PR #101956 introduced additional stream priorities for cuda streams. HIP streams have slightly different semantics.
- HIP: 1=low, 0=default, -1=high
- CUDA: 0=default, -1=high, -2=higher, etc.
This PR forces HIP stream priority to just 0 and -1 to match the pytorch semantics.
This fixes a broken unit test.
```
python3 test_cuda_multigpu.py TestCudaMultiGPU.test_streams_priority -v
Test results will be stored in test-reports/python-unittest/test_cuda_multigpu
Running tests...
----------------------------------------------------------------------
test_streams_priority (__main__.TestCudaMultiGPU) ... ERROR (0.200s)
======================================================================
ERROR [0.200s]: test_streams_priority (__main__.TestCudaMultiGPU)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/opt/conda/envs/py_3.8/lib/python3.8/site-packages/torch/testing/_internal/common_utils.py", line 2354, in wrapper
method(*args, **kwargs)
File "test_cuda_multigpu.py", line 656, in test_streams_priority
low, high = torch.cuda.Stream.priority_range()
RuntimeError: least_priority == 0 INTERNAL ASSERT FAILED at "/var/lib/jenkins/pytorch-upstream/c10/hip/HIPStream.h":184, please report a bug to PyTorch. Unexpected HIP stream priority range
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106157
Approved by: https://github.com/malfet
Changes the StreamID encoding to use the last bit to distinguish between external and internal streams, 4 bits for IdType (DEFAULT, EXT or user-created streams possibly with high priority), and 5 bits for index. This allows us to have more stream priorities exposed to user (I'm currently setting 4, but that's easy to change now). Note, we are pre-creating all 32 streams in the pool per each allowed priority, I don't know if it's a problem in practice. Currently cuda 11.8/A100 GPUs allow 6 different stream priorities, the number may be different for the different cards/different cuda versions.
Previous callsites explicitly requesting high prioity stream (`isHighPriority=true`) are now getting the highest priority stream.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101956
Approved by: https://github.com/ezyang
Changes the StreamID encoding to use the last bit to distinguish between external and internal streams, 4 bits for IdType (DEFAULT, EXT or user-created streams possibly with high priority), and 5 bits for index. This allows us to have more stream priorities exposed to user (I'm currently setting 4, but that's easy to change now). Note, we are pre-creating all 32 streams in the pool per each allowed priority, I don't know if it's a problem in practice. Currently cuda 11.8/A100 GPUs allow 6 different stream priorities, the number may be different for the different cards/different cuda versions.
Previous callsites explicitly requesting high prioity stream (`isHighPriority=true`) are now getting the highest priority stream.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101956
Approved by: https://github.com/ezyang
#75854
A naive attempt at working around the limitations of using a single 64-bit integer to pack `stream_id`, `device_index`, and `device_type`.
Stills needs sanity checks, testing, and minimization of BC-breaking changes.
Currently a Holder for the `StreamData3` struct is used for `IValue` compatibility. While doing this seems to work for `ivalue.h` and `ivalue_inl.h`, this doesn't seem to be naively working for the JIT CUDA stream wrapper? (Something about ambiguous calls if an `intrusive_ptr` to `c10::ivalue::StreamData3Holder` is used as the return type for `pack()`. It turns out that the methods required to access the fields for rematerializing a CUDA Stream are basically already present anyway, so `pack` is simply removed in the wrapper for now and the methods to access the required fields are called directly.
CC @ptrblck
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81596
Approved by: https://github.com/ezyang
Summary:
This is a first step towards creating context manager that errors out on synchronizing calls.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61889
Reviewed By: albanD
Differential Revision: D29805280
Pulled By: ngimel
fbshipit-source-id: b66400fbe0941b7daa51e6b30abe27b9cccd4e8a
Summary:
Follow-up to https://github.com/pytorch/pytorch/issues/18584. This PR covers the remaining places where event or stream query might result in not ready errors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61554
Reviewed By: mrshenli
Differential Revision: D29763973
Pulled By: ezyang
fbshipit-source-id: 41d988d1826b2309cc6b01a81144094b353abdf9
Summary:
Previous is https://github.com/pytorch/pytorch/issues/57781
We add now two CUDA bindings to avoid using ctypes to fix a windows issue.
