skip_if_rocm is used only in multiprocess case (when UT test class is a child of MultiProcessTestCase). Each individual process can exit with a skip code. If used for single process UT, it will cause the UT to fail as the process returns a non-zero exit code. Use skipIfRocm in single process UTs.
To avoid the above confusion, this PR renamed skip_if_rocm to skip_if_rocm_multiprocess.
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136161
Approved by: https://github.com/jithunnair-amd, https://github.com/kwen2501, https://github.com/fegin
Add similar semantics for creating a buffer object similar to creating a parameter. This is done by introducing a new Buffer class that can be used for type disambiguation. The underlying functionality of registering a buffer remains the same as the register_buffer method has not been changed. The persistent parameter in the Buffer type is to indicate whether a buffer object should be persistent or not. Other non-test changes have to do with getting the new Buffer type recognized by inductor and dynamo. Remaining changes are test changes to make sure that the Buffer type can be used as a drop in replacement for register_buffer as it just leads to register_buffer being called. The addition of this new functionality still allows for normal tensors to be used as buffers so these changes are intended to be backwards compatible.
Fixes#35735
Co-authored-by: Mikayla Gawarecki <mikaylagawarecki@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125971
Approved by: https://github.com/albanD, https://github.com/anijain2305, https://github.com/mlazos
Automatic fixes that replaces certain list comprehensions with generator ones where appropriate so that they are immediately consumed. This is preview functionality in ruff for rule C419 and it was automatically applied.
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123960
Approved by: https://github.com/malfet
Add similar semantics for creating a buffer object similar to creating a parameter. This is done by introducing a new `Buffer` class that can be used for type disambiguation. The underlying functionality of registering a buffer remains the same as the `register_buffer` method has not been changed. The `persistent` parameter in the `Buffer` type is to indicate whether a buffer object should be persistent or not. Other non-test changes have to do with getting the new `Buffer` type recognized by inductor and dynamo. Remaining changes are test changes to make sure that the `Buffer` type can be used as a drop in replacement for `register_buffer` as it just leads to `register_buffer` being called. The addition of this new functionality still allows for normal tensors to be used as buffers so these changes are intended to be backwards compatible.
Fixes#35735
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104069
Approved by: https://github.com/mikaylagawarecki
Attempts to fix#92656
BC-breaking! This changes the default of zero_grad in optim and in nn to default set grads to None instead of zero tensors. We are changing the default because there are proven perf wins and existing code has typically not regressed due to this change. (will probably have to flesh out this note more).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92731
Approved by: https://github.com/ngimel
1. Add param_group check logic and unit test
2. Remove unnecessary check for conditional param update
3. Return the param_group from the inner optimizer so that when param_group is None or not all params are specified, we still return the expected result.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91147
Approved by: https://github.com/fegin
In pytorch, the optim state_dict will always use number to index optimizer state_dict for parameters.
Now composability workstream need a FQN based way to index optimizer state_dict for parameters..
For example, SGD optimizer might have something in its `state_dict` like:
```
{'state':
{0:
{'momentum_buffer': tensor(...)},
{1:
{'momentum_buffer': tensor(...)},
...
}
'param_groups':
[{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'maximize': False, 'foreach': None, 'differentiable': False, 'params': [0, 1, 2, 3, 4, 5, 6, 7]}]
}
```
And in NamedOptimizer we want the `state_dict` can be:
```
{'state':
{'net1.0.weight':
{'momentum_buffer': tensor(...)},
{'net1.0.bias':
{'momentum_buffer': tensor(...)},
...
}
'param_groups':
[{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'maximize': False, 'foreach': None, 'differentiable': False, 'params': ['net1.0.weight', 'net1.0.bias', 'net2.0.weight', 'net2.0.bias', 'net3.weight', 'net3.bias', 'net4.1.weight', 'net4.1.bias']}]
}
```
We also want to support load_state_dict to enable optim `state_dict` override for NameOptimizer.
For the next couple PR/diffs, we also need to:
1. To make `NamedOptimizer` working with FSDP (like registering a hook for model wrapped with FSDP) and other PTD/PT components.
2. Make `NamedOptimizer` works well with apply_optim_in_backward
3. Upstream also `CombinedOptimizer`.
Differential Revision: [D41432088](https://our.internmc.facebook.com/intern/diff/D41432088/)
**NOTE FOR REVIEWERS**: This PR has internal Meta-specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D41432088/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89480
Approved by: https://github.com/rohan-varma
Summary:
Upstreaming this as part of sharing common APIs. This is just a plain
move, any changes needed to support DDP / FSDP will come in follow up diffs.
Test Plan: CI
Reviewed By: zhaojuanmao
Differential Revision: D40564646
fbshipit-source-id: 619c434e02196812f8d4db1e40d07290e08b18f9
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88539
Approved by: https://github.com/awgu
Near term fix for https://github.com/pytorch/pytorch/issues/76368.
