Commit Graph

35 Commits

Author SHA1 Message Date
Li-Huai (Allan) Lin
3c0072e7c0 [MPS] Prerequisite for MPS C++ extension (#102483)
in order to add mps kernels to torchvision codebase, we need to expose mps headers and allow objc++ files used in extensions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102483
Approved by: https://github.com/malfet
2023-06-07 17:28:31 +00:00
Sergii Dymchenko
5ab50cf048 Fix shoud/shoudl typos (#97930)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97930
Approved by: https://github.com/clee2000
2023-03-30 08:27:16 +00:00
Xiao Wang
ef0332e36d Allow relocatable device code linking in pytorch CUDA extensions (#78225)
Close https://github.com/pytorch/pytorch/issues/57543

Doc: check `Relocatable device code linking:` in https://docs-preview.pytorch.org/78225/cpp_extension.html#torch.utils.cpp_extension.CUDAExtension
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78225
Approved by: https://github.com/ezyang, https://github.com/malfet
2022-06-02 21:35:56 +00:00
Nikita Shulga
6302cdb9bc [Reland] Add BUILD_LAZY_CUDA_LINALG option (#73447)
Summary:
When enabled, it will generate `torch_cuda_linalg` library, which would depend on cusolve and magma and registers dynamic bindings to it from LinearAlgebraStubs

Avoid symbol clashes that can result in infinite recursion by moving all symbols in the library to its own namespace.

Add checks that should prevent calling self in recursion to `LinearAlgebraStubs.cpp`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/73447

Reviewed By: albanD

Differential Revision: D34538827

Pulled By: malfet

fbshipit-source-id: f2535b471d3524768a84b2e169b6aa24c26c03bf
(cherry picked from commit 4ec24b079c861c1122f0fa86e280b977c3c2f7ac)
2022-03-01 21:33:07 +00:00
Jane Xu
31271284bc Revert D33992795: Add BUILD_LAZY_CUDA_LINALG option
Test Plan: revert-hammer

Differential Revision:
D33992795 (82130758f0)

Original commit changeset: d1fa351a3206

Original Phabricator Diff: D33992795 (82130758f0)

fbshipit-source-id: f0a66d7431aea2c358718eef16fab05712cd6cae
(cherry picked from commit df4900115f712e477ed5cc97510e6515a1ca17a9)
2022-02-25 18:37:31 +00:00
Nikita Shulga
82130758f0 Add BUILD_LAZY_CUDA_LINALG option (#72306)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72306

When enable, it will generate `torch_cuda_linalg` library, which would depend on cusolve and magma and registers dynamic bindings to it from LinearAlgebraStubs

Test Plan: Imported from OSS

Reviewed By: ngimel

Differential Revision: D33992795

Pulled By: malfet

fbshipit-source-id: d1fa351a320659b29754997c20d754e69bfe36c0
(cherry picked from commit d5d6c69a988b9454538ecd28674206da2541de17)
2022-02-24 03:30:04 +00:00
Masaki Kozuki
7c739e1ab9 Resubmit #67161 (#67735)
Summary:
Skip building extensions if windows following https://github.com/pytorch/pytorch/pull/67161#issuecomment-958062611

Related issue: https://github.com/pytorch/pytorch/issues/67073

cc ngimel xwang233 ptrblck

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67735

Reviewed By: bdhirsh

Differential Revision: D32141250

Pulled By: ngimel

fbshipit-source-id: 9bfdb7cf694c99f6fc8cbe9033a12429b6e4b6fe
2021-11-04 09:59:30 -07:00
Mike Ruberry
aa16de517d Revert D31984694: [pytorch][PR] make TORCH_(CUDABLAS|CUSOLVER)_CHECK usable in custom extensions
Test Plan: revert-hammer

Differential Revision:
D31984694 (d4493b27ee)

Original commit changeset: 0035ecd13980

fbshipit-source-id: c85689007719c9e4a930b0a8a32d481a501d3c14
2021-10-30 03:51:18 -07:00
Masaki Kozuki
d4493b27ee make TORCH_(CUDABLAS|CUSOLVER)_CHECK usable in custom extensions (#67161)
Summary:
Make `TORCH_CUDABLAS_CHECK` and `TORCH_CUSOLVER_CHECK` available in custom extensions by exporting the internal functions called by the both macros.

