Fixes#104985
Implemented `set_multithreading_enabled` C++ function to directly alter state rather than using `MultithreadingEnabled` class, which was automatically resetting the state when the object was destroyed. This behavior more closely aligns with set_grad_enabled which does work as expected. This allows us to change python class `set_multithreading_enabled` to act as both a function and context manager.
I also added a getter: `torch._C.is_multithreading_enabled`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105291
Approved by: https://github.com/albanD
Summary:
Context
-------
This PR adds a new fallback to the Autograd dispatch keys.
If you would prefer the old behavior:
- A quick (unsupported) way to get the previous behavior is to call
`torch._C._set_autograd_fallback("nothing")`
- Register "torch::CppFunction::makeFallthrough()" to your Autograd key,
like in https://gist.github.com/zou3519/d09a5f4b1afe2430af09fea67c6ff2c8
It is possible that this PR regresses performance of overhead-bound
models. If this is the case, please reach out (and apply one of the
temporary fixes in the previous section).
Description for reviewers
-------------------------
In order to deprecate registering autograd kernels at not an autograd
key, we add a fallback to the Autograd dispatch keys. This fallback
raises a warning if the user attempts to backprop through the operator
and is also configurable to either warn or not warn.
The goal of this PR is to
- preserve as much BC as possible
- raise a warning that whatever the user is doing is potentially wrong.
- be as performant as possible
There are roughly two cases:
- if the post-autograd kernels return a Tensor that requires grad, then
we install an autograd hook that raises a warning. We are preserving BC
in that it is possible that the user has a torch::autograd::Function
registered to their CPU key.
- if the post-autograd kernels return Tensors that do not require grad,
then we make them require_grad and install a WarnNotImplemented grad fn
that warns in the backward pass. This is mildy BC-breaking (see next
section).
Test Plan:
- bunch of new tests
BC-Breaking Note
----------------
This PR adds a new fallback to the Autograd dispatch keys. It affects
custom operators that do not have a kernel registered to the Autograd
keys (e.g. AutogradCPU and AutogradCUDA).
If the previous behavior was that the custom operator would return
Tensors that do not require grad if the inputs do require grad, then
this PR changes it so that all floating-point and complex returns do
require grad. See the "Context" section above for how to get the old
behavior.
Differential Revision: D47408353
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105078
Approved by: https://github.com/soulitzer
Context
-------
This PR adds a new fallback to the Autograd dispatch keys.
If you would prefer the old behavior:
- A quick (unsupported) way to get the previous behavior is to call
`torch._C._set_autograd_fallback("nothing")`
- Register "torch::CppFunction::makeFallthrough()" to your Autograd key,
like in https://gist.github.com/zou3519/d09a5f4b1afe2430af09fea67c6ff2c8
It is possible that this PR regresses performance of overhead-bound
models. If this is the case, please reach out (and apply one of the
temporary fixes in the previous section).
Description for reviewers
-------------------------
In order to deprecate registering autograd kernels at not an autograd
key, we add a fallback to the Autograd dispatch keys. This fallback
raises a warning if the user attempts to backprop through the operator
and is also configurable to either warn or not warn.
The goal of this PR is to
- preserve as much BC as possible
- raise a warning that whatever the user is doing is potentially wrong.
- be as performant as possible
There are roughly two cases:
- if the post-autograd kernels return a Tensor that requires grad, then
we install an autograd hook that raises a warning. We are preserving BC
in that it is possible that the user has a torch::autograd::Function
registered to their CPU key.
- if the post-autograd kernels return Tensors that do not require grad,
then we make them require_grad and install a WarnNotImplemented grad fn
that warns in the backward pass. This is mildy BC-breaking (see next
section).
Test Plan:
- bunch of new tests
BC-Breaking Note
----------------
This PR adds a new fallback to the Autograd dispatch keys. It affects
custom operators that do not have a kernel registered to the Autograd
keys (e.g. AutogradCPU and AutogradCUDA).
