mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
3a37173665
12 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
0032fa7725 |
Add a Functionalization pass in core (#64432)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/64432 Original PR description + feedback here: https://github.com/pytorch/pytorch/pull/63048 I've addressed all of the feedback in the original PR and made some pretty large changes, listed below. **Table of Contents** - Starting points - List of the main changes from the original PR - Next Steps - Example codegen output (for a view, mutation, and view+mutation op) **Starting Points** A good place to start when looking through the PR: * Alban mentioned that this is a useful mental model (thanks Ed for originally making this clear to me). Semantically, the pass currently does THREE things, which are all needed by functorch - all fused together into one big pass. * (a) alias removal, which replaces {view} calls with {view}_copy calls, and manually tracks aliasing information, so that when one tensor is mutated, we re-apply the same mutation to all of the aliases. This is the bulk of the work - once this is done, the next 2 things are trivial to implement. * (b) mutation removal, which is easy to do once we know that there are no aliases. Every mutation `a.add_(b)` becomes `a.replace_(a.add(b))` * (c) reapplying views: all of the `{view}_copy` calls are replaced with `{view}` calls again. This is an optimization that we can make specifically for functorch (and strided backends), that only care about mutation removal and not alias removal * XLA and Vulkan only want (a), or (a) + (b). Later, we'll want to split this out so that you can actually opt into different versions of this logic. * There is currently no {view}_copy replacement, because the pass just <replace views with copies> and <replace copies with views> steps have been combined. Later, we'll want to actually implement {view}_copy variants of each view operator, probably with codegen. * documentation breadcrumb 1, in `FunctionalTensorWrapper.cpp`: https://github.com/pytorch/pytorch/pull/64432/files#diff-a0bac99bf205dba5b94cb64fc2466d3d55d991887572f9cd6a02e27b3a91dd60R59 (you might have to expand the `FunctionalTensorWrapper.cpp` file, which GitHub closes by default because it's large) * documentation breadcrumb 2, in `FunctionalTensorWrapper.h`: https://github.com/pytorch/pytorch/pull/64432/files#diff-c945c71a4ccac65871f24a912e8904f9a5088b24a32e636727ea9c8fe920708aR12 * Reading through the codegen output at the bottom of this description. **Main changes from the original PR** (1) I use lambdas instead of a giant enum to handle all of the different views. This results in less boilerplate per view op (and more stuff that can be codegen'd). Every `ViewMeta` object now contains a `forward` and `reverse` lambda, that knows how to replay the view and its inverse. This makes the actual code that executes the replaying logic a lot less boilerplate-y (see `Alias::sync_update_operations` and `FunctionalTensorWrapper::sync_`) (2) Every tensor during the functionalization pass is always wrapped in a `FunctionalTensorWrapper`. This is potentially unnecessary for Vulkan/XLA, and will have a mild perf impact, but for now this PR just targets the functorch use case. I previously had a complicated design a (`FunctionalTensorImplBase` class) to avoid needing the wrapper for XLA, but it had some subtleties that are gonna require more thought to fix, so I'm pushing that off for now. (3) `FunctionalTensorWrapper` objects accurately report stride information. It's a little annoying to do this though, because the logic that calculates stride info for each view isn't easily separated from the actual view kernels in core, `at::native::{view}`. I do this by adding logic in each `at::functionalization::{view}` kernel to call the reference implementation `at::native::{view}`. I don't do anything with the output aside from taking it's size/stride/storage_offset to set the actual output tensor's size/stride/storage_offset correctly. There's another annoying part to this: I'm pretty sure that we want to pass in the actual *wrapper* tensors directly into the native kernels, not their inner unwrapped values. But there are some `at::native::{view}` kernels that call other tensor methods, which re-invokes the dispatcher, calling functionalization/functorch kernels that try do the unwrapping. To do this, right now I have an `AutoDispatchDirectlyToNative` guard that basically ensures that any tensor methods called inside of the at::native::{view} op always redispatch straight to the CPU kernel (which will be another at::native:: kernel). This feels kind of heavy handed, but I'm not sure of a better way to do it. (4) `FunctionalTensorWrapper` objects accurately report aliasing information. There's a new `FunctionalStorageImpl` class (subclass of `StorageImpl`) that allows tensors in the functionalization pass to accurately alias storage. If two tensors `a` and `b` in a functionalized program are views of one another, then `a.storage.is_alias_of(b.storage)` should return true. I added this in a pretty similar way to how meta tensors allocate storage, although I don't pass in an actual allocator (I think this is fine because you should never resize a functional tensor's storage). One thing I'm not sure about - should `FunctionalTensorWrapper` set `storage_access_should_throw_`: (a) always, (b) never, (c) only if its wrapped tensor has it set. Right now I have it not set, mostly because calling the reference view functions (`at::native::{view}`) requires looking at the storage. But that means that if you try to access storage from python in a functionalized program, you'll get silent garbage instead of an error. Related question: are we planning on exposing meta tensor storage to python in the future (even though it contains garbage)? (5) better docs :) **View operator coverage** (6) The functionalization pass now gets math-composite view ops for free. I didn't add the `Functionalize` dispatch key to the composite set, because I don't want composite ops like `torch.ones` to get decomposed before hitting the functionalization pass. Instead, I added codegen to manually register the `at::native::` kernels of composite view ops. This is a little hairy, because the names of the `at::native::` kernels aren't easily accessible. They're stored in a `Dict[DispatchKey, BackendIndex]`. I made a best-effort attempt to get each view kernel's name, basically by assuming that every view op has either a composite or cpu implementation. There's also a hardcoded list of composite view ops in `gen_inplace_or_view_type.py`, but it looks like it's wrong. This is probably worth rationalizing later, but instead I created a new list of the "complete" set of composite view ops, and preserved the old set by hardcoding the delta between the two sets. (7) I've added codegen for ops that are both views AND mutations, like `transpose_()` (why do we even have these {emoji:1f622}). From some light testing, it looks like they work correctly with one caveat: I had a hard time ensuring that functorch programs that mutate their inputs using ops like `transpose_()` preserve the input mutations after the program finishes running. For (in my corresponding functorch branch) I emit a warning when this happens, and just don't preserve the mutation (8) I added `{view}_inverse` implementations for every view op, in `FunctionalInverses.cpp`. These are needed to take mutations made to views and replay them back onto the base. To reduce boilerplate, the codegen generates function declarations for each `{view}_inverse` function, so you get a nice compiler error when someone eventually adds a new view op. The only view ops currently not supported are (a) as_strided, and (b) the sparse view ops (values()/indices()). I can add support for as_strided, but it needs an `as_strided_inverse()` function. That will look really similar to the `as_strided_backward()` function in FunctionsManual.cpp, but it has some noticeable differences: we basically want an `as_strided_embed` for autograd and `as_strided_scatter` for functionalization. We also will probably need them to be primitives w.r.t to autograd, since the currently implementation for autograd uses view().copy_() calls that XLA won't be able to handle. I'm wondering if anyone has any objections, but otherwise I can make those change (which will require writing backward formulas for `as_strided_embed` and `as_strided_scatter`). I did a bunch of manual testing that all looks pretty good, but it's definitely not fully tested. Ed pointed out that once XLA uses this pass (or at least once there's a POC), we can just run the existing xla view test suite. Hopefully that delay is okay - if it's not, maybe we can think about using OpInfos similar to how functorch uses them for testing. Note: there's some duplication