the exit from the manager it would unilaterally remove meta from the tls / set the tensor to return its real device. We should just restore what the existing state was.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85920
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
2022-09-30 23:11:20 +00:00
soulitzer
a876432aea Expose torch._will_engine_execute_node (#84773)
Addresses: https://github.com/pytorch/pytorch/issues/83617

This PR a way to query the TLS graph task's exec_info which is a map mapping the Node to a bool indicating whether it will be executed in the current backward pass (as determined by the inputs= argument for .grad of .backward).
- this works with both custom Function nodes and normal codegened nodes
-  to be able to verify whether the pyobject passed is an actual node, we now store pointers to PyTypeObjects into a set on registration.
- error out when .backward without inputs= to avoid silently returning True

Alternatives:
- not sure if it is possible to bind to Python from a raw pointer to Node. At least we wouldn't be able to use existing logic, and the Python object should only hold a weak reference to the Node.
- other solutions to the motivating issue seem to require more extensive modification to the engine

See the issue linked for an example of usage
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84773
Approved by: https://github.com/albanD
2022-09-28 20:13:52 +00:00
Sherlock Huang
01dbbeeeb5 Expose cpp_backtrace to python binding (#84896)
We can now get cpp stack trace by calling torch.utils.get_cpp_backtrace()

Sample output when calling from a torch_dispatch stack:
```
<omitting python frames>
frame #23: torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<pybind11::handle>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName) (0x7f69330bab90 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/utils/python_arg_parser.cpp:323)
frame #24: <unknown function> (0x7f6932a09e79 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/python_variable.cpp:2252)
frame #25: <unknown function> (0x7f69261aee33 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/PythonFallbackKernel.cpp:56)
frame #26: <unknown function> (0x7f69261afef9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:19)
frame #27: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #28: <unknown function> (0x7f6926fae9b9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/boxing.h:227)
frame #29: at::Tensor c10::Dispatcher::redispatch<at::Tensor, at::Tensor const&>(c10::TypedOperatorHandle<at::Tensor (at::Tensor const&)> const&, c10::DispatchKeySet, at::Tensor const&) const (0x7f6926e821f5 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:106)
frame #30: at::_ops::alias::redispatch(c10::DispatchKeySet, at::Tensor const&) (0x7f6927142c31 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:438)
frame #31: <unknown function> (0x7f692ae4f8be in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/ADInplaceOrViewType_1.cpp:1361)
frame #32: <unknown function> (0x7f692ae4f9b1 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/ADInplaceOrViewType_1.cpp:1362)
frame #33: <unknown function> (0x7f692aef77e9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h:13)
frame #34: <unknown function> (0x7f6926fae7d8 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:50)
frame #35: at::Tensor c10::Dispatcher::redispatch<at::Tensor, at::Tensor const&>(c10::TypedOperatorHandle<at::Tensor (at::Tensor const&)> const&, c10::DispatchKeySet, at::Tensor const&) const (0x7f6926e821c9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:97)
frame #36: at::_ops::alias::redispatch(c10::DispatchKeySet, at::Tensor const&) (0x7f6927142c31 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:438)
frame #37: <unknown function> (0x7f6929ec654a in /fsx/users/bahuang/repos/pytorch_fsx/build/aten/src/ATen/RedispatchFunctions.h:10697)
frame #38: <unknown function> (0x7f6929d9edae in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/VariableType_1.cpp:2837)
frame #39: <unknown function> (0x7f6929d9f043 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/VariableType_1.cpp:2838)
frame #40: <unknown function> (0x7f6929e7d2f9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h:13)
frame #41: <unknown function> (0x7f6929eb1344 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:478)
frame #42: <unknown function> (0x7f6929ea7b99 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:490)
frame #43: <unknown function> (0x7f6929e7d370 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:563)
frame #44: <unknown function> (0x7f6929e7d43a in /fsx/users/bahuang/repos/pytorch_fsx/c10/util/C++17.h:239)
frame #45: <unknown function> (0x7f6929e7d48c in /fsx/users/bahuang/repos/pytorch_fsx/c10/util/C++17.h:364)
frame #46: <unknown function> (0x7f6929e7d50a in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:554)
frame #47: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #48: c10::KernelFunction::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadd26 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:43)
frame #49: c10::Dispatcher::redispatchBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f692603890a in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:652)
frame #50: <unknown function> (0x7f69260387f9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:388)
frame #51: <unknown function> (0x7f69261af0ef in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/PythonFallbackKernel.cpp:96)
frame #52: <unknown function> (0x7f69261aff2b in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:25)
