We have a failing unit test on Aarch64
```
Exception: Caused by reference input at index 34: SampleInput(input=Tensor[size=(5, 5, 4), device="cpu", dtype=torch.complex64, contiguous=False], args=(), kwargs={}, broadcasts_input=False, name='')
To execute this test, run the following from the base repo dir:
PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=34 python test/test_ops.py TestCommonCPU.test_python_ref__refs_square_cpu_complex64
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
```
After debugging it I found that `ex` variable is not being reset to None on each loop inside _ref_test_helper. Which after fixing, highlighted another expectedFailure to reenable - `nn.functional.hinge_embedding_loss` which was incorrectly being skipped due to the same problem.
4a545eb85d/test/test_ops.py (L546)
ex variable is not reset after this for next loop iteration
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146597
Approved by: https://github.com/digantdesai
# summary
Add blockwise MXFP8 support to `torch._scaled_mm` on CUDA capability 10.0 and higher devices. If the scales for A and B are of dtype `torch.float8_e8m0fnu`, we dispatch to the blockwise kernel from cuBLAS.
This is a skeleton PR where we test basic functionality (numerics of various simple matrices, as well as one end to end quantization + gemm).
- Scales are flipped based on transpose_result
- Handles boundary conditions
Note that MXFP4 is not added in this PR - we can tackle that in a future PR.
This PR was created by taking https://github.com/pytorch/pytorch/pull/145562, switching e8m0 to in-core dtype, removing fp4 for now, and adding test cases.
# test plan
```
pytest test/test_matmul_cuda.py -k blockwise_mxfp8 -s
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147548
Approved by: https://github.com/drisspg
Co-authored-by: drisspg <drisspguessous@gmail.com>
TLDR: Follow up/ Build on top of https://github.com/pytorch/pytorch/pull/144476. add OCP FP8 support for gfx950
refer to https://github.com/pytorch/ao/pull/1677
This pull request includes several changes to improve compatibility and support for new GPU architectures and data types, particularly for ROCm. The key updates involve adding support for new ROCm versions and GPU architectures, updating data type handling, and removing outdated checks.
### Improvements to GPU Architecture and ROCm Version Support:
* [`aten/src/ATen/Context.cpp`](diffhunk://#diff-33de472d304acbe57d693c8567370c638068bedc1aa0ce8e9dc115dad05a7810L323-R326): Added support for new GPU architectures `gfx1200`, `gfx1201`, and `gfx950` based on ROCm version checks.
* [`aten/src/ATen/native/cuda/Blas.cpp`](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL196-R199): Updated architecture support in multiple functions to include `gfx1200`, `gfx1201`, and `gfx950` based on ROCm version checks. [[1]](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL196-R199) [[2]](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL865-R876)
### Updates to Data Type Handling:
* [`aten/src/ATen/cuda/CUDADataType.h`](diffhunk://#diff-9188bb13b1a49f459141f5f9b875593d1c5ce2beb5ad711fdbaf5bc7089ec015L81-L98): Enhanced data type conversion to include new float8 types for both CUDA and ROCm environments.
* [`aten/src/ATen/cuda/tunable/GemmHipblaslt.h`](diffhunk://#diff-bfa1a3b5d4bef1892bf50338775f3b0fd8cd31fc1868148f3968b98aefb68e3fL29-R80): Updated `HipDataTypeFor` template to handle new float8 types and added hard-coded enum values for ROCm versions prior to 6.3.
### Removal of Outdated Checks:
* [`cmake/public/LoadHIP.cmake`](diffhunk://#diff-b98e27b9a5f196a6965a99ee5a7bb15b3fc633d6375b767635b1b04ccb2fd3d5L169-L197): Removed the check for `HIP_NEW_TYPE_ENUMS` as it is no longer necessary with the updated ROCm versions. [[1]](diffhunk://#diff-b98e27b9a5f196a6965a99ee5a7bb15b3fc633d6375b767635b1b04ccb2fd3d5L169-L197) [[2]](diffhunk://#diff-b98e27b9a5f196a6965a99ee5a7bb15b3fc633d6375b767635b1b04ccb2fd3d5L211-R182)
These changes ensure better compatibility and performance on newer hardware and software environments, particularly for users leveraging ROCm and CUDA for deep learning and scientific computing tasks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146632
Approved by: https://github.com/jeffdaily
Co-authored-by: Jeff Daily <jeff.daily@amd.com>
TLDR: Follow up/ Build on top of https://github.com/pytorch/pytorch/pull/144476. add OCP FP8 support for gfx950
refer to https://github.com/pytorch/ao/pull/1677
This pull request includes several changes to improve compatibility and support for new GPU architectures and data types, particularly for ROCm. The key updates involve adding support for new ROCm versions and GPU architectures, updating data type handling, and removing outdated checks.