with autograd's view code. Every `{view}_inverse` implementation is really similar to the implementation for that view listed in `derivatives.yaml`. There are some major differences though: * the autograd implementations over those backwards functions (like `permute_backwards()`, in `FunctionsManual.cpp`) internally call other view ops. For functoinalization, we want them to (eventually call `{view}_copy` operators). * For view ops that take a subset of the original storage, like `slice/select/diagonal/as_strided()`, the autograd backward functions fill the "spaces" in the inverse call with zeroes. For functionalizations, we want to fill them with the value of `base` at those positions. It looks like this currently applies to 6 total ops (since we can ignore composites): * select * slice * diagonal * as_stridied * split * split_with_sizes A nice end state would probably be for the autograd + functoinalization codegen to both look at the same yaml (either `derivatives.yaml`, or something else), and automatically generate the right thing. I didn't leave that in scope for this PR though. **Current State + Next Steps** There are a bunch of followups after this PR eventually lands. Roughly in order: * Use the current pass to register problematic composite ops in functorch. Also, nested `functionalize()` calls aren't supported yet (I mostly just need to remove some debug asserts and test it). * Work on freeing up dispatch key space in the by deduplicating the `{backend}`/`Autograd{backend}`/`Sparse{backend}`/`Quantized{backend}` keys * Once we have more dispatch keys, split up this pass into 3 pieces - it's currently fused, and doesn't do the right thing for vulkan/XLA. Specifically, all of the `{view}` calls in the current pass's view-replay logic should turn into `{view}_copy` calls that vulkan/XLA know how to implement, and there will be separate passes for (a) removing mutations, and (b) turning `{view}_copy` calls back into `{view}` calls. For Vulkan, we eventually want a pass that ONLY removes aliasing and view calls, and doesn't remove mutations. We can also probably make the 2 new passes user dispatch keys to save dispatch key space, if they'll only be used by functorch anyway. * Do more of a dive on perf for the vulkan/xla use cases. There are several areas to improve perf with varying levels of effort required. The simplest one that I'll probably do regardless is to codegen the out-of-place kernels instead of using a boxed fallback. Getting a POC working for xla will also be useful to test the view operator coverage. **Example Codegen Output** View Op: ``` ::std::vector<at::Tensor> split_Tensor(c10::DispatchKeySet ks, const at::Tensor & self, int64_t split_size, int64_t dim) { auto self_ = at::functionalization::impl::unwrapFunctionalTensor(self); ::std::vector<at::Tensor> out; { at::AutoDispatchBelowFunctionalize guard; auto tmp_output = at::redispatch::split(ks & c10::after_func_keyset, self_, split_size, dim); out = at::functionalization::impl::wrapFunctionalTensor(tmp_output); // I'm fusing the [alias removal], [mutation removal], [add views back] passes together. // Later, we'll want to turn them into separate passes (since e.g. vulkan only cares about alias removal). } at::functionalization::ViewMeta view_meta = at::functionalization::ViewMeta( [split_size, dim](const at::Tensor& base, int64_t mutated_view_idx) -> at::Tensor { return base.split(split_size, dim)[mutated_view_idx]; }, [split_size, dim](const at::Tensor& base, const at::Tensor& mutated_view, int64_t mutated_view_idx) -> at::Tensor { return at::functionalization::impl::split_inverse(base, mutated_view, mutated_view_idx, split_size, dim); } ); at::functionalization::impl::set_view_meta(out, self, view_meta); at::AutoDispatchDirectlyToNative native_guard; ::std::vector<at::Tensor> reference_tensor_output = at::native::split(self, split_size, dim); at::functionalization::impl::set_strides(out, reference_tensor_output); return out; } ``` Mutation Op: ``` at::Tensor & add__Tensor(c10::DispatchKeySet ks, at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha) { at::functionalization::impl::sync(self); at::functionalization::impl::sync(other); auto self_ = at::functionalization::impl::unwrapFunctionalTensor(self); auto other_ = at::functionalization::impl::unwrapFunctionalTensor(other); at::Tensor tmp_output; { at::AutoDispatchBelowFunctionalize guard; // The functionalization pass explicitly doesn't pass