Rel: https://github.com/pytorch/pytorch/issues/67073

cc xwang233 ptrblck

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67161

Reviewed By: jbschlosser

Differential Revision: D31984694

Pulled By: ngimel

fbshipit-source-id: 0035ecd1398078cf7d3abc23aaefda57aaa31106
2021-10-29 17:27:07 -07:00
Aaron Bockover
c78ab28441 Add support for the ONNX Runtime Eager Mode backend (#58248)
Summary:
This PR implements the necessary hooks/stubs/enums/etc for complete ONNX Runtime (ORT) Eager Mode integration. The actual extension will live out of tree at https://github.com/pytorch/ort.

We have been [working on this at Microsoft](https://github.com/microsoft/onnxruntime-pytorch/tree/eager-ort/torch_onnxruntime) for the last few months, and are finally ready to contribute the PyTorch core changes upstream (nothing major or exciting, just the usual boilerplate for adding new backends).

The ORT backend will allow us to ferry [almost] all torch ops into granular ONNX kernels that ORT will eagerly execute against any devices it supports (therefore, we only need a single ORT backend from a PyTorch perspective).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58248

Reviewed By: astaff

Differential Revision: D30344992

Pulled By: albanD

fbshipit-source-id: 69082b32121246340d686e16653626114b7714b2
2021-08-20 11:17:13 -07:00
Shen Li
1022443168 Revert D30279364: [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: revert-hammer

Differential Revision:
D30279364 (b004307252)

Original commit changeset: c1ed77dfe43a

fbshipit-source-id: eab50857675c51e0088391af06ec0ecb14e2347e
2021-08-12 11:45:01 -07:00
Zsolt Dollenstein
b004307252 [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: manual inspection & sandcastle

Reviewed By: zertosh

Differential Revision: D30279364

fbshipit-source-id: c1ed77dfe43a3bde358f92737cd5535ae5d13c9a
2021-08-12 10:58:35 -07:00
peter
3517ee1bcb Fix ordered_dict.h for CUDA on Windows (#55275)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/55266

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55275

Reviewed By: mrshenli

Differential Revision: D27623887

Pulled By: malfet

fbshipit-source-id: 6dac357e21179a259ac95f0e1b7399b03dacc81d
2021-04-07 23:43:35 -07:00
Jithun Nair
5f62308739 Hipify revamp [REDUX] (#48715)
Summary:
[Refiled version of earlier PR https://github.com/pytorch/pytorch/issues/45451]

This PR revamps the hipify module in PyTorch to overcome a long list of shortcomings in the original implementation. However, these improvements are applied only when using hipify to build PyTorch extensions, not for PyTorch or Caffe2 itself.

Correspondingly, changes are made to cpp_extension.py to match these improvements.

The list of improvements to hipify is as follows:

1. Hipify files in the same directory as the original file, unless there's a "cuda" subdirectory in the original file path, in which case the hipified file will be in the corresponding file path with "hip" subdirectory instead of "cuda".
2. Never hipify the file in-place if changes are introduced due to hipification i.e. always ensure the hipified file either resides in a different folder or has a different filename compared to the original file.
3. Prevent re-hipification of already hipified files. This avoids creation of unnecessary "hip/hip" etc. subdirectories and additional files which have no actual use.
4. Do not write out hipified versions of files if they are identical to the original file. This results in a cleaner output directory, with minimal number of hipified files created.
5. Update header rewrite logic so that it accounts for the previous improvement.
6. Update header rewrite logic so it respects the rules for finding header files depending on whether "" or <> is used.
7. Return a dictionary of mappings of original file paths to hipified file paths from hipify function.
8. Introduce a version for hipify module to allow extensions to contain back-compatible code that targets a specific point in PyTorch where the hipify functionality changed.
9. Update cuda_to_hip_mappings.py to account for the ROCm component subdirectories inside /opt/rocm/include. This also results in cleanup of the Caffe2_HIP_INCLUDE path to remove unnecessary additions to the include path.