Q. Why does the user need to request `capturable=True` in the optimizer constructor? Why can't capture safety be completely automatic?
A. We need to set up capture-safe (device-side) state variables before capture. If we don't, and step() internally detects capture is underway, it's too late: the best we could do is create a device state variable and copy the current CPU value into it, which is not something we want baked into the graph.
Q. Ok, why not just do the capture-safe approach with device-side state variables all the time?
A. It incurs several more kernel launches per parameter, which could really add up and regress cpu overhead for ungraphed step()s. If the optimizer won't be captured, we should allow step() to stick with its current cpu-side state handling.
Q. But cuda RNG is a stateful thing that maintains its state on the cpu outside of capture and replay, and we capture it automatically. Why can't we do the same thing here?
A. The graph object can handle RNG generator increments because its capture_begin, capture_end, and replay() methods can see and access generator object. But the graph object has no explicit knowledge of or access to optimizer steps in its capture scope. We could let the user tell the graph object what optimizers will be stepped in its scope, ie something like
```python
graph.will_use_optimizer(opt)
graph.capture_begin()
...
```
but that seems clunkier than an optimizer constructor arg.
I'm open to other ideas, but right now I think constructor arg is necessary and the least bad approach.
Long term, https://github.com/pytorch/pytorch/issues/71274 is a better fix.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77862
Approved by: https://github.com/ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75753
As per the design in https://github.com/pytorch/pytorch/issues/72138,
convert DDP parameters to ReplicatedTensor during its forward pass. Concretely,
this is done as follows:
1) Create a separate `_replicated_tensor_module` which is a copy of self.module
without creating copies of the Tensors themselves.
2) Use `_replicated_tensor_module` instead of `self.module` during the forward
pass.
3) Have a context manager `_ddp_replicated_tensor` to enable this, since
certain edge cases can fail where self.module is changed out of band resulting
in discrepancy between self.module and `_replicated_tensor_module`.
Differential Revision: [D35533736](https://our.internmc.facebook.com/intern/diff/D35533736/)
Approved by: https://github.com/wanchaol, https://github.com/rohan-varma
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73842
**Overview**
This cleans up the `ZeroRedundancyOptimizer` tests. I apologize for strong formatting changes mixed in with actually-beneficial changes. It was convenient to unify the formatting while doing a deep comb through the full test file.
The main non-formatting changes include:
- Using `parametrize` instead of manually including `for` loops over possible argument values
- Removing the `DEVICE` global variable, which was used only for the `TestZeroRedundancyOptimizerSingleRank` tests, in favor of consistent usage of `self.device` in both `TestZeroRedundancyOptimizerSingleRank` and `TestZeroRedundancyOptimizerDistributed`
- Moving `assert ... == ...` to `self.assertEqual(..., ...)` when the assert is part of the test's correctness
- Removing the `if self.rank >= self.world_size or (torch.cuda.is_available() and torch.cuda.device_count() < 2):` conditional guards in favor of `common_distributed.skip_if_no_gpu` for `TestZeroRedundancyOptimizerDistributed`
- For `TestZeroRedundancyOptimizerDistributed`, `self.device` is `torch.device(self.rank)` if CUDA is available, while `self.world_size` is at least 2, even if `torch.cuda.device_count() == 1`.
- The problematic case is exactly when `torch.cuda.device_count() == 1` but `self.world_size == 2` since then calling `self.device` on rank 1 will error. The existing conditional guard prevented this case for some tests, but it was not used consistently (e.g. `test_multiple_groups()`), which is most likely the reason for the hangs and resulting test flakiness. (From my experience landing the recent ZeRO constructor changes, the Windows environment uses a world size of 2 but only has 1 device available.)
- A more robust solution is to always use the `skip_if_no_gpu` decorator as long as the test uses `self.device` and CUDA is available. This is in line with the recommended SPSD usage of ZeRO.
- Renaming `test_multiple_groups()` to `test_nondefault_process_group()`
- The existing `test_multiple_groups()` was slightly misnamed. Also, it is only nontrivial for a world size of (at least) 4 since it tests using a process group including only even ranks. It was marked as flaky on Windows, and I believe this is because of the world size and `torch.cuda.device_count()` mismatch. Now, the test only uses GPU if there are enough available and falls back to CPU otherwise, which is safe since the test uses Gloo backend.
- There was also a duplicated section, which I was unsure how to non-naively de-duplicate. The top half and bottom half are identical even though they claim to target fitting into the broadcast bucket and not fitting into the broadcast bucket:
1d497114e7/test/distributed/optim/test_zero_redundancy_optimizer.py (L658-L684)
- Changing `_test_zero_model_parallel()` to not use CPU
- This is my own fault, having introduced this inefficiency last summer. It makes more sense to simply designate one of the two GPUs for a process to be its default device rather than routing through CPU.