out= parameters to the redispatch tmp_output = at::redispatch::add( ks & c10::after_func_keyset, self_, other_, alpha); } self.replace_(tmp_output); at::functionalization::impl::maybe_add_update(self); return self; } ``` View + Mutation Op: ``` at::Tensor & transpose_(c10::DispatchKeySet ks, at::Tensor & self, int64_t dim0, int64_t dim1) { at::functionalization::ViewMeta view_meta = at::functionalization::ViewMeta( [dim0, dim1](const at::Tensor& base, int64_t mutated_view_idx) -> at::Tensor { return base.transpose(dim0, dim1); }, [dim0, dim1](const at::Tensor& base, const at::Tensor& mutated_view, int64_t mutated_view_idx) -> at::Tensor { return at::functionalization::impl::transpose_inverse(base, mutated_view, dim0, dim1); } ); at::functionalization::impl::mutate_view_meta(self, view_meta); // See Note [Propagating strides in the functionalization pass] // Directly update the sizes/strides/storage_offset fields on self using the inplace call. // I need the guard because I don't want the at::native kernel to end up calling more functionalization/functorch kernels. // Its only job is to directly compute the output size/stride/storage_offset metadata. at::AutoDispatchDirectlyToNative native_guard; at::native::transpose_(self, dim0, dim1); return self; } ``` Test Plan: Imported from OSS Reviewed By: albanD Differential Revision: D31942093 Pulled By: bdhirsh fbshipit-source-id: b95598dae35dd1842fa8b1d8d1448332f3afaadf |
||
|
|
1d2ea76afb |
clamp: port to structured kernel (#61361)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/61361 This PR ports the `clamp` kernel to the structured format. In addition, it introduces `OptionalScalarRef` as a replacement for `c10::optional<Scalar>&`. The latter, although it is a reference type, can still involve copying the contained `Scalar` (e.g. if the actual parameter is a `Scalar` or if a `c10::optional<Scalar>` is constructed just to call a kernel). `OptionalScalarRef` contains only a `const Scalar&`, and stores flag about whether the instance contains something inside the `Scalar` itself using a new tag. For more information, see #55070. Test Plan: Imported from OSS Reviewed By: albanD Differential Revision: D29821533 Pulled By: SplitInfinity fbshipit-source-id: 88d55df5a4b2c14b68a57e4905d90eea1b088d99 |
||
|
|
1c80b5220b |
nll_loss_forward: port to structured kernel (#61443)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/61443 For more information, see #55070. This PR also adds a new type, `OptionalTensorRef` as a replacement for `c10::optional<Tensor>&` in order to avoid the reference count manipulations that are inevitable with the latter. I have confirmed using Godbolt/Compiler Explorer that this class does indeed avoid manipulating the reference count of the `intrusive_ptr` inside the `Tensor` it refers to: 1. [P429709479](https://www.internalfb.com/phabricator/paste/view/P429709479) - Given a `const Tensor&` in scope, an `OptionalTensorRef` can be constructed without bumping refcount. 2. [P429709883](https://www.internalfb.com/phabricator/paste/view/P429709883) - Given an `OptionalTensorRef`, a `const Tensor&` can be produced without bumping refcount. 3. [P429710335](https://www.internalfb.com/phabricator/paste/view/P429710335) - When `OptionalTensorRef` is destructed, the refcount should not be decremented. 4. [P429769525](https://www.internalfb.com/phabricator/paste/view/P429769525) - `OptionalTensorRef` can be assigned without refcount manipulation. 5. [P429769882](https://www.internalfb.com/phabricator/paste/view/P429769882) - `OptionalTensorRef` can be move assigned without refcount manipulation. Test Plan: Imported from OSS Reviewed By: jamesr66a Differential Revision: D29780666 Pulled By: SplitInfinity fbshipit-source-id: 7af157215300e9254d635433cbd583f7329fe064 |
||
|
|
eca98fedb5 |
