Commit Graph

11 Commits

Author SHA1 Message Date
Tugsbayasgalan Manlaibaatar
eb1f85a2a0 Support C++ statically_known_true (#151346)
Differential Revision: [D73040543](https://our.internmc.facebook.com/intern/diff/D73040543/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151346
Approved by: https://github.com/laithsakka
2025-04-18 06:42:12 +00:00
Pian Pawakapan
284b766898 [dynamic shapes] C++ bindings for guard_or_false/true (#150148)
C++ version. Would like to add it in one place to prove it works, but couldn't find one that doesn't expose a chain of data-dependent changes... so just gonna put up the base implementation

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150148
Approved by: https://github.com/laithsakka, https://github.com/jingsh
2025-03-31 17:04:25 +00:00
cyy
52e9049ffa Remove unused variables (#122496)
This PR removes several unused variables in the code base.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122496
Approved by: https://github.com/ezyang
2024-03-22 18:04:09 +00:00
Edward Z. Yang
3f0fd36835 Introduce size oblivious guards (#118579)
Fixes https://github.com/pytorch/pytorch/issues/117361

The implementation here slightly diverges from what was proposed in the issue, so I will recap what this PR is doing here. Today, when doing computations involving size-like unbacked SymInts, we assume for all operations that the compile time range of the integer is `[2, inf]`, even though at runtime we also accept zero and one.

This PR removes the carte blanche assumption, and instead does the analysis in a much more limited and controlled fashion: only for guards which we have designated as "size oblivious" are we willing to do the analysis under the assumption that the range of all size-like unbacked SymInts is `[2, inf]`; otherwise, we will faithfully only do analysis with `[0, inf]` (or whatever the user provided) bounds.

The infra pieces of this PR are:

* Remove runtime_var_to_range from torch/fx/experimental/symbolic_shapes.py; modify `_constrain_range_for_size` to refine the range without clamping min to 2, and instead add the symbol to a `size_like` set in the ShapeEnv
* When evaluating an expression, if the expression is requested to be evaluated in a `size_oblivious` way, we attempt to statically compute the value of the expression with the assumption that all symbols in `size_like` are updated to assume that they are `>= 2`.
* Add Python and C++ APIs for guarding on a SymBool in a size-oblivious way. In C++, I also need to add some helpers for performing symbolic comparisons, since the stock comparisons immediately specialize in the "normal" way.

The rest of the changes of the PR are marking various spots in PyTorch framework code as size oblivious, based on what our current test suite exercises.

As you review the places where we have marked things as size oblivious, it may become clear why I ended up not opting for the "designate a branch as the default branch when it's not statically obvious which way to go": for some of the conditions, this answer is rather non-obvious. I think potentially there is another refinement on top of this PR, which is something like "I don't care if you can't figure it out with ValueRange analysis, go down this path anyway if there are unbacked sizes involved." But even if we add this API, I think we are obligated to attempt the ValueRange analysis first, since it can lead to better outcomes sometimes (e.g., we are able to figure out that something is contiguous no matter what the unbacked size is.)

When is it permissible to mark something as size oblivious? Heuristically, it is OK anywhere in framework code if it gets you past a guard on unbacked SymInt problem. It is somewhat difficult to provide a true semantic answer, however. In particular, these annotations don't have any observational equivalence guarantee; for example, if I have `torch.empty(u0, 1).squeeze()`, we will always produce a `[u0]` size tensor, even though if `u0 == 1` PyTorch will actually produce a `[]` size tensor. The argument that I gave to Lezcano is that we are in fact defining an alternate semantics for a "special" size = 0, 1, for which we have these alternate eager mode semantics. In particular, suppose that we have a constant `special1` which semantically denotes 1, but triggers alternate handling rules. We would define `torch.empty(special1, 1).squeeze()` to always produce a `[special1]` size tensor, making its semantics coincide with unbacked SymInt semantics. In this model, the decision to designate guards as size oblivious is simply a user API question: you put them where ever you need some handling for special1! As we conservatively error out whenever it is not obvious what `special1` semantics should be, it is always valid to expand these semantics to cover more cases (although you can always choose the wrong semantics!)