frame #53: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #54: c10::KernelFunction::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadd26 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:43)
frame #55: c10::Dispatcher::callBoxed(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6925fd6ab2 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:628)
frame #56: <unknown function> (0x7f6925fd6690 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:376)
frame #57: <unknown function> (0x7f692bf5b525 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:380)
frame #58: <unknown function> (0x7f692bf59fac in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/runtime/register_c10_ops.cpp:15)
frame #59: <unknown function> (0x7f692bf5af41 in /usr/include/c++/7/bits/std_function.h:316)
frame #60: std::function<void (std::vector<c10::IValue, std::allocator<c10::IValue> >&)>::operator()(std::vector<c10::IValue, std::allocator<c10::IValue> >&) const (0x7f6932ab9a0f in /usr/include/c++/7/bits/std_function.h:706)
frame #61: <unknown function> (0x7f6932aad541 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/stack.h:41)
frame #62: <unknown function> (0x7f6932ab3102 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/pybind_utils.h:1206 (discriminator 1))
frame #63: <unknown function> (0x7f6932ab3943 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/pybind_utils.h:1272)
frame #64: <unknown function> (0x7f6932a46120 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/init.cpp:1767)
frame #65: <unknown function> (0x7f6932a997be in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/cast.h:1441)
frame #66: <unknown function> (0x7f6932a8a985 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/cast.h:1410)
frame #67: <unknown function> (0x7f6932a66e1e in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:249)
frame #68: <unknown function> (0x7f6932a66ec2 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:224)
frame #69: <unknown function> (0x7f6932473111 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:929)
frame #104: __libc_start_main (0x7f693485dc87 in /build/glibc-uZu3wS/glibc-2.27/csu/../csu/libc-start.c:310)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84896
Approved by: https://github.com/ezyang
2022-09-27 14:59:08 +00:00
Elias Ellison
bcc544e9d7 Add FakeCrossRef tests for backwards, Fix Layer Norm Backward Decomp (#85417)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85417
Approved by: https://github.com/ezyang
2022-09-26 17:08:14 +00:00
PyTorch MergeBot
d10de31cc8 Revert "Add FakeCrossRef tests for backwards, Fix Layer Norm Backward Decomp (#85417)"
This reverts commit 78afa0cf0c.

Reverted https://github.com/pytorch/pytorch/pull/85417 on behalf of https://github.com/clee2000 due to broke tests on trunk 78afa0cf0c
2022-09-23 17:21:43 +00:00
Elias Ellison
78afa0cf0c Add FakeCrossRef tests for backwards, Fix Layer Norm Backward Decomp (#85417)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85417
Approved by: https://github.com/ezyang
2022-09-23 15:50:03 +00:00
Richard Zou
5e5c319549 Move functorch python bindings to torch/csrc (#85426)
This moves functorch's python bindings to torch/csrc/functorch/init.cpp.
Coming next is the torchdim move. I didn't do torchdim yet because
moving functorch's python bindings unblocks some other things that I
want to do first.

Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85426
Approved by: https://github.com/ezyang
2022-09-22 18:47:12 +00:00
PyTorch MergeBot
5043457a8e Revert "Add FakeCrossRef tests for backwards, Fix Layer Norm Backward Decomp (#85417)"
This reverts commit 9c77083965.

Reverted https://github.com/pytorch/pytorch/pull/85417 on behalf of https://github.com/clee2000 due to broke tests on trunk (and pull somehow) 9c77083965
2022-09-22 15:44:38 +00:00
Elias Ellison
9c77083965 Add FakeCrossRef tests for backwards, Fix Layer Norm Backward Decomp (#85417)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85417
Approved by: https://github.com/ezyang
2022-09-22 13:03:57 +00:00
PyTorch MergeBot
3122a96ee4 Revert "Improve and expose cpp_backtrace to python binding (#84896)"
This reverts commit 73fbca1ea6.

Reverted https://github.com/pytorch/pytorch/pull/84896 on behalf of https://github.com/kit1980 due to Broke libtorch and linux-binary-manywheel - 73fbca1ea6
2022-09-21 03:13:20 +00:00
Sherlock Huang
73fbca1ea6 Improve and expose cpp_backtrace to python binding (#84896)
We can now get cpp stack trace by calling torch.utils.get_cpp_backtrace()

Sample output when calling from a torch_dispatch stack:
```
<omitting python frames>
frame #23: torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<pybind11::handle>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName) (0x7f69330bab90 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/utils/python_arg_parser.cpp:323)
frame #24: <unknown function> (0x7f6932a09e79 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/python_variable.cpp:2252)
frame #25: <unknown function> (0x7f69261aee33 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/PythonFallbackKernel.cpp:56)
frame #26: <unknown function> (0x7f69261afef9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:19)
frame #27: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #28: <unknown function> (0x7f6926fae9b9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/boxing.h:227)
frame #29: at::Tensor c10::Dispatcher::redispatch<at::Tensor, at::Tensor const&>(c10::TypedOperatorHandle<at::Tensor (at::Tensor const&)> const&, c10::DispatchKeySet, at::Tensor const&) const (0x7f6926e821f5 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:106)