If the previous behavior was that the custom operator would return
Tensors that do not require grad if the inputs do require grad, then
this PR changes it so that all floating-point and complex returns do
require grad. See the "Context" section above for how to get the old
behavior.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104481
Approved by: https://github.com/soulitzer
Fixes https://github.com/pytorch/pytorch/issues/104272
This PR adds a new private API `materialize_non_diff_grads` (default True) such that when set to False, grad outputs corresponding to outputs marked non-differentiable would receive None instead of a zero-filled tensor. This is overrides the setting of `materialize_grads`, i.e. grad outputs corresponding non-differentiable outputs would still be None even if `materialize_grads=True` (the default).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104291
Approved by: https://github.com/albanD
This PR makes some improvements for debuggability of checkpointing:
- improved error messages that are more understandable
- errors are now `CheckpointError` which subclasses `RuntimeError` (only `CheckpointError` triggers debug message, see below)
- stricter error checking by default:
- shapes, dtypes, and device are compared
- we also now error when more tensors are being saved for backward during recompute
- NOTE: checks are relaxed if it is detected that you are doing backward within forward
- shapes, dtype, and device checking can be disabled by passing `determinism_check="none"`
- new debug flag: more helpful error message when `debug=True`
Note:
- cpp stack trace is only included for x86 linux machines
- the error message if cpp stack trace is included can be quite long. For a function checkpointed with 8 operators, the log was around 1300 lines! (should this be hidden behind a flag?)
[Error message when debug='True' (python stack trace only)](https://gist.github.com/soulitzer/3d5e19c7cceae8e22f9bdd625ec39dd4)
[Error message when debug='True' (with python and cpp stacktrace)](https://gist.github.com/soulitzer/ff8fd8c3ccbb2c90dfe3df6d7713b167)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103859
Approved by: https://github.com/albanD
Now, when you do an inplace mutation and the view is naughty, you get this message:
```
RuntimeError: A view was created in no_grad mode and is being modified inplace with grad mode enabled. Given that this use case is ambiguous and error-prone, it is forbidden. You can clarify your code by moving both the view and the inplace either both inside the no_grad block (if you don't want the inplace to be tracked) or both outside (if you want the inplace to be tracked). To find out where this view was allocated, run your entire forward region under anomaly mode (torch.autograd.detect_anomaly(check_nan=False)).
```
When you run under anomaly mode, you get:
```
RuntimeError: A view was created in no_grad mode and is being modified inplace with grad mode enabled. Given that this use case is ambiguous and error-prone, it is forbidden. You can clarify your code by moving both the view and the inplace either both inside the no_grad block (if you don't want the inplace to be tracked) or both outside (if you want the inplace to be tracked). This view was allocated at:
File "/data/users/ezyang/c/pytorch/test/test_autograd.py", line 4299, in arglebargle
File "/data/users/ezyang/c/pytorch/test/test_autograd.py", line 4306, in test_anomaly_gives_view_stack
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/case.py", line 549, in _callTestMethod
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/case.py", line 591, in run
File "/data/users/ezyang/c/pytorch/torch/testing/_internal/common_utils.py", line 2266, in _run_with_retry
File "/data/users/ezyang/c/pytorch/torch/testing/_internal/common_utils.py", line 2337, in run
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/case.py", line 650, in __call__
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/suite.py", line 122, in run
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/suite.py", line 84, in __call__
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/suite.py", line 122, in run
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/suite.py", line 84, in __call__
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/runner.py", line 184, in run
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/main.py", line 271, in runTests
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/main.py", line 101, in __init__
File "/data/users/ezyang/c/pytorch/torch/testing/_internal/common_utils.py", line 894, in run_tests
File "/data/users/ezyang/c/pytorch/test/test_autograd.py", line 11209, in <module>
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103185
Approved by: https://github.com/zdevito
Now that we have updated all internal callsites, per https://fb.workplace.com/groups/pytorch.oss.dev/permalink/1635183750239493/ we should raise a warning when use_reentrant is not explicitly passed for 2.1
Deprecation note:
- Not passing in use_reentrant explicitly is now deprecated and will raise a warning. In the future the default value of use-reentrant will be False. To preserve the existing behavior you can pass in use_reentrant=True. It is recommended that you use use_reentrant=False.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100551
Approved by: https://github.com/Skylion007
Why did I choose context manager instead of per-call? Early stopping is not part of the model definition, and depending on how a particular model is used, e.g., with PT2 or not we may or may not want to disable early stopping.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96866
Approved by: https://github.com/albanD
Fixes#44189
Adds a new parameter, zero_grad_unused, to the torch.autograd.grad() function. This parameter allows for the gradient to be set to 0 instead of None when a variable is unused, which can be helpful for higher-order partial differentials.