### Improvements to GPU Architecture and ROCm Version Support:
* [`aten/src/ATen/Context.cpp`](diffhunk://#diff-33de472d304acbe57d693c8567370c638068bedc1aa0ce8e9dc115dad05a7810L323-R326): Added support for new GPU architectures `gfx1200`, `gfx1201`, and `gfx950` based on ROCm version checks.
* [`aten/src/ATen/native/cuda/Blas.cpp`](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL196-R199): Updated architecture support in multiple functions to include `gfx1200`, `gfx1201`, and `gfx950` based on ROCm version checks. [[1]](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL196-R199) [[2]](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL865-R876)
### Updates to Data Type Handling:
* [`aten/src/ATen/cuda/CUDADataType.h`](diffhunk://#diff-9188bb13b1a49f459141f5f9b875593d1c5ce2beb5ad711fdbaf5bc7089ec015L81-L98): Enhanced data type conversion to include new float8 types for both CUDA and ROCm environments.
* [`aten/src/ATen/cuda/tunable/GemmHipblaslt.h`](diffhunk://#diff-bfa1a3b5d4bef1892bf50338775f3b0fd8cd31fc1868148f3968b98aefb68e3fL29-R80): Updated `HipDataTypeFor` template to handle new float8 types and added hard-coded enum values for ROCm versions prior to 6.3.
### Removal of Outdated Checks:
* [`cmake/public/LoadHIP.cmake`](diffhunk://#diff-b98e27b9a5f196a6965a99ee5a7bb15b3fc633d6375b767635b1b04ccb2fd3d5L169-L197): Removed the check for `HIP_NEW_TYPE_ENUMS` as it is no longer necessary with the updated ROCm versions. [[1]](diffhunk://#diff-b98e27b9a5f196a6965a99ee5a7bb15b3fc633d6375b767635b1b04ccb2fd3d5L169-L197) [[2]](diffhunk://#diff-b98e27b9a5f196a6965a99ee5a7bb15b3fc633d6375b767635b1b04ccb2fd3d5L211-R182)
These changes ensure better compatibility and performance on newer hardware and software environments, particularly for users leveraging ROCm and CUDA for deep learning and scientific computing tasks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146632
Approved by: https://github.com/jeffdaily
Co-authored-by: Jeff Daily <jeff.daily@amd.com>
Our three main users are OK with this, with two of them (foreach_map,
invoke_quant) prefering it like this.
I was originally worried about BC issues (this now means you cannot add
any positional args) but I think that's not a concern -- one can always
add kwonly args.
Test Plan
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146730
Approved by: https://github.com/ydwu4, https://github.com/mlazos
In Fusion model, users might change the state_dict keys by state_dict_hook
The load_state_dict APIs here won't call model.state_dict() so that the hooks won't be called to change the keys, causing the mismatch between fqn and state_dict keys.
The PR here suggests users to add how they would change the state_dict key prefix (they can name it, here we call "fqn_modifiers") by default
During loading state_dict, we have the prefix change during getting fqn so that they can be processed same as through state_dict hook.
For example:
There's a state_dict_hook:
```
def _state_dict_hook(self, destination, prefix, keep_vars):
"""Remove "embedding" from the original embedding in the state_dict
name. This keeps the orginal state dict name for the embedding
from before fusing with the FusionEmbedding.