split out NamedCType from CType. Remove direct string comparison from autograd codegen (#55334)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55334 The goal of this PR is to clean up some of the autograd codegen to compare C++ types using `CType` objects instead of raw strings. My last PR in the stack made that string comparison a little more fragile, since the raw C++ strings needed to be namespace-aware. I confirmed byte-for-byte no codegen changes vs. the last PR (which added namespaces to the codegen) by running `diff -qr ../pytorch-common_test/torch/csrc/autograd/generated/ ../pytorch-callgrind_test_after2/torch/csrc/autograd/generated/` and `diff -qr ../pytorch-common_test/build/aten/src/ATen/ ../pytorch-callgrind_test_after2/build/aten/src/ATen/` Note that a better end-state for the autograd codegen would be to do all of its type pattern matching directly off of JIT types, instead of off of CType’s (which are really just generated from JIT types, incorporating C++ specific semantics). That looks like it’ll require a pretty substantial change though, so I’m not doing it in this PR. As part of this change (and after talking with ezyang), I split off the `CType` data class into a separate `NamedCType` class, which holds a name and a `CType`. This way, `CType` only knows about actual C++ types, making it easier to compare CType’s to each other in the codegen when we only care about the type. The core change is in `types.py`, but it required a bunch of downstream changes to update all of the places where we create `CType`s to create `NamedCType`s instead. The main change in the autograd codegen was that I updated `SavedAttribute` to store a `NamedCType`. The other autograd changes all pretty much came from that change. Test Plan: Imported from OSS Reviewed By: bhosmer Differential Revision: D27708347 Pulled By: bdhirsh fbshipit-source-id: 3e07c80569c7b229c638f389e76e319bff6315f9 |
||
|
|
947c7a8215 |
add C++ namespacing logic to ctypes (#55047)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55047 Added namespaces to all of the `CTypes` printed in the codegen. This is pretty much required if we want to use codegen externally, since we can no longer assume that we're inside of the `at::` namespace. Important changes are in `types.py`. How do we add the notion of namespaces to C++ types without people having to write "at::Tensor" everywhere? Before this PR, `CType` held a raw string representing the type, i.e. `BaseCType("Tensor", binds)`. This PR introduces a set of singleton base C++ types in `types.py`, that know how to print their namespace. Instead, we'd write `BaseCType(tensorT, binds)`, where printing `tensorT` will properly print out "at::Tensor". This also means that you can't create arbitrary `CTypes`. If we need a new C++ type in the codegen, we need to add it to the list in `types.py`. One blip in the design: we don't want to change `RegistrationDeclarations.yaml`, since that'll break external backends that ingest it. I added separate functions to display types without the namespace that are used to create RegistrationDeclarations.yaml`. With an external codegen API though, we can eventually kill it :) I also didn't realize until this PR that `Declarations.yaml` is still directly in use, by some python/autograd codegen. Rather than keep that yaml byte-for-byte compatible, I just updated the callsites in the autograd codegen to work with namespaces. In the NEXT pr, I try to clean up some of the autograd codegen to stop using raw strings to match against C++ types. Test Plan: Imported from OSS Reviewed By: bhosmer Differential Revision: D27708349 Pulled By: bdhirsh fbshipit-source-id: 56a4f81fc101795bcb9ee1f722121480fb2356ad |
||
|
|
4753100a3b |
Un-ignore F403 in .flake8 (#55838)
Summary: Generally wildcard imports are bad for the reasons described here: https://www.flake8rules.com/rules/F403.html This PR replaces wildcard imports with an explicit list of imported items where possible, and adds a `# noqa: F403` comment in the other cases (mostly re-exports in `__init__.py` files). This is a prerequisite for https://github.com/pytorch/pytorch/issues/55816, because currently [`tools/codegen/dest/register_dispatch_key.py` simply fails if you sort its imports](https://github.com/pytorch/pytorch/actions/runs/742505908). Pull Request resolved: https://github.com/pytorch/pytorch/pull/55838 Test Plan: CI. You can also run `flake8` locally. Reviewed By: jbschlosser Differential Revision: D27724232 Pulled By: samestep fbshipit-source-id: 269fb09cb4168f8a51fd65bfaacc6cda7fb87c34 |
||
|
|
c5a67f1675 |