Here is an example of using this new parameter to solve d^3y/dx^3 given y = a * x:
```python
x = torch.tensor(0.5, dtype=torch.float32, requires_grad=True)
a = torch.tensor(1, dtype=torch.float32, requires_grad=True)
y = x * a
dydx = torch.autograd.grad(y, x, create_graph=True, allow_unused=True)
d2ydx2 = torch.autograd.grad(dydx, x, allow_unused=True, zero_grad_unused=True)
try:
d3ydx3 = torch.autograd.grad(d2ydx2, x, allow_unused=True, zero_grad_unused=True)
except RuntimeError as e:
assert False, "Should not raise error"
```
With `zero_grad_unused`, d2ydx2 could be 0 instead of None, enabling d3ydx3 to be calculated as defined in math without throwing an error.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97015
Approved by: https://github.com/soulitzer
Changes:
- bc-breaking change: The main difference between this and the old non-reentrant impl that it replaces is that we clear recomputed tensors on backward immediately upon unpack, even if retain_graph=True. This has the following additional implications:
- Accessing _saved_tensors multiple times will silently recompute forward multiple times.
- Accessing ctx.saved_tensor twice in the same backward will now raise an error.
- To avoid dealing with the potential consequences, early stopping has been hidden behind a global flag that is by default False, and can be enabled via a context manager. We can remove this in a follow up. Some features of nesting as a result do not work by default.
Before land:
- import to check for more bc-breakingness
- implement any workarounds for the bc-breaking-ness, if we decide on any
- update docs to reflect new lifetime of recomputed variables
- update docs to mention the early stop feature
Follow ups:
- enable early-stopping by default
- update docs/tutorial to feature nested use cases
Related docs:
- code comment: https://github.com/pytorch/pytorch/pull/90105/files#diff-9dcd955620b52ce128e18e3567be88edbb238810460d1288a86fabc20e483b30R448
- design doc: https://docs.google.com/document/d/1UDLhTNv6_kvuDTRlsjfj9WdqtNaQNr8ahrvdBIB6914/edit#
- retains_grad <> checkpiont https://docs.google.com/document/d/1maiGmuFUxysQL0AdYUU88kngAaXh_L0XpDcLDh_5Ors/edit
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90105
Approved by: https://github.com/albanD
tldr; this should fix some minor perf regressions that were caused by adding more as_strided() calls in aot autograd.
This PR adds a new context manager, `torch.autograd._set_view_replay_enabled()`.
Context: AOT Autograd has special handling for "outputs that alias graph intermediates". E.g. given this function:
```
def f(x):
y = torch.mul(x, 2)
out = y.view(-1)
return out
```
AOT Autograd will do the following:
```
def fn_to_compile(x):
y = torch.mul(x, 2)
out = y.view(-1)
# return the graph intermediate
return y, out
compiled_fn = compile(fn_to_compile)
def wrapper(x):
y, out = compiled_fn(x)
# regenerate the alias of the graph intermediate
return out._view_func(y)
```
What's annoying is that `out._view_func()` will result in a `.as_strided` call, because `out` is an ordinary runtime tensor. This (likely?) caused a perf regression, because when running the backward, out `as_strided_backward()` is slower than our `view_backward()`.