[!Note] This update changes the order of the OrderedDict
"""
key = prefix + "embedding.weight"
new_key = prefix + "weight"
destination[new_key] = destination[key]
del destination[key]
```
In the dsd after this PR, we would skip "embedding." before "weight" if find the "fqn_modifiers" attribute at that module
```
def fqn_modifiers(self) -> Dict[str, str]:
return {
"weight": "embedding",
}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146557
Approved by: https://github.com/fegin
This PR is to add `torch._scaled_mm` for CPU backend.
`_scaled_mm_out_cpu` and `_scaled_mm_cpu` are new added and included in `torch._scaled_mm` CPU dispatch. We also add `_scaled_mm_out_cpu_emulated` as a fallback function if the current platform cannot run FP8 matmul using oneDNN. And this PR also updates the various UTs related to FP8 to support CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139975
Approved by: https://github.com/mingfeima, https://github.com/jgong5, https://github.com/malfet
This PR is to add `torch._scaled_mm` for CPU backend.
`_scaled_mm_out_cpu` and `_scaled_mm_cpu` are new added and included in `torch._scaled_mm` CPU dispatch. We also add `_scaled_mm_out_cpu_emulated` as a fallback function if the current platform cannot run FP8 matmul using oneDNN. And this PR also updates the various UTs related to FP8 to support CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139975
Approved by: https://github.com/mingfeima, https://github.com/jgong5, https://github.com/malfet
This PR is to add `torch._scaled_mm` for CPU backend.
`_scaled_mm_out_cpu` and `_scaled_mm_cpu` are new added and included in `torch._scaled_mm` CPU dispatch. We also add `_scaled_mm_out_cpu_emulated` as a fallback function if the current platform cannot run FP8 matmul using oneDNN. And this PR also updates the various UTs related to FP8 to support CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139975
Approved by: https://github.com/mingfeima, https://github.com/jgong5, https://github.com/malfet
Use `__setattr__` and `__getattribute__` to wrap existing `dtypesIfXYZ` into it, which will allow for subsequent incremental elimination of those
Also, type annotation for OpInfo is a sham: it claims that `dtypes` and `dtypesIfXYZ` must be of type `_dispatch_dtypes`, but in reality it's converted to set in post init.
Test Plan:
- Check that `op_db[0].dtypesIfCUDA` and others shows the same values as before, by running the following script
```python
from torch.testing._internal.common_methods_invocations import op_db
print({name: getattr(op_db[0], f'dtypesIf{name}') for name in ['CUDA', 'ROCM', 'XPU', 'Hpu']})
```
- CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146905
Approved by: https://github.com/janeyx99
Adds a `invoke_quant` higher order operator as proposed [here](https://docs.google.com/document/d/1s2PfJlq6Q1F8l11CkTIC69BW1rEnGEgs6YmBC7hu8rA/edit?tab=t.0).
The primary motivations are
- Unifying scattered reasoning for quant operators throughout the code base
- Easy of pattern matching - see this very large pattern match expression [here](949fdd2997/torch/_inductor/fx_passes/post_grad.py (L390-L426). Compared to the pattern I have in the tests:
```
@register_graph_pattern(
CallFunction(
torch.ops.aten.mm,
CallFunction(
torch.ops.higher_order.invoke_quant,
Ignored(),
Ignored(),
Ignored(),
scheme="nf4",
),
Arg(),
),
pass_dict=test_pass,
)
```
- Ability to specify inductor specific logic, like codegen'ing the operators in lower precision, or forcing fusion to a matmul.
Example graph:
``` Python
===== AFTER POST GRAD =====
/data/users/eellison/pytorch/torch/fx/_lazy_graph_module.py class <lambda>(torch.nn.Module):
def forward(self, arg0_1: "f32[8][1]cpu", arg1_1: "f32[8][1]cpu"):
# File: /data/users/eellison/pytorch/torch/_higher_order_ops/invoke_quant.py:87 in __call__, code: return invoke_quant_tracer(*args, **kwargs, quant_options=self) # type: ignore[call-arg]
repeated_subgraph0 = self.repeated_subgraph0
invoke_quant: "f32[8][1]cpu" = torch.ops.higher_order.invoke_quant(repeated_subgraph0, arg0_1, arg1_1, scheme = 'nf4'); repeated_subgraph0 = arg0_1 = arg1_1 = None
return (invoke_quant,)
class repeated_subgraph0(torch.nn.Module):
def forward(self, arg0_1: "f32[8][1]cpu", arg1_1: "f32[8][1]cpu"):
# File: /data/users/eellison/pytorch/torch/_higher_order_ops/invoke_quant.py:87 in __call__, code: return invoke_quant_tracer(*args, **kwargs, quant_options=self) # type: ignore[call-arg]
mul: "f32[8][1]cpu" = torch.ops.aten.mul.Tensor(arg0_1, arg1_1); arg0_1 = None
add: "f32[8][1]cpu" = torch.ops.aten.add.Tensor(mul, arg1_1); mul = arg1_1 = None
return add
```
The schema for `invoke_quant` is `torch.ops.higher_order.invoke_quant(subgraph, *args, scheme=None)` where the scheme will not always be present.
