Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56152
Currently, the Bundled Inputs API mutates the module in-place. It adds class methods and not instance methods. This results in a small problem that one can't re-run an already executed cell in Bento if the class has already been subject to bundled inputs.
In addition, there is no way to add bundled inputs to a module that has bundled inputs added already. This API provides a way to solve this problem as well by adding an `ignored_methods` to the call to `clone()` by allowing the implementation of bundled inputs to pass in the methods that it will add as `ignored_methods` so that when it does try to add those methods, it will be able to do so successfully.
We'll have to be careful when ignoring those methods during the call to `torch.jit._clone_module_with_class` since any bundled input that relies on a user-provided method will need to be preserved and not ignored during the clone.
Looking for feedback on whether this is an acceptable direction.
ghstack-source-id: 128908360
Test Plan:
Added unit test and ran it as `buck test //caffe2/test:mobile`
Also see this Bento Notebook: https://www.internalfb.com/intern/anp/view/?id=550829
Reviewed By: gmagogsfm
Differential Revision: D27788394
fbshipit-source-id: 48109cd4583506d4efdb345e4ba31385db23a273
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os
def get_compiled_files_list():
import json
with open("build/compile_commands.json") as f:
data = json.load(f)
files = [os.path.relpath(node['file']) for node in data]
for idx, fname in enumerate(files):
if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
return files
def run_clang_tidy(fname):
check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
changes = check_output(["git", "ls-files", "-m"])
if len(changes) == 0:
return
check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])
def main():
git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
compiled_files = get_compiled_files_list()
for idx, fname in enumerate(git_files):
if fname not in compiled_files:
continue
if fname.startswith("caffe2/contrib/aten/"):
continue
print(f"[{idx}/{len(git_files)}] Processing {fname}")
run_clang_tidy(fname)
if __name__ == "__main__":
main()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892
Reviewed By: H-Huang
Differential Revision: D27991944
Pulled By: malfet
fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
Summary:
The code uses `torch::jit::jit_log_prefix` for handling recursive
indenting in most places in this function. There was one place that was
using "level", but it was buggy -- it would result in a compounding
superlinear indent. Note that changing it to "level+1" doesn't fix the
bug.
Before/after:
https://gist.github.com/silvasean/8ee3ef115a48de6c9c54fbc40838d8d7
The new code establishes a recursive invariant for
`Module::dump_to_str`: the function returns the module printed at the
base indent level (i.e. no indent). `torch::jit:log_prefix` is used
to prefix recursive calls. The code was already nearly there, except for
this spurious use of "level".
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52539
Reviewed By: navahgar
Differential Revision: D26773657
Pulled By: gmagogsfm
fbshipit-source-id: ab476f0738bf07de9f40d168dd038dbf62a9a79e
Summary:
Update freezing api for 1.8, and add a corresponding C++ API. The `optimize` flag hasn't been publicly released yet, so we are able to change it without breaking BC. I will submit a PR to branch release as well, there are a few more days to do that
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52337
Reviewed By: ejguan
Differential Revision: D26491833
Pulled By: eellison
fbshipit-source-id: 6dcd74eb8f76db64ac53183d03dabdd0f101f4b5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48863
Support default arguments when invoking a module via PyTorch Lite (`mobile::Module`).
Test Plan:
buck test mode/dbg //caffe2/test/cpp/jit:jit -- LiteInterpreterTest.MethodInvocation
buck test mode/dbg caffe2/test:mobile -- test_method_calls_with_optional_arg
Reviewed By: iseeyuan
Differential Revision: D25896212
fbshipit-source-id: 6d7e7fd5f3244a88bd44889024d81ad2e678ffa5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48863
Support default arguments when invoking a module via PyTorch Lite (`mobile::Module`).