In this PR, I added some TLS for instructing autograd to do view replay instead of as_strided, even when given a normal tensor. I'm definitely interested in thoughts from autograd folks (cc @albanD @soulitzer). A few points that I want to bring up:
(1) One reason that this API seems generally useful to me is because of the case where you `torch.compile()` a function, and you pass in two inputs that alias each other, and mutate one of the inputs. Autograd is forced to add a bunch of as_strided() calls into the graph when this happens, but this would give users an escape hatch for better compiled perf in this situation
(2) To be fair, AOT Autograd probably won't need this TLS in the long term. There's a better (more complicated) solution, where AOT Autograd manually precomputes the view chain off of graph intermediates during tracing, and re-applies them at runtime. This is kind of complicated though and feels lower priority to implement immediately.
(3) Given all of that I made the API private, but lmk what you all think.
This is a followup of https://github.com/pytorch/pytorch/pull/92255.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92588
Approved by: https://github.com/ezyang, https://github.com/albanD
We would handle py::error_already_set correctly from pybind11 bindings,
but not from our regular TH bindings, which meant that anything from
an inner pybind11 function call was getting unconditionally transformed
into a RuntimeError. Not too many cases where we do this, but
PySymNodeImpl was one of them.
To test this, I need to raise a non-RuntimeError from a function which
is invoked from pybind11 and then propagated to a non-pybind11 call
site. I introduce GuardOnDataDependentSymNode for expressly this
purpose (this is how I discovered the bug anyway.)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93238
Approved by: https://github.com/Skylion007, https://github.com/albanD
For the cudagraphs implementation, we would like to reuse objects that are defined in python across the forward and backward. The backward is run in a different thread, so to handle this we add an api for copying over arbitrary python objects in pytorch's thread local state, in the same way that C++ objects are copied over currently.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89169
Approved by: https://github.com/albanD
This reverts commit e525f433e1.
Original PR: #85849
Fixes #ISSUE_NUMBER
In addition to reverting the revert, this PR:
- defines the virtual destructor of FunctionPreHook in the header. Why? Presumably the internal build imports the header from somewhere, but does not have function_hooks.cpp (where the virtual destructor was previously defined) in the same compilation unit.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92559
Approved by: https://github.com/albanD
This PR:
- registers all of the codegened Nodes to the torch._C._functions module, this is where special nodes like AccumulateGrad are already registered.
- creates a autograd.graph.Node abstract base class that all of the newly registered nodes subclass from. We make the subclassing happen by implementing the ``__subclasshook__`` method
- enables static type checking to work and also enables Sphinx to generate documentation for the Node and its methods
- handles both the custom Function and codegened cases
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91475
Approved by: https://github.com/albanD
Addresses: https://github.com/pytorch/pytorch/issues/35802
Design doc: https://docs.google.com/document/d/19xSib7FFknRQ5f3ptGFUmiOt3BrgXSUlTQH2xMcZJYg/edit#
### Changes in this PR
#### Implementation
- We have now have 3 fields: pre_hooks, retains_grad_hooks, and tensor_pre_hooks so that we can more precisely define their ordering and when they are executed.
- Since retains grad uses an entirely new field, we cannot reuse the old retains grad, logic. We refactor retains grad to call directly into the variable.cpp logic. Other logic in variable.cpp that handle cpp hooks must also be updated.
#### Hooks ordering and execution:
- Defines pre-hooks registered on tensor to run before pre-hooks registered on grad_fn
- Updates pre-hooks registered on tensor to always run, even if they are the inputs= to .grad()
- Post hooks (and pre hooks) can now observe the modifications to gradient by the tensor pre hook
#### Retains grad hooks
- retains grad hooks always execute last, even if there are other tensor pre-hooks registered
#### Unchanged:
- pre_hooks registered to grad_fn aren't expected to execute if they are the inputs= to .grad()
Follow ups:
- simplify retains_grad field to not be a vector, since it always holds a single hook
- potentially merge capture hooks with tensor pre hooks, this would involve some additional refactoring since
- python hooks registered to tensor behavior on in-place is still wrong
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85849
Approved by: https://github.com/albanD
This PR removes the autograd.Function extension feature flag. This was
previously used for development of the functorch <> autograd.Function
interaction.