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118579
Approved by: https://github.com/eellison, https://github.com/lezcano
2024-02-06 19:45:32 +00:00
cyy
bae61ecb96 [Reland 1] Cleanup header inclusions in torch_cpu by iwyu (#112311)
Reland https://github.com/pytorch/pytorch/pull/101178 to use IWYU on torch_cpu. The header file changes are excluded to avoid breaking internal jobs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112311
Approved by: https://github.com/ezyang
2023-11-19 04:06:36 +00:00
PyTorch MergeBot
83deaa16ed Revert "[1/N] Cleanup header inclusions in torch_cpu by iwyu (#101178)"
This reverts commit b7a95f4fdb.

Reverted https://github.com/pytorch/pytorch/pull/101178 on behalf of https://github.com/atalman due to Break internal CI ([comment](https://github.com/pytorch/pytorch/pull/101178#issuecomment-1734384645))
2023-09-25 20:05:25 +00:00
cyy
b7a95f4fdb [1/N] Cleanup header inclusions in torch_cpu by iwyu (#101178)
Following our previous IWYU work  #100304 on C10, it makes more sense to try IWYU on torch_cpu. This PR does exactly that. Meanwhile, it fixes issue #48684.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101178
Approved by: https://github.com/ezyang
2023-09-24 05:01:20 +00:00
soulitzer
d7130e9704 Add SingletonSymIntNode (#107089)
Adds `SingletonSymNodeImpl` (alternatively, `SkolemSymNodeImpl`). This is a int-like object that only allows  the`eq` operation; any other operation produces an error.

The main complexity is that we require operations that dispatch to SymNode must take and return SymNodes, but when performing operations involving `SingletonSymNodeImpl`, operations involving SymNode can return non-SymNode bools.  For more discussion see [here](https://docs.google.com/document/d/18iqMdnHlUnvoTz4BveBbyWFi_tCRmFoqMFdBHKmCm_k/edit)
- Introduce `ConstantSymNodeImpl` a generalization of `LargeNegativeIntSymNodeImpl` and replace usage of `LargeNegativeIntSymNodeImpl`  in SymInt.
- Also use ConstantSymNodeImpl to enable SymBool to store its data on a SymNode. Remove the  assumption that if SymBool holds a non-null SymNode, it must be symbolic.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107089
Approved by: https://github.com/ezyang
ghstack dependencies: #107839
2023-08-24 21:38:47 +00:00
Edward Z. Yang
e1ee10e6f5 Add expect_true for irrefutable guards (#106720)
Here's what it does from the comments:

```
Assume that a boolean is true for the purposes of subsequent symbolic
reasoning.  This will keep track of corresponding runtime checks to verify
that the result is upheld: either as a regular guard, or as a special set
of asserts which are triggered when an unbacked SymInt is allocated.

DO NOT use this function for these cases:

 - This is inappropriate for "branching" conditions (where both
   true and false result in valid programs).  We will always assume
   the condition evaluates true, and so it will never be possible
   to trace the false condition when you use it.  For true branching
   on unbacked SymInts, you must use torch.cond.

 - This is inappropriate for situations where you know some other system
   invariant guarantees that this property holds, since you don't
   really need to insert a runtime check in that case.  Use something
   like constrain_range in that case.

This API has a hitch.  To avoid having to reimplement error reporting
capabilities, this function CAN return False.  The invariant is that
the surrounding code must raise an error when this function returns
False.  This is quite low level, so we recommend using other functions
like check() which enforce this in a more intuitive way.

By the way, this name is a nod to the __builtin_expect likely macro,
which is used similarly (but unlike __builtin_expect, you MUST fail
in the unlikely branch.)
```