frame #30: at::_ops::alias::redispatch(c10::DispatchKeySet, at::Tensor const&) (0x7f6927142c31 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:438)
frame #31: <unknown function> (0x7f692ae4f8be in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/ADInplaceOrViewType_1.cpp:1361)
frame #32: <unknown function> (0x7f692ae4f9b1 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/ADInplaceOrViewType_1.cpp:1362)
frame #33: <unknown function> (0x7f692aef77e9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h:13)
frame #34: <unknown function> (0x7f6926fae7d8 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:50)
frame #35: at::Tensor c10::Dispatcher::redispatch<at::Tensor, at::Tensor const&>(c10::TypedOperatorHandle<at::Tensor (at::Tensor const&)> const&, c10::DispatchKeySet, at::Tensor const&) const (0x7f6926e821c9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:97)
frame #36: at::_ops::alias::redispatch(c10::DispatchKeySet, at::Tensor const&) (0x7f6927142c31 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:438)
frame #37: <unknown function> (0x7f6929ec654a in /fsx/users/bahuang/repos/pytorch_fsx/build/aten/src/ATen/RedispatchFunctions.h:10697)
frame #38: <unknown function> (0x7f6929d9edae in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/VariableType_1.cpp:2837)
frame #39: <unknown function> (0x7f6929d9f043 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/autograd/generated/VariableType_1.cpp:2838)
frame #40: <unknown function> (0x7f6929e7d2f9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h:13)
frame #41: <unknown function> (0x7f6929eb1344 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:478)
frame #42: <unknown function> (0x7f6929ea7b99 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:490)
frame #43: <unknown function> (0x7f6929e7d370 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:563)
frame #44: <unknown function> (0x7f6929e7d43a in /fsx/users/bahuang/repos/pytorch_fsx/c10/util/C++17.h:239)
frame #45: <unknown function> (0x7f6929e7d48c in /fsx/users/bahuang/repos/pytorch_fsx/c10/util/C++17.h:364)
frame #46: <unknown function> (0x7f6929e7d50a in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:554)
frame #47: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #48: c10::KernelFunction::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadd26 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:43)
frame #49: c10::Dispatcher::redispatchBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f692603890a in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:652)
frame #50: <unknown function> (0x7f69260387f9 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:388)
frame #51: <unknown function> (0x7f69261af0ef in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/PythonFallbackKernel.cpp:96)
frame #52: <unknown function> (0x7f69261aff2b in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:25)
frame #53: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadced in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/BoxedKernel_impl.h:41)
frame #54: c10::KernelFunction::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6932aadd26 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/boxing/KernelFunction_impl.h:43)
frame #55: c10::Dispatcher::callBoxed(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const (0x7f6925fd6ab2 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:628)
frame #56: <unknown function> (0x7f6925fd6690 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:376)
frame #57: <unknown function> (0x7f692bf5b525 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/dispatch/Dispatcher.h:380)
frame #58: <unknown function> (0x7f692bf59fac in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/runtime/register_c10_ops.cpp:15)
frame #59: <unknown function> (0x7f692bf5af41 in /usr/include/c++/7/bits/std_function.h:316)
frame #60: std::function<void (std::vector<c10::IValue, std::allocator<c10::IValue> >&)>::operator()(std::vector<c10::IValue, std::allocator<c10::IValue> >&) const (0x7f6932ab9a0f in /usr/include/c++/7/bits/std_function.h:706)
frame #61: <unknown function> (0x7f6932aad541 in /fsx/users/bahuang/repos/pytorch_fsx/aten/src/ATen/core/stack.h:41)
frame #62: <unknown function> (0x7f6932ab3102 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/pybind_utils.h:1206 (discriminator 1))
frame #63: <unknown function> (0x7f6932ab3943 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/pybind_utils.h:1272)
frame #64: <unknown function> (0x7f6932a46120 in /fsx/users/bahuang/repos/pytorch_fsx/torch/csrc/jit/python/init.cpp:1767)
frame #65: <unknown function> (0x7f6932a997be in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/cast.h:1441)
frame #66: <unknown function> (0x7f6932a8a985 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/cast.h:1410)
frame #67: <unknown function> (0x7f6932a66e1e in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:249)
frame #68: <unknown function> (0x7f6932a66ec2 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:224)
frame #69: <unknown function> (0x7f6932473111 in /fsx/users/bahuang/repos/pytorch_fsx/third_party/pybind11/include/pybind11/pybind11.h:929)
frame #104: __libc_start_main (0x7f693485dc87 in /build/glibc-uZu3wS/glibc-2.27/csu/../csu/libc-start.c:310)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84896
Approved by: https://github.com/ezyang
2022-09-21 01:32:33 +00:00
Aidyn-A
1456cca1fc Fix exception handling, improve overheads and avoid constructing storage for element size (#84612)
These changes were proposed by @MatthiasKohl in #84271 and #84542 that fix #84267 and #84056 respectively.
The reason I am creating the pull request is CLA check (see original PRs).