**Questions**
- How might we limit the runs for `test_ddp_zero_overlap()`? Because it parameterizes over many values, it contributes significantly to the time-to-signal. However, it is an experimental feature, so it is not critical that the tests run every time.
Test Plan: Imported from OSS
Reviewed By: rohan-varma
Differential Revision: D34675709
Pulled By: awgu
fbshipit-source-id: 71ce9ac968fb34415cd65206855b4bb5e67754fb
(cherry picked from commit 34e3dd0a184318ea9f63a1ee20cd14b111af3501)
Summary:
Reland of https://github.com/pytorch/pytorch/pull/72578.
**Overview**
Windows CI was failing due to the multi-rank single-GPU case (see [here](https://github.com/pytorch/pytorch/runs/5204906995?check_suite_focus=true)).
To address this, I
- added `common_distributed.skip_if_no_gpu` for `test_multiple_param_groups()` to ensure that each rank can safely call `to(self.device)` -- this targets the expected SPSD use case where each rank has its own GPU;
- moved `test_constructor()` back to `TestZeroRedundancyOptimizerSingleRank` to check that the multiple parameter group method for construction works even on a single rank.
**Test Plan**
- I checked both tests for CPU, 1 GPU, 2 GPUs, 4 GPUs, and 8 GPUs.
- I added the `ciflow/win` label to run the failing Windows CI test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72932
Reviewed By: rohan-varma
Differential Revision: D34281482
Pulled By: awgu
fbshipit-source-id: c4fe604ddd9d2c123c3071249741e6b8a6454b6e
(cherry picked from commit 6bea9bcc63)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72578
**Overview**
This adds `ZeroRedundancyOptimizer` constructor support for multiple parameter groups (i.e. passing an `iterable` of `dict`s instead of an `iterable` of `torch.Tensor` as the `parameters` argument) to mirror the API for non-sharded optimizers.
Fixes https://github.com/pytorch/pytorch/issues/71347 and https://github.com/pytorch/pytorch/issues/59973.
This modifies `test_collect_shards()` to skip if ROCm.
**Test Plan**
I adjusted the existing constructor test, and I added a test for parity between constructing with two parameter groups up front versus constructor with one parameter group and adding the second parameter group after (via `add_param_group()`) versus a non-sharded optimizer.
Test Plan: Imported from OSS
Reviewed By: rohan-varma
Differential Revision: D34106940
Pulled By: awgu
fbshipit-source-id: 7e70fc0b3cec891646e0698eaedf02ff4354c128
(cherry picked from commit 40f2d45172)
Summary:
Solves the next most important use case in https://github.com/pytorch/pytorch/issues/68052.
I have kept the style as close to that in SGD as seemed reasonable, given the slight differences in their internal implementations.
All feedback welcome!
cc pietern mrshenli pritamdamania87 zhaojuanmao satgera rohan-varma gqchen aazzolini osalpekar jiayisuse SciPioneer H-Huang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68164
Reviewed By: VitalyFedyunin
Differential Revision: D32994129
Pulled By: albanD
fbshipit-source-id: 65c57c3f3dbbd3e3e5338d51def54482503e8850
Summary:
Fixes https://github.com/pytorch/pytorch/issues/46480 -- for SGD.
## Notes:
- I have modified the existing tests to take a new `constructor_accepts_maximize` flag. When this is set to true, the ` _test_basic_cases_template` function will test both maximizing and minimizing the sample function.
- This was the clearest way I could think of testing the changes -- I would appreciate feedback on this strategy.
## Work to be done:
[] I need to update the docs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67847
Reviewed By: H-Huang
Differential Revision: D32252631
Pulled By: albanD
fbshipit-source-id: 27915a3cc2d18b7e4d17bfc2d666fe7d2cfdf9a4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65519
Adds buck target so we can run this internally.
ghstack-source-id: 139009957
Test Plan: CI
Reviewed By: SciPioneer
Differential Revision: D31072784
fbshipit-source-id: 7185cc1e6f9df3d79251eb017270471942a9d7dd
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65385
Enables the ZeRO tests to run on windows. Closes
https://github.com/pytorch/pytorch/issues/63086.
Backend == NCCL was used as a proxy to see if we were running under CUDA, but Windows GPU tests uses Gloo. In this case use Gloo on GPU.
For some reason these tests don't seem to test Gloo on GPU with ZeRO in general (picks NCCL backend when GPU is available), so kept that behavior for now.
ghstack-source-id: 139003920
Test Plan: CI
Reviewed By: mrshenli
Differential Revision: D31071181
fbshipit-source-id: 45a76309ac5e882f5aa6c4b130118a68800754bb