The list of changes to cpp_extension.py is as follows:

1. Call hipify when building a CUDAExtension for ROCm.
2. Prune the list of source files to CUDAExtension to include only the hipified versions of any source files in the list (if both original and hipified versions of the source file are in the list)
3. Add subdirectories of /opt/rocm/include to the include path for extensions, so that ROCm headers for subcomponent libraries are found automatically

cc jeffdaily sunway513 ezyang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/48715

Reviewed By: bdhirsh

Differential Revision: D25272824

Pulled By: ezyang

fbshipit-source-id: 8bba68b27e41ca742781e1c4d7b07c6f985f040e
2020-12-02 18:03:23 -08:00
Nikita Shulga
8af9f2cc23 Revert D24924736: [pytorch][PR] Hipify revamp
Test Plan: revert-hammer

Differential Revision:
D24924736 (10b490a3e0)

Original commit changeset: 4af42b8ff4f2

fbshipit-source-id: 7f8f90d55d8a69a2890ec73622fcea559189e381
2020-11-18 11:48:30 -08:00
Jithun Nair
10b490a3e0 Hipify revamp (#45451)
Summary:
This PR revamps the hipify module in PyTorch to overcome a long list of shortcomings in the original implementation. However, these improvements are applied only when using hipify to build PyTorch extensions, **not for PyTorch or Caffe2 itself**.

Correspondingly, changes are made to `cpp_extension.py` to match these improvements.

The list of improvements to hipify is as follows:

1. Hipify files in the same directory as the original file, unless there's a "cuda" subdirectory in the original file path, in which case the hipified file will be in the corresponding file path with "hip" subdirectory instead of "cuda".
2. Never hipify the file in-place if changes are introduced due to hipification i.e. always ensure the hipified file either resides in a different folder or has a different filename compared to the original file.
3. Prevent re-hipification of already hipified files. This avoids creation of unnecessary "hip/hip" etc. subdirectories and additional files which have no actual use.
4. Do not write out hipified versions of files if they are identical to the original file. This results in a cleaner output directory, with minimal number of hipified files created.
5. Update header rewrite logic so that it accounts for the previous improvement.
6. Update header rewrite logic so it respects the rules for finding header files depending on whether `""` or `<>` is used.
7. Return a dictionary of mappings of original file paths to hipified file paths from `hipify` function.
8. Introduce a version for hipify module to allow extensions to contain back-compatible code that targets a specific point in PyTorch where the hipify functionality changed.
9. Update `cuda_to_hip_mappings.py` to account for the ROCm component subdirectories inside `/opt/rocm/include`. This also results in cleanup of the `Caffe2_HIP_INCLUDE` path to remove unnecessary additions to the include path.

The list of changes to `cpp_extension.py` is as follows:
1. Call `hipify` when building a CUDAExtension for ROCm.
2. Prune the list of source files to CUDAExtension to include only the hipified versions of any source files in the list (if both original and hipified versions of the source file are in the list)
3. Add subdirectories of /opt/rocm/include to the include path for extensions, so that ROCm headers for subcomponent libraries are found automatically

cc jeffdaily sunway513 hgaspar lcskrishna ashishfarmer

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45451

Reviewed By: ezyang

Differential Revision: D24924736

Pulled By: malfet

fbshipit-source-id: 4af42b8ff4f21c3782dedb8719b8f9f86b34bd2d
2020-11-18 08:37:49 -08:00
Gao, Xiang
b12d645c2f Test TORCH_LIBRARY in CUDA extension (#47524)
Summary:
In the [official documentation](https://pytorch.org/tutorials/advanced/torch_script_custom_ops.html), it is recommended to use `TORCH_LIBRARY` to register ops for TorchScript. However, that code is never tested with CUDA extension and is actually broken (https://github.com/pytorch/pytorch/issues/47493). This PR adds a test for it. It will not pass CI now, but it will pass when the issue https://github.com/pytorch/pytorch/issues/47493 is fixed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/47524

Reviewed By: zou3519

Differential Revision: D24991839

Pulled By: ezyang

fbshipit-source-id: 037196621c7ff9a6e7905efc1097ff97906a0b1c
2020-11-16 13:12:22 -08:00
lixinyu
5a979fcb99 allow user passing relative paths in include_dirs within setuptools.setup (#38264)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38264

Test Plan: Imported from OSS

Differential Revision: D21509277

Pulled By: glaringlee

fbshipit-source-id: b0bc17d375a89b96b1bdacde5987b4f4baa9468e
2020-05-13 20:00:12 -07:00
Pavel Belevich
11a40410e7 pybind11 type_caster for at::Generator and custom RNG python test (#34774)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34774

This PR provides pybind11's `type_caster<at::Generator>` that allows mapping `at::Generator` instance returned from user-defined method to python `torch::Generator`, defined as `THPGenerator ` c++ class.