It's been in master for long enough with the feature flag defaulting to
True, so it's time to remove it.
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92026
Approved by: https://github.com/soulitzer
This PR:
- changes generate_vmap_rule to either be True or False. Previously it
could be True, False, or not set. This simplifies the implementation a
bit.
- changes the vmap staticmethod to always be on the autograd.Function
rather than sometimes defined.
This is how the other staticmethod (forward, backward, jvp) are
implemented and allows us to document it.
There are 4 possible states for the autograd.Function w.r.t. to the
above:
- generate_vmap_rule is True, vmap staticmethod overriden. This raises
an error when used with vmap.
- generate_vmap_rule is False, vmap staticmethod overriden. This is
valid.
- generate_vmap_rule is True, vmap staticmethod not overriden. This is
valid.
- generate_vmap_rule is False, vmap staticmethod not overriden. This
raises an error when used with vmap.
Future:
- setup_context needs the same treatment, but that's a bit tricker to
implement.
Test Plan:
- new unittest
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91787
Approved by: https://github.com/soulitzer
The autograd.Function <> functorch interaction is in a mostly completed
state now. There are some minor action items remaining
(https://github.com/pytorch/pytorch/issues/90224), but I want to enable
the feature by default so that PyTorch CI / other parties / etc can
begin testing to see if there is any impact on the original
autograd.Function API (there shouldn't be).
The longer-term plan for the feature flag is:
- keep it around until at least the next release (so that people can
turn off the feature if it breaks something in existing code)
- delete the flag then (either before or after the release, I haven't
decided yet)
Test Plan:
- new test
- wait for CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91441
Approved by: https://github.com/albanD, https://github.com/soulitzer
This allows to know at any point during the backward pass what is running and where the Node currently running was created at:
```python
import torch
from torch.utils._python_dispatch import TorchDispatchMode
from torch.autograd import detect_anomaly
class MyMode(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args, kwargs=None):
node = torch._C._current_autograd_node()
print(f"Running {func} from within {node}")
if node is not None:
print("The Node was created at:")
print("\n ".join(node.metadata["traceback_"]))
return func(*args, **kwargs or {})
with MyMode(), detect_anomaly():
print("FW")
a = torch.rand(10, requires_grad=True)
b = a.mul(2)
b = b.div(3)
b = b.sum()
print("BW")
b.backward()
```
Gives
```
$ python foo.py
foo.py:15: UserWarning: Anomaly Detection has been enabled. This mode will increase the runtime and should only be enabled for debugging.