We don't do anything with this right now, except use it to discharge regular guards.  Follow up PRs to (1) use it at important error checking sites, (2) actually ensure the runtime asserts make there way into the exported IR / inductor generated code.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106720
Approved by: https://github.com/ysiraichi, https://github.com/voznesenskym
2023-08-15 18:42:22 +00:00
Edward Z. Yang
ff7772317b Stub all TensorImpl bools; do not go to Python if not hinted. (#94431)
The basic idea behind this PR is that we want to continue using the guarding implementations of contiguity tests, if all of the elements are backend (aka, have hints). If they don't have hints, we'll have to do something slower (use the non-short circuiting, non guarding implementations of contiguity), but most of the time you aren't dealing with unbacked SymInts.

So this PR has three parts.

1. We expose `has_hint` on `SymNode`. This allows us to query whether or not a SymInt is backed or not from C++. Fairly self explanatory. Will require LTC/XLA updates; but for backends that don't support unbacked SymInts you can just always return true.
2. We update `compute_non_overlapping_and_dense` to test if the inputs are hinted. If they are all hinted, we use the conventional C++ implementation. Otherwise we call into Python. The Python case is not heavily tested right now because I haven't gotten all of the pieces for unbacked SymInts working yet. Coming soon.
3. We add stubs for all of the other contiguity tests. The intention is to apply the same treatment to them as well, but this is not wired up yet for safety reasons.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94431
Approved by: https://github.com/voznesenskym
2023-02-15 21:06:42 +00:00
Edward Z. Yang
5c6f5439b7 Implement SymBool (#92149)
We have known for a while that we should in principle support SymBool as a separate concept from SymInt and SymFloat ( in particular, every distinct numeric type should get its own API). However, recent work with unbacked SymInts in, e.g., https://github.com/pytorch/pytorch/pull/90985 have made this a priority to implement. The essential problem is that our logic for computing the contiguity of tensors performs branches on the passed in input sizes, and this causes us to require guards when constructing tensors from unbacked SymInts. Morally, this should not be a big deal because, we only really care about the regular (non-channels-last) contiguity of the tensor, which should be guaranteed since most people aren't calling `empty_strided` on the tensor, however, because we store a bool (not a SymBool, prior to this PR it doesn't exist) on TensorImpl, we are forced to *immediately* compute these values, even if the value ends up not being used at all. In particular, even when a user allocates a contiguous tensor, we still must compute channels-last contiguity (as some contiguous tensors are also channels-last contiguous, but others are not.)

This PR implements SymBool, and makes TensorImpl use SymBool to store the contiguity information in ExtraMeta. There are a number of knock on effects, which I now discuss below.