Fix minor inaccuracy in translate error reporting (#53032)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/53032 Previously, you could get this error message: ``` Failed to synthesize the expression "Tensor & out". When I failed, the following bindings were available in the context: const Tensor & self; const Tensor & other; Scalar alpha; const Tensor & op.outputs_[0]; ``` There's a problem with this error message: it doesn't seem like there is any 'out' argument available, but actually there is: the last binding in the context is it. We printed the *expression*, not the *ctype name*. After this patch, the context now prints as: ``` const Tensor & self; // self const Tensor & other; // other Scalar alpha; // alpha const Tensor & out; // op.outputs_[0] ``` Now it becomes clear that it's a const mismatch. Maybe we could also beef up the error message so it points out near misses, but I'll leave that to future work. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Test Plan: Imported from OSS Reviewed By: ljk53 Differential Revision: D26729768 Pulled By: ezyang fbshipit-source-id: adb363551a7145eac788943c20969c86b1f8a81b |
||
|
|
c9c4b871a5 |
[pytorch] reintroduce static dispatch (#51957)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51957 This is a simplified version of #51554. Compared to #51554, this version only supports statically dispatching to a specific backend. The benefit is that it skipped the dispatch key computation logic thus has less framework overhead. The downside is that if input tensors do not match the specified backend it will throw error instead of falling back to regular dispatch. Sample code: ``` Tensor empty(IntArrayRef size, TensorOptions options, c10::optional<MemoryFormat> memory_format) { return at::cpu::empty(size, options, memory_format); } // aten::conj(Tensor(a) self) -> Tensor(a) Tensor conj(const Tensor & self) { return at::math::conj(self); } // aten::conj.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) Tensor & conj_out(Tensor & out, const Tensor & self) { return at::cpu::conj_out(out, self); } // aten::conj.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) Tensor & conj_outf(const Tensor & self, Tensor & out) { return at::cpu::conj_out(out, self); } // aten::_conj(Tensor self) -> Tensor Tensor _conj(const Tensor & self) { return at::defaultbackend::_conj(self); } ``` For ops without the specific backend dispatch, it will throw error: ``` // aten::_use_cudnn_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank) -> bool bool _use_cudnn_ctc_loss(const Tensor & log_probs, const Tensor & targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t blank) { TORCH_CHECK(false, "Static dispatch does not support _use_cudnn_ctc_loss for CPU."); } ``` Differential Revision: D26337857 Test Plan: Imported from OSS Reviewed By: bhosmer Pulled By: ljk53 fbshipit-source-id: a8e95799115c349de3c09f04a26b01d21a679364 |
||
|
|
4d85e30133 |
Support at::cpu on non-structured kernels (#51590)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51590 This PR backports a subset of Jiakai's changes from https://github.com/pytorch/pytorch/pull/51554 that adds support for at::cpu in non-structured kernels. The unusual bits: - Need to add a new forward inference rule for doing conversions of const optional<Tensor>& to const Tensor& - Need to give the wrapper functions a prefix so that the call to wrapper is not ambiguous Signed-off-by: Edward Z. Yang <ezyang@fb.com> Test Plan: Imported from OSS Reviewed By: ljk53 Differential Revision: D26209871 Pulled By: ezyang fbshipit-source-id: 8162686039675ab92a2af7a14f6b18941f8944df |
||
|
|
81c7c3bae5 |
Add api.structured; switch structured kernels to use const Tensor& everywhere (#51490)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51490 Mutable Tensor ref is a source of endless confusion for kernel writers; if we're going to make everyone rewrite their kernels, might as well also get rid of mutable Tensor& while we're at it. This is a refactor-then-small-update double whammy. The refactor is to separate tools.codegen.api.structured from api.native for describing the type signatures of structured kernels (previously, I was naughtily reusing native for this purpose--now I need it to behave differently as Tensor). This started off as a copy paste, but since there are not that many structured kernels so far I could delete all of the legacy logic from native that didn't make sense (without having to go out and fix all the use sites all at once). One more small addition was teaching translate to convert Tensor& to const Tensor&. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Test Plan: Imported from OSS Reviewed By: bhosmer Differential Revision: D26182413 Pulled By: ezyang fbshipit-source-id: ed636866add3581179669cf9283f9835fcaddc06 |
||
|
|
648cdb7d0a |