I wasn't sure exactly how the inductor specific configurations like `codgen_in_low_precision` should be passed through. I didnt want to stuff them all in as kwargs, and I didn't want to have them affect pattern matching. So they will be stored as meta of the node itself. And, following that, I wanted the invocation of the hop to match how it will show up in the graph. So I decided to have it be an object that is then invoked for the tracing.
```
invoke_quant = InvokeQuant(codegen_low_precision=True)
invoke_quant(gn, (x, y), scheme="nf4")
```
Todo - not require the packing of args in a tuple, will do following https://github.com/pytorch/pytorch/pull/139162.
Feedback welcome.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139102
Approved by: https://github.com/Chillee
# Feature
Inductor sometimes uses `Identity` functions to group various terms of an expression. While this is convenient in some scenarios, it can frustrate pattern matching. For example, when we're matching an indexing expression to tell if it can be represented as a block pointer, that analysis should be invariant to `Identity`'s.
This PR adds a few features to achieve this invariance.
- Create a new expansion mode `expr.expand(identity=True)`, which removes all `Identity` functions from the expression.
- Preprocess the expression with this expansion prior to pattern matching.
- Bonus: create a new test utility function called `dummy_graph()`, which creates a simple `GraphLowering`. This is useful for testing the pattern matcher, as we need to initialize `V.graph` before we can access `V.graph.sizevars`.
# Test plan
This PR adds a few new unit tests:
- Added a unit test specifically for `expr.expand(identity=True)`.
- Added a new unit test module for the block pattern matcher. Tested that we can correctly match some example patterns containing Identity ops.
I originally intended to add an end to end test compiling pointwise cat, and mapping the corresponding memory accesses to block pointers. However, it looks like that will take more work, since the [relevant code path](https://github.com/pytorch/pytorch/blob/main/torch/_inductor/codegen/triton.py#L1306) disables block pointer analysis. It might be better to defer that to a future PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146000
Approved by: https://github.com/eellison, https://github.com/jansel
Fixes#146404
Adds changes to the matmul and matmul_backward operation for nested jagged tensors, to support back propagation when the output is a regular strided tensor.
This required adding support for the nested matmul operation to work when the nested tensor wasn't 'self', i.e
`A@B` where `A` isn't nested but `B` is.
The operation schemas had to be updated to reflect that either input can be a strided tensor instead (and the gradient), so an extra assertion is added in an edge case where neither input is nested.
Unit tests are also added.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146405
Approved by: https://github.com/soulitzer, https://github.com/jbschlosser
Not yet ready to setp HAS_GPU to true, but can unskip tests that require GPU
(Noticed while running test_mps_basics.py that `test_scalar_cpu_tensor_arg` is getting skipped)
- Replace `GPU_TYPE` with `self.device` in `test_custom_op_fixed_layout_sequential`, `test_inductor_layout_optimization_input_mutations`, `test_mutable_custom_op_fixed_layout2` otherwise they GPU tests are just running for _cpu suffixes.
- Tweak `test_tmp_not_defined_issue3` to work correctly on CPU, by defining `test_device` and `test_device_0`
- UnXFail `test_mutable_custom_op_fixed_layout2_dynamic_shapes` as it should just work on CPU
- Add `skip_if_no_triton` decorator and decorate `test_reduction_config_limit` with it, as it does not need CPU nor GPU, but rather a triton backend.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145156
Approved by: https://github.com/dcci, https://github.com/Skylion007, https://github.com/jansel
This PR improves opcheck to:
1. directly use torch.testing.assert_close (without a msg override).