with MyMode(), detect_anomaly():
FW
Running aten.rand.default from within None
Running aten.mul.Tensor from within None
Running aten.div.Tensor from within None
Running aten.sum.default from within None
BW
Running aten.ones_like.default from within None
Running aten.expand.default from within <SumBackward0 object at 0x7fa40c0c6dc0>
The Node was created at:
File "foo.py", line 20, in <module>
b = b.sum()
Running aten.isnan.default from within <SumBackward0 object at 0x7fa40c0c6500>
The Node was created at:
File "foo.py", line 20, in <module>
b = b.sum()
Running aten.any.default from within <SumBackward0 object at 0x7fa32b23a780>
The Node was created at:
File "foo.py", line 20, in <module>
b = b.sum()
Running aten._local_scalar_dense.default from within <SumBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 20, in <module>
b = b.sum()
Running aten.div.Tensor from within <DivBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 19, in <module>
b = b.div(3)
Running aten.isnan.default from within <DivBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 19, in <module>
b = b.div(3)
Running aten.any.default from within <DivBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 19, in <module>
b = b.div(3)
Running aten._local_scalar_dense.default from within <DivBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 19, in <module>
b = b.div(3)
Running aten.mul.Tensor from within <MulBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 18, in <module>
b = a.mul(2)
Running aten.isnan.default from within <MulBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 18, in <module>
b = a.mul(2)
Running aten.any.default from within <MulBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 18, in <module>
b = a.mul(2)
Running aten._local_scalar_dense.default from within <MulBackward0 object at 0x7fa40c0c9190>
The Node was created at:
File "foo.py", line 18, in <module>
b = a.mul(2)
Running aten.detach.default from within <AccumulateGrad object at 0x7fa40c0c9730>
The Node was created at:
File "foo.py", line 18, in <module>
b = a.mul(2)
Running aten.detach.default from within <AccumulateGrad object at 0x7fa40c0c94b0>
The Node was created at:
File "foo.py", line 18, in <module>
b = a.mul(2)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90867
Approved by: https://github.com/soulitzer
Motivation
- These were previously defined in functorch. They are not
functorch-specific, so I'm moving them to torch.autograd.forward_ad and
the autograd python bindings.
- I need this to avoid some of my cyclic import problems.
Should these be public APIs? Probably. Though this needs discussion, so
punting it to the future.
Test Plan:
- moved the tests of these from test/functorch/test_eager_transforms.py
to test/test_autograd.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90240
Approved by: https://github.com/soulitzer
Adds a setup_context staticmethod to autograd.Function.
If it exists, then the user splits the ctx-specific logic from the
forward() and puts it in the setup_context staticmethod.
Docs will come later when we remove the feature flag.
Test Plan:
- some light tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89859
Approved by: https://github.com/soulitzer
This PR adds a private runtime feature flag for the feature work we're going
to do with extending autograd.Function. The motivation of the feature flag
is:
- to guard the feature against unsuspecting users
- control the release of the feature to when we are ready to release it
We might not even need the feature flag (because we hope to have the
work done in the next month), but it is good practice and it does touch
currently public API (autograd.Function).
Concretely, "autograd.Function extension" refers to:
- adding an optional `setup_context` staticmethod to autograd.Function
- adding an optional `vmap` staticmethod to autograd.Function
- autograd.Function support for functorch
Test Plan:
- new test that the feature flag works
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89858
Approved by: https://github.com/soulitzer
Preparation for the next PR in this stack: #89559.
I replaced
- `self.assertTrue(torch.equal(...))` with `self.assertEqual(..., rtol=0, atol=0, exact_device=True)`,
- the same for `self.assertFalse(...)` with `self.assertNotEqual(...)`, and
- `assert torch.equal(...)` with `torch.testing.assert_close(..., rtol=0, atol=0)` (note that we don't need to set `check_device=True` here since that is the default).
There were a few instances where the result of `torch.equal` is used directly. In that cases I've replaced with `(... == ...).all().item()` while sometimes also dropping the `.item()` depending on the context.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89527
Approved by: https://github.com/mruberry
Fixes: https://github.com/pytorch/pytorch/issues/88205
The `CreationMeta::NO_GRAD_MODE` path in handle_view_on_rebase wrongly assumes that the tensor would be a leaf, because tensors created in no_grad are always leaf tensors. However, due to creation_meta propagation, a view of a view created in no_grad also has `CreationMeta::NO_GRAD_MODE`, but DOES have grad_fn.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88243
Approved by: https://github.com/albanD
Re-submit of gh-72302
This still has a small performance hit, but it much smaller. On my
machine I see `_record_fucntion_exit._RecordFunction` takes 1.05 us
compared to the `Tensor` overload taking 0.79 us.