Relax type signature for tools.codegen.api.translate (#51477)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51477 Passing in a full binding is still OK, but if you have less (e.g., an Expr/CType), that will do too. I'll need this for some codegen patches I'm doing later. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Test Plan: Imported from OSS Reviewed By: bhosmer Differential Revision: D26179560 Pulled By: ezyang fbshipit-source-id: 5730dfb2c91bf5325496e57b0c91eb6823c9194d |
||
|
|
3efd5d8f01 |
Introduce tools.codegen.api.translate (#49122)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/49122 cpparguments_exprs has induced a lot of head scratching in many recent PRs for how to structure the code in a good way. This PR eliminates the old algorithm for an entirely new algorithm inspired by logic programming. The net result is shorter, cleaner and should be more robust to future changes. This PR is a bit of a whopper. Here is the order to review it. - tools/codegen/api/types.py - Deleted CppArgument, CppArgumentPackIface (and subclasses), CppExpr, DispatcherExpr, DispatcherArgument, NativeExpr, NativeArgument, MetaArgument. All things previously called XArgument are now Binding. All things previously called XExpr are now Expr. I deleted the `__str__` implementation on Binding and fixed all call sites not to use it. On Binding, I renamed `str_no_default` and `str_default` to `defn` and `decl` for better symmetry with the corresponding signature concepts, although I'm open to naming them back to their original versions. - Obviously, things are less type safe without the class distinctions. So I introduce a new ADT called CType. CType represents the *semantic C++ type* of a binding: it is both the C++ type (e.g., `const Tensor&`) as well as the argument name that specifies what the binding denotes (e.g., `other`). Every binding now records its CType. The key observation here is that you don't actually care if a given expression is from the cpp or dispatcher or native API; what you care is having enough information to know what the expression means, so you can use it appropriately. CType has this information. For the most part, ArgNames are just the string names of the arguments as you see them in JIT schema, but there is one case (`possibly_redundant_memory_format`) where we encode a little extra information. Unlike the plain strings we previously used to represent C++ types, CType have a little bit of structure around optional and references, because the translation code needs to work around these concepts. - I took the opportunity to kill all of the private fields like `_arguments` and `_returns_type` (since the argument types don't make sense anymore). Everything is computed for you on the fly. If this is a perf problem in codegen we can start using `cached_property` decorator. - All of the heavy lifting in CppSignature.argument_packs has been moved to the cpp module. We'll head over there next. Similarly, all of the exprs methods are now calling translate, the new functionality which we haven't gotten to yet - tools/codegen/api/cpp.py - We refactor all of the type computation functions to return CType instead of str. Because CTypes need to know the denotation, there is a new `binds: ArgName` argument to most functions that provides the denotation, so we can slot it in. (An alternative would have been to construct CTypes without denotations and then fill them in post-facto, but I didn't do it this way. One downside is there are some places where I need a CType without denotation, so I fill these in with `__placeholder__` whenever this happens). - `argument` and `arguments` are now extremely simple. There is no more Pack business, just produce one or more Bindings. The one thing of note is that when both a `memory_format` and `options` are in scope, we label the memory format as `possibly_redundant_memory_format`. This will be used in translation - tools/codegen/api/dispatcher.py and tools/codegen/api/native.py - same deal as cpp.py. One thing is that `cpparguments_exprs` is deleted; that is in the translator - tools/codegen/api/translate.py - the translator! It uses a very simple backwards deduction engine to work out how to fill in the arguments of functions. There are comments in the file that explain how it works. - Everything else: just some small call site tweaks for places when I changed API. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Test Plan: Imported from OSS Reviewed By: ljk53 Differential Revision: D25455887 Pulled By: ezyang fbshipit-source-id: 90dc58d420d4cc49281aa8647987c69f3ed42fa6 |