This allows 1) defining custom RNG in c++ extension 2) using custom RNG in python code.

`TestRNGExtension.test_rng` shows how to use custom RNG defined in `rng_extension.cpp`

Test Plan: Imported from OSS

Differential Revision: D20549451

Pulled By: pbelevich

fbshipit-source-id: 312a6deccf8228f7f60695bbf95834620d52f5eb
2020-03-22 10:57:35 -07:00
ashish
616beb1412 [ROCm] Added support for pytorch extensions to use HIP (#32669)
Summary:
This pull request has changes for:
1. Enabling a torch module with HIP code to be compiled by cpp_extensions.py
2. Fixes for hipify module to be able to be used by a torch extension

cc: ezyang iotamudelta jeffdaily
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32669

Differential Revision: D20033893

Pulled By: zou3519

fbshipit-source-id: fd6ddc8cdcd3930f41008636bb2bc9dd26cdb008
2020-02-21 12:10:02 -08:00
Edward Yang
9c8b67b179 Revert D19905015: Revert D19858239: [pytorch][PR] Refactor and add VS 14.16 and 2019 CI for Windows
Test Plan: revert-hammer

Differential Revision:
D19905015

Original commit changeset: b117e44d5552

fbshipit-source-id: a10c78aed953434f69f466bdd36f914334ba82f3
2020-02-14 13:42:29 -08:00
George Guanheng Zhang
ff5f38f53b Revert D19858239: [pytorch][PR] Refactor and add VS 14.16 and 2019 CI for Windows
Test Plan: revert-hammer

Differential Revision:
D19858239

Original commit changeset: f068d8505886

fbshipit-source-id: b117e44d5552e157747920d8098ce3b86a29c6bf
2020-02-14 07:35:08 -08:00
peter
946f3a9ed7 Refactor and add VS 14.16 and 2019 CI for Windows (#33117)
Summary:
Changes according to https://github.com/pytorch/pytorch/issues/18319.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33117

Differential Revision: D19858239

Pulled By: ezyang

fbshipit-source-id: f068d8505886b92c9388c9c636eab5bd20377ceb
2020-02-13 11:45:41 -08:00
Richard Zou
6209412647 Add option to use ninja to compile ahead-of-time cpp_extensions (#32495)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32495

Background
------------------------------
Previously, ninja was used to compile+link inline cpp_extensions and
ahead-of-time cpp_extensions were compiled with distutils. This PR adds
the ability to compile (but not link) ahead-of-time cpp_extensions with ninja.

The main motivation for this is to speed up cpp_extension builds: distutils
does not make use of parallelism. With this PR, using the new option, on my machine,
- torchvision compilation goes from 3m43s to 49s
- nestedtensor compilation goes from 2m0s to 28s.

User-facing changes
------------------------------

I added a `use_ninja` flag to BuildExtension. This defaults to
`True`. When `use_ninja` is True:
- it will attempt to use ninja.
- If we cannot use ninja, then this throws a warning and falls back to
distutils.
- Situations we cannot use ninja: Windows (NYI, I'll open a new issue
for this), if ninja cannot be found on the system.

Implementation Details
------------------------------

This PR makes this change in two steps. Please me know if it would be
easier to review this if I split this up into a stacked diff.
Those changes are:
1) refactor _write_ninja_file to separate the policy (what compiler flags
to pass) from the mechanism (how to write the ninja file and do compilation).
2) call _write_ninja_file and _run_ninja_build while building
ahead-of-time cpp_extensions. These are only used to compile objects;
distutils still handles the linking.

Change 1: refactor _write_ninja_file to seperate policy from mechanism
- I split _write_ninja_file into: _write_ninja_file and
_write_ninja_file_to_build_library
- I renamed _build_extension_module to _run_ninja_build

Change 2: Call _write_ninja_file while building ahead-of-time
cpp_extensions
- _write_ninja_file_and_compile_objects calls _write_ninja_file to only
build object files.
- We monkey-patch distutils.CCompiler.compile to call
_write_ninja_files_and_compile_objects
- distutils still handles the linking step. The linking step is not a
bottleneck so it was not a concern.
- This change only works on unix-based systems. Our code for windows
goes down a different codepath and I did not want to mess with that.
- If a system does not support ninja, we raise a warning and fall back
to the original compilation path.