cc @ptrblck @malfet
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84612
Approved by: https://github.com/ngimel
2022-09-19 20:21:46 +00:00
soulitzer
7f88934a8f [reland 2] Call jit decomp in VariableType to improve forward AD coverage (#84976)
Reland of https://github.com/pytorch/pytorch/pull/84675
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84976
Approved by: https://github.com/zou3519
2022-09-15 22:46:19 +00:00
PyTorch MergeBot
36d79143ce Revert "[reland] Call jit decomposition in VariableType to increase forward AD coverage (#84151) (#84675)"
This reverts commit bb4e96c964.

Reverted https://github.com/pytorch/pytorch/pull/84675 on behalf of https://github.com/osalpekar due to causing asan xplat link-time errors like ld.lld: error: undefined symbol: torch::jit::has_jit_decomposition(c10::FunctionSchema const&)
2022-09-13 22:54:54 +00:00
soulitzer
bb4e96c964 [reland] Call jit decomposition in VariableType to increase forward AD coverage (#84151) (#84675)
This reverts commit acb4a09628.

In addition, we also fix a memory leak in layer norm.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84675
Approved by: https://github.com/zou3519
2022-09-12 20:33:14 +00:00
Mikayla Gawarecki
e217b30b0f Add torch.nested namespace (#84102)
First step towards #83775
- only `to_padded_tensor` is moved to the nested namespace for now
- following the schema used for `special`, `fft`, `linalg` and other namespaces, nested functions are registered in native_functions.yaml as `nested_{function_name}` and are bound to the desired Python name in
`torch/nested/__init__.py`, and the desired C++ name in `torch/csrc/api/include/torch/nested.h`.

~~**Question**: should we keep the documentation for `Tensor.to_padded_tensor` or can this deleted since it is shared by `torch.nested.to_padded_tensor`?~~

[generated nested docs](https://docs-preview.pytorch.org/84102/nested.html?highlight=nested#module-torch.nested)

Differential Revision: [D39361148](https://our.internmc.facebook.com/intern/diff/D39361148)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84102
Approved by: https://github.com/drisspg
2022-09-12 16:31:05 +00:00