when a tensor has unbacked symbols it can be general enough to represent both contiguous and non contiguous tensors.
in that case we cant really evaluate is_contiguous. In many places in the code base, we check for is_contiguous to take a fast path. but the general path usually works for both contiguous and not contiguous in that case we probably want
to use definitely _contiguous API.
This is appleid for reshape in this PR and also to tensor meta data computation, the meta data now will have an attribute that says that its contiguous when its always contiguous. We would store that only if definitely _contiguous is true now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153432
Approved by: https://github.com/bobrenjc93
Summary:
This backs out D60320595 which itself turned off FakeTensor caching when a SymInt was present.
There has been a lot of dynamic shape fixes done this year and tests pass so I'm assuming some of that work fixed what was breaking previously.
Test Plan: Reran the tests listed in T196779132 and they pass.
## Perf
### Instruction Counter Benchmark:
- 26% win on add_loop_eager_dynamic
- 13% win on add_loop_inductor_dynamic_gpu
### Perf Dashboard
Compilation Latency wins across the board but especially strong on the dynamic tests (like cudagraphs_dynamic) - for example MobileBertForMaskedLM went from 66s -> 50s.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152662
Approved by: https://github.com/anijain2305
PR time benchmarks has been showing regressions as we move to guard_or_false, reason is that prev implementation do not cache.
This new approach will propagate the fallback value to eval and return it. allowing eval to cache and reducing scamming logs and complexity.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153674
Approved by: https://github.com/bobrenjc93
During our debug session, @wdvr and I found out that the benchmark database is growing much faster than we expect. After taking a closer look, the majority of them coming from TorchInductor benchmark and the top 3 are all debug information not used by any dashboard atm. In the period of 7 days, there are close to 6 millions records ([query](https://paste.sh/GUVCBa0v#UzszFCZaWQxh7oSVsZtfZdVE))
```
Benchmark,Metric,Count
"TorchInductor","user_stack","1926014"
"TorchInductor","reason","1926014"
"TorchInductor","model","1926014"
```
Let's skip uploading them to avoid bloating the database.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153769
Approved by: https://github.com/malfet
After https://github.com/pytorch/pytorch/pull/154004, one of the model `phlippe_resnet` needs higher tolerance for fp16 on CUDA 12.8. I can reproduce it locally with:
```
python benchmarks/dynamo/torchbench.py --accuracy --timing --explain --print-compilation-time --inductor --device cuda --training --amp --only phlippe_resnet
E0522 02:47:12.392000 2130213 site-packages/torch/_dynamo/utils.py:2949] RMSE (res-fp64): 0.00144, (ref-fp64): 0.00036 and shape=torch.Size([]). res.dtype: torch.float32, multiplier: 3.000000, tol: 0.001000, use_larger_multiplier_for_smaller_tensor: 0
```
I'm not sure what exactly happens behind the scene, but this should help fix the CI failure.
Also remove some left over expected accuracy results for CUDA 12.4 which we are not using anymore on CI for benchmark jobs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154109
Approved by: https://github.com/Skylion007, https://github.com/malfet
https://github.com/pytorch/pytorch/pull/152708 expanded support of `get_estimated_runtime` to many more types of `SchedulerNodes`. This caused an increase in compile time because we're always calling `get_estimated_runtime` to populate the metrics table. This PR adds a flag for this logging, which reduces the instruction count by 8%. Long term, we should probably merge metrics.py with TORCH_LOGS/tlparse (suggestion from @xmfan).
Update: added support for TORCH_LOGS for the metrics logging.
Test Plan:
mm_loop.py and many existing tests cover.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153506
Approved by: https://github.com/eellison
Change logging.error to logging.exception to log additional information when relevant. A few places have slipped in logging.errors in try except since I last did a clean up here and the rule is stabilized so I am enabling it codebase wide. I have NOQA'd much of our custom exception stack trace handling for RPC calls and distributed and tried to a fix a few errors based on whether we immediately reraised it or if we didn't print any exception handling where it could be useful.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153473
Approved by: https://github.com/albanD, https://github.com/cyyever
A lot of last minute bugfixes for CUTLASS blackwell that we should upstream. It's a header only library and a minor release so this should strictly improve compiler support and fix some bugs. Needed to update some instruction numbers in torch compile baselines for the new kernels
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152779
Approved by: https://github.com/henrylhtsang
This PR:
- cleans up some existing comments that don't make sense anymore
- hooks up the "custom_op_default_layout_constraint" back (that seems to
have broken)
- cleans up the "lazy registration path" which seems to never get hit
anymore
- adds dislike_padding to nodes that require exact strides
Test Plan:
- tests + CI
disable padding
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148104
Approved by: https://github.com/shunting314, https://github.com/eellison
PT2 benchmark scripts has a pattern like:
```
def forward_and_backward_pass(self, mod, inputs, collect_outputs=True):
cloned_inputs = clone_inputs(inputs)
self.optimizer_zero_grad(mod)
with self.autocast(**self.autocast_arg):
pred = mod(**cloned_inputs)
loss = self.compute_loss(pred)
self.grad_scaler.scale(loss).backward()
self.optimizer_step()
if collect_outputs:
return collect_results(mod, pred, loss, cloned_inputs)
return None
```
for training.
The collect_outputs argument is True only for accuracy testing and it's false for performance testing.
For HF benchmark suite, a model usually returns tuple (loss, logits). For performance testing, even though the logits is never used anywhere, dynamo has to keep it due to the control flow.
A few bad things if we keep logits here
1. the peak memory will be higher since the logits is large and we can not release its memory earlier.
2. we can not do optimization like chunking for the logits because the tensor needs to be returned from the pre-grad graph
Actually I think it's fine to not return logits at all.
- For training cases, checking loss and gradients for accuracy is good enough. It's hard to see two runs have mismatch logits but matching loss/gradients.
- Also, discarding logits as soon as possible for perf benchmarking makes it more fair for us.
On the other hand, it may be interesting to let dynamo support something like dynamo.constexpr (similar to tl.constexpr). A variable annotated as dynamo.constexpr will be specialized at compile time and we can do more optimization (DCE e.g.) at compile time. (A small [repro](https://gist.github.com/shunting314/0912a8947028a904c34f361021b8024d))
Benchmark results here [link](https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Fri%2C%2004%20Apr%202025%2018%3A03%3A26%20GMT&stopTime=Fri%2C%2011%20Apr%202025%2018%3A03%3A26%20GMT&granularity=hour&mode=training&dtype=amp&deviceName=cuda%20(h100)&lBranch=gh/shunting314/204/head&lCommit=fe25dab3f65e1b0e9db0af03f7664af70fcc9c66&rBranch=main&rCommit=55e62ff74ad5614faf80b060c7bfc551e3b7af5a)
- HF 15% (1.51 -> 1.66 compression ratio) peak memory improvement
- I also see 5% (2.74 -> 2.79x) perf win for HF. It could be true. We may generate more efficient kernels since we don't need keep logits and return it from the pre-grad graph. But I'll double check
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151075
Approved by: https://github.com/eellison, https://github.com/jansel
sdp on xpu will fallback to math path in some cases (i.e. training). In dynamo benchmark, we prefer to use fp16 for better performance. Although `allow_fp16_bf16_reduction_math_sdp` is under backends.cuda, its implementation is for all device.
I didn't add if device == xpu here, I suppose cuda devices will not run into math path anyway
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150996
Approved by: https://github.com/drisspg, https://github.com/EikanWang