Test Plan
------------------------------

Adhoc testing
- I built torchvision using pytorch master and printed out the build
commands. Next, I used this branch to build torchvision and looked at
the ninja file. I compared the ninja file with the build commands and
asserted that they were functionally the same.
- I repeated the above for pytorch/nestedtensor.

PyTorch test suite
- I split `test_cpp_extensions` into `test_cpp_extensions_aot` and
`test_cpp_extensions_jit`. The AOT (ahead-of-time) version tests
ahead-of-time and the JIT version tests just-in-time (not to be confused
with TorchScript)
- `test_cpp_extensions_aot` gets run TWICE by run_test.py, once with
a module that was built with ninja, and once with a module that was
built without ninja.
- run_test.py asserts that when we are building with use_ninja=True,
ninja is actually available on the system.

Test Plan: Imported from OSS

Differential Revision: D19730432

Pulled By: zou3519

fbshipit-source-id: 819590d01cf65e8da5a1e8019b8b3084792fee90
2020-02-05 18:49:29 -08:00
Pavel Belevich
9357b91180 Remove -Werror from test/cpp_extensions/setup.py (#32704)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32704

-Werror is too aggressive check for test cpp extensions because it fails even on deprecation warnings which is are included from core codebase.

Fixes #32136

Test Plan: Imported from OSS

Differential Revision: D19620190

Pulled By: pbelevich

fbshipit-source-id: 0e91566eb5de853559bb59e68a02b0bb15e7341b
2020-01-29 14:12:32 -08:00
peter
e870a9a870 More checks on MSVC (#29709)
Summary:
The flags `/sdl` and `/permissive-` are switched on automatically when using the VS GUI. Adding those checks will ensure that those annoying errors won't appear when users use the VS GUI to build their project.

More info:
https://docs.microsoft.com/en-us/cpp/build/reference/sdl-enable-additional-security-checks?view=vs-2017
https://docs.microsoft.com/en-us/cpp/build/reference/permissive-standards-conformance?view=vs-2017
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29709

Differential Revision: D18473888

Pulled By: bddppq

fbshipit-source-id: 21156b0232a5dc3b566d14491d00bacb11493254
2019-11-13 00:15:40 -08:00
Roy Li
4c803f4ebd Expose backend extensions to python
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16582

Reviewed By: gchanan

Differential Revision: D13887539

fbshipit-source-id: 8755babf2e3e849af974655f2f3a91740efe977e
2019-02-01 11:00:18 -08:00
Peter Goldsborough
6f2307ba6a Allow building libraries with setuptools that dont have abi suffix (#14130)
Summary:
When using `setuptools` to build a Python extension, setuptools will automatically add an ABI suffix like `cpython-37m-x86_64-linux-gnu` to the shared library name when using Python 3. This is required for extensions meant to be imported as Python modules. When we use setuptools to build shared libraries not meant as Python modules, for example libraries that define and register TorchScript custom ops, having your library called `my_ops.cpython-37m-x86_64-linux-gnu.so` is a bit annoying compared to just `my_ops.so`, especially since you have to reference the library name when loading it with `torch.ops.load_library` in Python.

This PR fixes this by adding a `with_options` class method to the `torch.utils.cpp_extension.BuildExtension` which allows configuring the `BuildExtension`. In this case, the first option we add is `no_python_abi_suffix`, which we then use in `get_ext_filename` (override from `setuptools.build_ext`) to throw away the ABI suffix.

I've added a test `setup.py` in a `no_python_abi_suffix_test` folder.

Fixes https://github.com/pytorch/pytorch/issues/14188

t-vi fmassa soumith
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14130

Differential Revision: D13216575

Pulled By: goldsborough

fbshipit-source-id: 67dc345c1278a1a4ee4ca907d848bc1fb4956cfa
2018-11-27 17:35:53 -08:00
Peter Goldsborough
7b9d755d88 Restructure torch/torch.h and extension.h (#13482)
Summary:
This PR restructures the public-facing C++ headers in a backwards compatible way. The problem right now is that the C++ extension header `torch/extension.h` does not include the C++ frontend headers from `torch/torch.h`. However, those C++ frontend headers can be convenient. Further, including the C++ frontend main header `torch/torch.h` in a C++ extension currently raises a warning because we want to move people away from exclusively including `torch/torch.h` in extensions (which was the correct thing 6 months ago), since that *used* to be the main C++ extension header but is now the main C++ frontend header. In short: it should be possible to include the C++ frontend functionality from `torch/torch.h`, but without including that header directly because it's deprecated for extensions.