Test Plan:
buck test mode/dbg //caffe2/test/cpp/jit:jit -- LiteInterpreterTest.MethodInvocation
buck test mode/dbg caffe2/test:mobile -- test_method_calls_with_optional_arg
Reviewed By: raziel, iseeyuan
Differential Revision: D25152559
fbshipit-source-id: bbf52f1fbdbfbc6f8fa8b65ab524b1cd4648f9c0
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48607
This change builds on top of
https://github.com/pytorch/pytorch/pull/46865
further exposing the async interface to `torch::jit::Method`.
added unit test for new `run_async`
Test Plan: `buck test caffe2/test/cpp/jit/...`
Reviewed By: dzhulgakov
Differential Revision: D25219726
fbshipit-source-id: 89743c82a0baa1affe0254c1e2dbf873de8e5c76
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45858
When cloning a module that has __setstate__, __getstate__ methods.
We need to load these methods to initialize these modules.
Test Plan: Imported from OSS
Reviewed By: suo
Differential Revision: D24116524
Pulled By: bzinodev
fbshipit-source-id: a5111638e2dc903781f6468838c000850d1f9a74
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42121
This PR changes the Module API to allow register a module with module
interface type, and therefore allows Module::clone works on the case
where there's a module interface type being shared by two submodules.
interface type will be shared by the new cloned instance in the same
compilation unit bc it only
contains a list of functionSchema, which does not involve any
attributes compared to classType.
fixes https://github.com/pytorch/pytorch/issues/41882
Test Plan: Imported from OSS
Reviewed By: suo
Differential Revision: D22781205
Pulled By: wanchaol
fbshipit-source-id: f97f4b75970f0b434e38b5a1f778eda2c4e5109b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37548
Moving RecordFunction from torch::autograd::profiler into at namespace
Test Plan:
CI
Imported from OSS
Differential Revision: D21315852
fbshipit-source-id: 4a4dbabf116c162f9aef0da8606590ec3f3847aa
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37472
Our convention is for `findX` to return an optional version and `getX`
to assert that the X is there. Fix up `getMethod` to be consistent with
this convention.
Test Plan: Imported from OSS
Differential Revision: D21297543
Pulled By: suo
fbshipit-source-id: b40f56231cc8183e61bbb01fe5c0c113bcb6464d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32684
Previously we have `clone` and `clone_instance`, where `clone` will clone both type
and value, and `clone_instance` only clone the value, both of them are shallow copies.
We need to re-evaluate whether we should expose them as a user facing API.
I think we should hide `clone`, but `clone_instance` might be useful as well, especially
when we are copying a model with very large weights, people might just want to do shallow copy.
This PR adds a `deepcopy` that might be useful as a user API, which deep copies the values, including
Tensor, but we didn't deepcopy `Blob`, `Capsule`, `Future` or `PyObject`.
For more discussions please see the following issue.
fixes: https://github.com/pytorch/pytorch/issues/32519
Test Plan: Imported from OSS
Differential Revision: D21220756
fbshipit-source-id: 476bf11fe82c08fac36e7457879a09f545ffdc5e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34710
Extending RecordFunction API to support new recording scopes (such as TorchScript functions), as well as giving more flexibility to set sampling rate.
Test Plan: unit test (test_misc.cpp/testRecordFunction)
Reviewed By: gdankel, dzhulgakov
Differential Revision: D20158523
fbshipit-source-id: a9e0819d21cc06f4952d92d43246587c36137582
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35115
This commit runs the newly added tools/clang_format.py on the JIT
codebase and includes all of the formatting changes thus produced.
Testing:
Ran the script, CI.
Test Plan: Imported from OSS
Reviewed By: eellison
Differential Revision: D20568523
Pulled By: SplitInfinity
fbshipit-source-id: e09bdb982ccf090eecfb7c7b461b8d0681eef82b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34515
Once upon a time we thought this was necessary. In reality it is not, so
removing it.
For backcompat, our public interface (defined in `api/`) still has
typedefs to the old `script::` names.
There was only one collision: `Pass` as a `Stmt` and `Pass` as a graph
transform. I renamed one of them.
Test Plan: Imported from OSS
Differential Revision: D20353503
Pulled By: suo
fbshipit-source-id: 48bb911ce75120a8c9e0c6fb65262ef775dfba93