This is a new version of #15648 based on the latest master branch.
Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.
In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)
Fixes https://github.com/pytorch/pytorch/issues/71105
@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74847
Similar to the other PRs in this stack, the main problem was
that fusion needed to detect the original module type of parametrized
module when sparse prepare was called before fusion. In addition, there
was a potential issue with fusion before sparse_prepare but after the
sparse_config is created. However, in practice fusion moves the
references to the original modules into the fused module without issue.
Thus the original sparse_config that pointed to the original modules
gets automatically updated. If the fusion method changes this may cause
an issue since no explicit handling or updating of these pointers was
needed.
Test Plan:
python test/test_ao_sparsity.py TestComposability
Imported from OSS
Reviewed By: vkuzo, andrewor14, jerryzh168
Differential Revision: D35240273
fbshipit-source-id: 62ed66689b285c3fa68f1e149266ab877f1cdd8e
(cherry picked from commit 2adb002c43f702fa1f18637157264fcbc545002a)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70009
Currently we rely on module.training to decide whether we'll do a qat fusion or ptq fusion, this is
not ideal since training flag has nothing to do with quantization, this PR introduces an extra flag `is_qat`
to control this
Note: currently we still has the constraint that when `is_qat` is True, the modules must be in training mode, we
can relax this constraint later
Test Plan:
```
python test/test_quantization.py TestFuseFx
python test/test_quantization.py TestFusion
```
Imported from OSS
**Static Docs Preview: classyvision**
|[Full Site](https://our.intern.facebook.com/intern/staticdocs/eph/D33178977/V36/classyvision/)|
|**Modified Pages**|
Reviewed By: mruberry
Differential Revision: D33178977
fbshipit-source-id: 0c1499c45526971140d9ad58e2994d1edf5ad770
(cherry picked from commit 2d51f9fb28)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66058
After the initial migration from `torch.quantization` to `torch.ao.quantization`, some of the files did not change.
This happened because the migration was done in parallel, and some of the files were landed while the others were still in the original location.
This is the last fix in the AO migration phase 1, which completely enables the ao.quantization namespace.
Test Plan: `python test/test_quantization.py`
Reviewed By: vkuzo
Differential Revision: D31366066
Pulled By: z-a-f
fbshipit-source-id: bf4a74885be89d098df2d87e685795a2a64026c5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64913
AO Team is migrating the existing torch.quantization into torch.ao.quantization. We are doing it one file at a time to make sure that the internal callsites are updated properly.
This migrates the fuse_module.py from torch.quantization to torch.ao.quantization.
At this point both locations will be supported. Eventually the torch.quantization will be deprecated.
Test Plan: `buck test mode/dev //caffe2/test:quantization`
Reviewed By: vkuzo
Differential Revision: D30882819
fbshipit-source-id: 1926ad6aa49136aceb5b625dcef4bfde3a2860d4