This allows it to print the absolute and relative differences and the
number of mismatched elements.
2. take in an atol/rtol tolerance (for if someone just wants to use
opcheck in their testing).
Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146488
Approved by: https://github.com/williamwen42
In Python 3.12, the error message has changed from "Can't pickle local object" to "Can't get local object".
The old regex would no longer catch the error.
This PR make it compatible with Python 3.12 and backward compatible as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145945
Approved by: https://github.com/H-Huang
This enables a check that which a class which only inherits from immutable classes like str, tuple, and NamedTuple, also defined `__slots__` so they don't allocate memory unnecessarily. This also ensure contributors think about how they define their classes with subclass NamedTuples and str, of which we have many in our codebase
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146276
Approved by: https://github.com/aorenste
This PR:
- adds pytree.register_constant for registering a class to be treated as
a constant by torch.compile/torch.fx
- adds a very barebones flat_apply HOP. This should be sufficient to get
mark_traceable working. A lot more work is necessary to get the custom
operator case working (when make_fx sees a custom operator with PyTree
arg types, it needs to emit a call to the flat_apply HOP).
- I expect the flat_apply HOP to change a lot, I want to ship this in
the current state to unblock the mark_traceable and custom ops
work.
Test Plan:
- It's kind of difficult to test the barebones flat_apply HOP "works" so
I added a really simple test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146060
Approved by: https://github.com/StrongerXi, https://github.com/yanboliang
ghstack dependencies: #146059
Summary:
Previously, aoti compile node is represented as a kernel-less custom op in the exported program. The node was not eager runnable, which is a common practice for numerical validation during lowering.
I introduce a new HOP to address this.
The schema is following
```
aoti_call_delegate(lower_moduel: AOTInductorEPModule, original_gm: fx.GraphModule, weights: List[Tensor], inputs: List[Tensor])
```
There are a few problems exposed by HOP
- AOTI expects a FX graph with weights as getattr nodes, aka stateful graph. HOP expect graph_module arguments to be stateless. Export serializer also expect a stateless graph. Currently, to make AOTI happy, I am making `original_gm` stateful, and bypassing the serialization for `original_gm`.
- As a result, the HOP is not re-traceable, as functionalization on stateful graph module argument will fail.
Test Plan: buck2 test 'fbcode//mode/opt' fbcode//deeplearning/aot_inductor/cpu/test:cpu_lowering_utils_test
Reviewed By: zhxchen17
Differential Revision: D68359391
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145630
Approved by: https://github.com/zou3519
Summary:
This allows us to use environment variables to set string values. We've added
tests for the specific functionality implemented here. Note that we already
accidentally started setting up configs to use this, so we're just adding the
feature.
Additionally, we're not fully validating the underlying type when we set the
value (and in general, it's more difficult than we would like to do this). Let
me know if people feel strongly, and we can add a PR to do this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145980
Approved by: https://github.com/yushangdi, https://github.com/oulgen
E.g. torch.ops.higher_order.cond does not exist until it is imported,
which is bad if it shows up in an FX graph or is used in some code
somewhere.
This PR also makes some more HOPs get imported at `import torch` time.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145939
Approved by: https://github.com/ydwu4
ghstack dependencies: #145938
Triton 2.2 and greater have a bug where allowing TF32 generation for a GPU that does not support TF32 will cause code generation errors. Patch around this problem by:
1. Adding a function to `torch.cuda` that determines whether CUDA hardware is capable of using the TF32 format.
2. Using that function to explicitly disable TF32 generation when calling Triton, where needed.
To demonstrate that this fix works, try running `test/inductor/test_max_autotune.py` on a GPU with CUDA compute capability < 8 (e.g. any NVIDIA consumer GPU) without this fix.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145684
Approved by: https://github.com/eqy
We use `cpu_tensor.copy_(gpu_tensor)` to clone mutated kernel arguments for autotuning. The purpose is to avoid increasing peak memory due to the clone. But if `gpu_tensor` is not contiguous, this `copy_` will need allocate an temporary tensor on GPU to store a contiguous copy of `gpu_tensor`:
6e53588789/aten/src/ATen/native/cuda/Copy.cu (L322-L334)
Here is a standalone script to illustrate this behavior: https://gist.github.com/shunting314/812a848dc67b1d674ae42415a7a462c8 . The script report 6GB rather than 3GB peak memory usage.