For clarification: why is `torch/torch.h` deprecated for extensions? Because for extensions we need to include Python stuff, but for the C++ frontend we don't want this Python stuff. For now the python stuff is included in `torch/torch.h` whenever the header is used from a C++ extension (enabled by a macro passed by `cpp_extensions.py`) to not break existing users, but this should change in the future.

The overall fix is simple:

1. C++ frontend sub-headers move from `torch/torch.h` into `torch/all.h`.
2. `torch/all.h` is included in:
    1. `torch/torch.h`, as is.
    2. `torch/extensions.h`, to now also give C++ extension users this functionality.

With the next release we can then:
1. Remove the Python includes from `torch/torch.h`
2. Move C++-only sub-headers from `all.h` back into `torch.h`
3. Make `extension.h` include `torch.h` and `Python.h`

This will then break old C++ extensions that include `torch/torch.h`, since the correct header for C++ extensions is `torch/extension.h`.

I've also gone ahead and deprecated `torch::CPU` et al. since those are long due to die.

ezyang soumith apaszke fmassa
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13482

Differential Revision: D12924999

Pulled By: goldsborough

fbshipit-source-id: 5bb7bdc005fcb7b525195b769065176514efad8a
2018-11-05 16:46:52 -08:00
Francisco Massa
b240cc9b87
Add support for dotted names in CPP Extensions (#6986)
* Add support for dotted names in CPP Extensions

* Modify tests for cpp extensions

Test that dotted names work

* Py2 fixes

* Make run_test cpp_extensions Win-compatible
2018-04-29 18:10:03 +02:00
Soumith Chintala
0016dad841
[pytorch] minor fixes around binary builds (#6291)
* remove patch

* check that cuda dev environment is also present before running cpp_extension cuda tests

* add OSError to list of exceptions when c++filt is not found
2018-04-04 22:37:13 -04:00
Peter Goldsborough
008ba18c5b Improve CUDA extension support (#5324)
* Also pass torch includes to nvcc build

* Export ATen/cuda headers with install

* Refactor flags common to C++ and CUDA

* Improve tests for C++/CUDA extensions

* Export .cuh files under THC

* Refactor and clean cpp_extension.py slightly

* Include ATen in cuda extension test

* Clarifying comment in cuda_extension.cu

* Replace cuda_extension.cu with cuda_extension_kernel.cu in setup.py

* Copy compile args in C++ extension and add second kernel

* Conditionally add -std=c++11 to cuda_flags

* Also export cuDNN headers

* Add comment about deepcopy
2018-02-23 10:15:30 -05:00
Peter Goldsborough
22fe542b8e Use TORCH_EXTENSION_NAME macro to avoid mismatched module/extension name (#5277)
* Warn users about mismatched module/extension name

* Define TORCH_EXTENSION_NAME macro
2018-02-16 22:31:04 -05:00
Peter Goldsborough
1b71e78d13 CUDA support for C++ extensions with setuptools (#5207)
This PR adds support for convenient CUDA integration in our C++ extension mechanism. This mainly involved figuring out how to get setuptools to use nvcc for CUDA files and the regular C++ compiler for C++ files. I've added a mixed C++/CUDA test case which works great.

I've also added a CUDAExtension and CppExtension function that constructs a setuptools.Extension with "usually the right" arguments, which reduces the required boilerplate to write an extension even more. Especially for CUDA, where library_dir (CUDA_HOME/lib64) and libraries (cudart) have to be specified as well.

Next step is to enable this with our "JIT" mechanism.

NOTE: I've had to write a small find_cuda_home function to find the CUDA install directory. This logic is kind of a duplicate of tools/setup_helpers/cuda.py, but that's not available in the shipped PyTorch distribution. The function is also fairly short. Let me know if it's fine to duplicate this logic.

* CUDA support for C++ extensions with setuptools

* Remove printf in CUDA test kernel

* Remove -arch flag in test/cpp_extensions/setup.py

* Put wrap_compile into BuildExtension

* Add guesses for CUDA_HOME directory

* export PATH to CUDA location in test.sh

* On Python2, sys.platform has the linux version number
2018-02-13 15:02:50 -08:00
Peter Goldsborough
1262fba8e7 [cpp extensions] Create torch.h and update setup.py 2018-02-01 16:19:03 -08:00