* I introduce a new C++ type SymBool, analogous to SymInt and SymFloat. This type supports logical and, logical or and logical negation. I support the bitwise operations on this class (but not the conventional logic operators) to make it clear that logical operations on SymBool are NOT short-circuiting. I also, for now, do NOT support implicit conversion of SymBool to bool (creating a guard in this case). This does matter too much in practice, as in this PR I did not modify the equality operations (e.g., `==` on SymInt) to return SymBool, so all preexisting implicit guards did not need to be changed. I also introduced symbolic comparison functions `sym_eq`, etc. on SymInt to make it possible to create SymBool. The current implementation of comparison functions makes it unfortunately easy to accidentally introduce guards when you do not mean to (as both `s0 == s1` and `s0.sym_eq(s1)` are valid spellings of equality operation); in the short term, I intend to prevent excess guarding in this situation by unit testing; in the long term making the equality operators return SymBool is probably the correct fix.
* ~~I modify TensorImpl to store SymBool for the `is_contiguous` fields and friends on `ExtraMeta`. In practice, this essentially meant reverting most of the changes from https://github.com/pytorch/pytorch/pull/85936 . In particular, the fields on ExtraMeta are no longer strongly typed; at the time I was particularly concerned about the giant lambda I was using as the setter getting a desynchronized argument order, but now that I have individual setters for each field the only "big list" of boolean arguments is in the constructor of ExtraMeta, which seems like an acceptable risk. The semantics of TensorImpl are now that we guard only when you actually attempt to access the contiguity of the tensor via, e.g., `is_contiguous`. By in large, the contiguity calculation in the implementations now needs to be duplicated (as the boolean version can short circuit, but the SymBool version cannot); you should carefully review the duplicate new implementations. I typically use the `identity` template to disambiguate which version of the function I need, and rely on overloading to allow for implementation sharing. The changes to the `compute_` functions are particularly interesting; for most of the functions, I preserved their original non-symbolic implementation, and then introduce a new symbolic implementation that is branch-less (making use of our new SymBool operations). However, `compute_non_overlapping_and_dense` is special, see next bullet.~~ This appears to cause performance problems, so I am leaving this to an update PR.
* (Update: the Python side pieces for this are still in this PR, but they are not wired up until later PRs.) While the contiguity calculations are relatively easy to write in a branch-free way, `compute_non_overlapping_and_dense` is not: it involves a sort on the strides. While in principle we can still make it go through by using a data oblivious sorting network, this seems like too much complication for a field that is likely never used (because typically, it will be obvious that a tensor is non overlapping and dense, because the tensor is contiguous.) So we take a different approach: instead of trying to trace through the logic computation of non-overlapping and dense, we instead introduce a new opaque operator IsNonOverlappingAndDenseIndicator which represents all of the compute that would have been done here. This function returns an integer 0 if `is_non_overlapping_and_dense` would have returned `False`, and an integer 1 otherwise, for technical reasons (Sympy does not easily allow defining custom functions that return booleans). The function itself only knows how to evaluate itself if all of its arguments are integers; otherwise it is left unevaluated. This means we can always guard on it (as `size_hint` will always be able to evaluate through it), but otherwise its insides are left a black box. We typically do NOT expect this custom function to show up in actual boolean expressions, because we will typically shortcut it due to the tensor being contiguous. It's possible we should apply this treatment to all of the other `compute_` operations, more investigation necessary. As a technical note, because this operator takes a pair of a list of SymInts, we need to support converting `ArrayRef<SymNode>` to Python, and I also unpack the pair of lists into a single list because I don't know if Sympy operations can actually validly take lists of Sympy expressions as inputs. See for example `_make_node_sizes_strides`
* On the Python side, we also introduce a SymBool class, and update SymNode to track bool as a valid pytype. There is some subtlety here: bool is a subclass of int, so one has to be careful about `isinstance` checks (in fact, in most cases I replaced `isinstance(x, int)` with `type(x) is int` for expressly this reason.) Additionally, unlike, C++, I do NOT define bitwise inverse on SymBool, because it does not do the correct thing when run on booleans, e.g., `~True` is `-2`. (For that matter, they don't do the right thing in C++ either, but at least in principle the compiler can warn you about it with `-Wbool-operation`, and so the rule is simple in C++; only use logical operations if the types are statically known to be SymBool). Alas, logical negation is not overrideable, so we have to introduce `sym_not` which must be used in place of `not` whenever a SymBool can turn up. To avoid confusion with `__not__` which may imply that `operators.__not__` might be acceptable to use (it isn't), our magic method is called `__sym_not__`. The other bitwise operators `&` and `|` do the right thing with booleans and are acceptable to use.
* There is some annoyance working with booleans in Sympy. Unlike int and float, booleans live in their own algebra and they support less operations than regular numbers. In particular, `sympy.expand` does not work on them. To get around this, I introduce `safe_expand` which only calls expand on operations which are known to be expandable.

TODO: this PR appears to greatly regress performance of symbolic reasoning. In particular, `python test/functorch/test_aotdispatch.py -k max_pool2d` performs really poorly with these changes. Need to investigate.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92149
Approved by: https://github.com/albanD, https://github.com/Skylion007
2023-01-21 02:21:56 +00:00