Note that, with all the following efforts
1. donated buffer
2. inplace padding
3. this PR
We save 3GB peak memory (18.6GB -> 15.5GB) for GPT2 model for torch.compile.
The peak memory of GPT2 is like a '...\_M\_...' shape. There are 2 places that we reach the peak. Donated buffer remove the first peak by computing grad_softmax inplace, and inplace padding removes the second peak by not allocating an extra buffer for mm-padding.
Before all these optimizations, the peak memory is 18.6GB for GPT2 with torch.compile.
With 1 & 2, the peak memory is
1. 17.7GB with a cold cache
2. 15.5GB with a warm cache (since the autotuning overhead is skipped)
With 1 & 2 & 3, we save 3GB peak memory (18.6GB -> 15.5GB) no matter if autotuning happens or not
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145410
Approved by: https://github.com/masnesral, https://github.com/jansel
ghstack dependencies: #140249, #145325
Part of my BE project addressing NJT bugs surfaced via OpInfo tests.
This PR implements the missing `fill.Scalar` support, which works fine for contiguous inputs, but there is still some AOTAutograd debugging required to handle non-contiguous transposed NJTs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144586
Approved by: https://github.com/soulitzer
Part of my BE project addressing NJT bugs surfaced via OpInfo tests.
Implements `chunk()` backward on the batch dim, which was left out before. This PR unbinds the components and invokes `copy_()` on these to pass along the appropriate gradients.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144584
Approved by: https://github.com/soulitzer
ghstack dependencies: #144582, #144583
Allows test classes using MPCT to set their own timeout as a class
property, which is good enough since the processgroup is shared across
test instances and the timeout is set at processgroup init.
Also sets a default timeout of 2 minutes, which is probably (?) long
enough for reasonable tests, but can be changed if it causes flakyness.
It's preferable to have as short default timeout as possible, since when
debugging tests getting a timeout quickly helps.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145099
Approved by: https://github.com/d4l3k, https://github.com/fduwjj
ghstack dependencies: #145010, #145011
Previously, parametrized tests with class arguments, for example
```
@parametrize("this_cls", (Foo, Bar))
```
would create parametrized tests with names `test_foo_this_cls0` and `test_foo_this_cls1`. With this change, we instead should get `test_foo_this_cls_Foo` and `test_foo_this_cls_Bar`
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133546
Approved by: https://github.com/eellison
Part of my BE project addressing NJT bugs surfaced via OpInfo tests.
The OpInfo entry for prelu was wrong before this PR; `weight` needs to be passed as well. The op isn't fully implemented yet.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144582
Approved by: https://github.com/soulitzer
Summary:
When config contains callables, the current configs generated cannot be run:
```
torch._dynamo.config.reorderable_logging_functions = {<built-in function print>, <function warning at 0x7f774c595630>, <function log at 0x7f774c595870>, <function error at 0x7f774c595510>, <function info at 0x7f774c595750>, <built-in function warn>, <function exception at 0x7f774c5955a0>, <function debug at 0x7f774c5957e0>, <function critical at 0x7f774c5953f0>}
```
We fix the config to generate the right string, so the config is runnable, like below
```
import logging
import warnings
torch._dynamo.config.reorderable_logging_functions = { warnings.warn, logging.warn, print }
```
Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:utils -- -r test_codegen_config
```
Differential Revision: D67998703
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144518
Approved by: https://github.com/desertfire
Motivation: Generalize unit tests so that can be executed for cuda and non cuda devices.
Chnages: There are general changes in common_dtesnor module for device type generalization so that tests can be executed on non cuda devices too.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139749
Approved by: https://github.com/kwen2501
Pytest considers all symbols starting with `test_` as a test case/function and runs them.
The `test_compiled_fsdp` is a decorator but due to the import discovered by pytest.