However, we use ctypes to allocate the stream and create its pointer
(we can do this with a 0-dim tensor too if it feels better).
CC. ezyang rgommers ngimel mruberry
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59527
Reviewed By: albanD
Differential Revision: D29053062
Pulled By: ezyang
fbshipit-source-id: 661e7e58de98b1bdb7a0871808cd41d91fe8f13f
Summary:
This is required in https://github.com/pytorch/pytorch/pull/57110#issuecomment-828357947
We need to provide means to synchronize on externally allocated streams for dlpack support in python array data api.
cc mruberry rgommers leofang asi1024 kmaehashi
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57781
Reviewed By: mrshenli
Differential Revision: D28326365
Pulled By: ezyang
fbshipit-source-id: b67858c8033949951b49a3d319f649884dfd0a91
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56830
Opt into formatting on GitHub and format everything. This is a trial run before turning on formatting for more and eventually all of the codebase.
Test Plan: CI
Reviewed By: zertosh
Differential Revision: D27979080
fbshipit-source-id: a80f0c48691c08ae8ca0af06377b87e6a2351151
Summary:
All pretty minor. I avoided renaming `class DestructableMock` to `class DestructibleMock` and similar such symbol renames (in this PR).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49815
Reviewed By: VitalyFedyunin
Differential Revision: D25734507
Pulled By: mruberry
fbshipit-source-id: bbe8874a99d047e9d9814bf92ea8c036a5c6a3fd
Summary:
Since caffe2 and torch have been consolidated, CAFFE2_API should be merged with TORCH_API. Addresses a TODO.
Manually edited some references of the removed `CAFFE2_API`:
* `CONTRIBUTING.md`
* `caffe2/proto/CMakeLists.txt`
* `cmake/ProtoBuf.cmake`
* `c10/macros/Export.h`
* `torch/csrc/WindowsTorchApiMacro.h`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49496
Reviewed By: malfet, samestep
Differential Revision: D25600726
Pulled By: janeyx99
fbshipit-source-id: 7e068d959e397ac183c097d7e9a9afeca5ddd782
Summary:
1. Added `torch/csrc/cuda/Event.h` and `torch/csrc/cuda/Event.cpp` to bind Python Event class to C++ implementation.
2. Move all CUDA runtime invocations from `torch/cuda/streams.py` to C++
3. Added tests to cover Stream and Event APIs. ~(event IPC handle tests is introduced in #15974)~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15937
Differential Revision: D13649001
Pulled By: mrshenli
fbshipit-source-id: 84ca58f35f6ba679a4ba33150ceba678d760d240
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15316
This starts cleaning up the files in c10 according to the module structure we decided on.
Move to c10/util:
- Half.h, Half-inl.h, Half.cpp, bitcasts.h
Move to c10/core:
- Device.h, Device.cpp
- DeviceType.h, DeviceType.cpp
i-am-not-moving-c2-to-c10
Reviewed By: dzhulgakov
Differential Revision: D13498493
fbshipit-source-id: dfcf1c490474a12ab950c72ca686b8ad86428f63
Summary:
See #15682
Pushing up this small PR to check if I am doing the right thing. If correct, more will follow for other Stream APIs. Questions will be added inline.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15737
Differential Revision: D13581400
Pulled By: mrshenli
fbshipit-source-id: 24afed7847b89b62f0692c79a101ec7ff9d9ee4d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14248
This diff also introduces a horrifying hack to override CUDA's DeviceGuardImpl
with a HIPGuardImplMasqueradingAsCUDA, to accommodate PyTorch's current
behavior of pretending CUDA is HIP when you build with ROCm enabled.
Reviewed By: bddppq
Differential Revision: D13145293
fbshipit-source-id: ee0e207b6fd132f0d435512957424a002d588f02