Rename it to avoid.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144544
Approved by: https://github.com/Skylion007
This PR
* makes changes to the workflow files and scripts so we can run CI workflows on the MI300 runners
* skips and fixes several tests, failed on MI300, observed in https://github.com/pytorch/pytorch/pull/140989
Skipped due to unsupported Float8_e4m3fn data type on MI300 (need to update test code to use datatypes supported by MI300):
- distributed.tensor.parallel.test_micro_pipeline_tp.py::MicroPipelineTPTest::test_fuse_all_gather_scaled_matmul_A_dims_\*_gather_dim_\* (24 tests across inductor/distributed configs)
- distributed.tensor.parallel.test_micro_pipeline_tp.py::test_fuse_scaled_matmul_reduce_scatter_A_dims_\*_scatter_dim_\* (12 tests across inductor/distributed configs))
- inductor.test_loop_ordering::LoopOrderingTest::test_fp8_cast_and_t
- inductor.test_loop_ordering::LoopOrderingTest::test_fp8_pattern_2
Skipped due to AssertionError on MI300:
- inductor.test_mkldnn_pattern_matcher.py::test_qconv2d_int8_mixed_bf16
- distributed._tools.test_sac_ilp::TestSACILP::test_sac_ilp_case1
Skipped:
- test_cuda.py::TestCudaMallocAsync::test_clock_speed
- test_cuda.py::TestCudaMallocAsync::test_power_draw
- test_torch.py::TestTorchDeviceTypeCUDA::test_deterministic_cumsum_cuda
Skipped flaky tests on MI300:
- distributed.test_c10d_gloo.py::ProcessGroupGlooTest::test_gather_stress_cuda
- inductor.test_cpu_repro::CPUReproTests::test_lstm_packed_unbatched_False* (256 tests)
Fixed:
- test_matmul_cuda.py::TestFP8MatmulCudaCUDA::test_float8_basics_cuda
Features:
- inductor/test_fp8.py - declare a new function to convert FP8 datatypes to ROCm supported FP8 datatypes. It keeps test names for CUDA and ROCm and allows to enable Inductor FP8 tests on CPU
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143673
Approved by: https://github.com/jeffdaily, https://github.com/malfet, https://github.com/pruthvistony
Co-authored-by: saienduri <saimanas.enduri@amd.com>
Co-authored-by: Jithun Nair <jithun.nair@amd.com>
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
When calling `torch.masked.mean(...)` with a boolean tensor, the dtype is inferred to be bool. When the mean is being computed, the sum operator is used. When the sum operator is used with dtype=torch.bool, the result is clamped to True (1) leading to an incorrect mean being calculated.
The below example shows how the incorrect result occurs:
```
a = torch.tensor([True, True])
count = torch.sum(torch.ones(a.shape, dtype=torch.int64)) # 2
total = torch.sum(a, dtype=torch.bool) # True (1)
mean = total / count # 0.5
```
This PR upcasts the dtype used for the sumation to int32 in the case of bool tensors allowing for the correct result to be computed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139999
Approved by: https://github.com/cpuhrsch
Motivation: Generalize unit tests so that can be executed for cuda and non cuda devices.
Depedency : #133209 Merged now.
There was a #135242 for these changes and closed due to in correct commits. I have incoroprated the changes as suggested in comments.
@kwen2501 @zeshengzong Please review the changes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139184
Approved by: https://github.com/kwen2501
Co-authored-by: Yu, Guangye <guangye.yu@intel.com>
When calling `torch.masked.mean(...)` with a boolean tensor, the dtype is inferred to be bool. When the mean is being computed, the sum operator is used. When the sum operator is used with dtype=torch.bool, the result is clamped to True (1) leading to an incorrect mean being calculated.
The below example shows how the incorrect result occurs:
```
a = torch.tensor([True, True])
count = torch.sum(torch.ones(a.shape, dtype=torch.int64)) # 2
total = torch.sum(a, dtype=torch.bool) # True (1)
mean = total / count # 0.5
```
This PR upcasts the dtype used for the sumation to int32 in the case of bool tensors allowing for the correct result to be computed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139999
Approved by: https://github.com/cpuhrsch