In an overall comparison, I see a 0.7 us slowdown from 6.0 us to
6.7 us for this timeit benchmark
```python
import torch
def foo():
with torch.profiler.record_function("foo"):
return torch.eye(3)
%timeit foo()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76420
Approved by: https://github.com/robieta
In this PR:
- graph_task stores graph roots on construction so that we can later traverse through the graph
- before the nodes are returned, they needed to be converted from raw_ptr to shared_ptr, and this should be OK because the graph is guaranteed to be alive
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87507
Approved by: https://github.com/albanD
`diag` was unnecessarily implemented as a kernel rather than as a composite
function, which made it unnecessarily difficult (explicit backward + all it entails).
We also change a few uses of `diag` on 2D tensors for `diagonal()`. The
latter returns a view rather than creating a new tensor.
We also upgrade its meta implementation to a fully-fledged
decomposition
I tried implementing the backwards of `diagonal()` via `diag_scatter` (or better `diag_scatter_` to keep the perf) but functionalisation was failing and I was not sure how to fix this, so I moved on. It may be possible to simplify that one as well if @soulitzer or someone knows how to do this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87180
Approved by: https://github.com/ngimel, https://github.com/albanD, https://github.com/mruberry
Big-bang PR to symintify **all** .sizes() calls in derivatives.yaml, which will be needed for symbolic tracing.
* with the exception of `split()`, which is tougher to land because it requires internal changes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86610
Approved by: https://github.com/albanD
The rationale for this is that functorch doesn't work with saved
variable hooks at the moment or checkpointing and we need some way to
disable it.
Concretely:
- there's a context manager that does the disabling
- this feature is disabled on a thread-local basis
- one can set an error message or use the default error message that
says the feature has been disabled
Since it is thread local I needed to update ATen/ThreadLocalState. To
make things nicer, this PR refactors all the "saved tensors hooks"
related TLS things into a single struct.
Test Plan:
- new test
Differential Revision: [D39970936](https://our.internmc.facebook.com/intern/diff/D39970936)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85971
Approved by: https://github.com/albanD, https://github.com/soulitzer
The rationale for this is that functorch doesn't work with saved
variable hooks at the moment or checkpointing and we need some way to
disable it.
Concretely:
- there's a context manager that does the disabling
- this feature is disabled on a thread-local basis
- one can set an error message or use the default error message that
says the feature has been disabled
Since it is thread local I needed to update ATen/ThreadLocalState. To
make things nicer, this PR refactors all the "saved tensors hooks"
related TLS things into a single struct.
Test Plan:
- new test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85553
Approved by: https://github.com/soulitzer
Addresses: https://github.com/pytorch/pytorch/issues/83617
This PR a way to query the TLS graph task's exec_info which is a map mapping the Node to a bool indicating whether it will be executed in the current backward pass (as determined by the inputs= argument for .grad of .backward).
- this works with both custom Function nodes and normal codegened nodes
- to be able to verify whether the pyobject passed is an actual node, we now store pointers to PyTypeObjects into a set on registration.
- error out when .backward without inputs= to avoid silently returning True
Alternatives:
- not sure if it is possible to bind to Python from a raw pointer to Node. At least we wouldn't be able to use existing logic, and the Python object should only hold a weak reference to the Node.
- other solutions to the motivating issue seem to require more extensive modification to the engine
See the issue linked for an example of usage
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84773
Approved by: https://github.com/albanD
Add unit tests and docstrings corresponding to PR https://github.com/pytorch/pytorch/pull/63289
UT:
1. `test_profiler_emit_itt` in `test/test_autograd.py`. This test is merely intended to catch if emit_itt breaks on construction.
2. Test `torch.profiler.itt` functions in `test/test_itt.py`
3. Only testing that emit_itt runs when `record_shapes` option is enabled in `test/test_profiler.py`.
Docstring:
1. add ITT related info into `docs/source/bottleneck.rst`
4. add `torch.profiler.itt` functions to `docs/source/profiler.rst`
5. add docstring to `torch.profiler.itt` functions in `torch/profiler/itt.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84848
Approved by: https://github.com/malfet
Fix use-dict-literal pylint suggestions by changing `dict()` to `{}`. This PR should do the change for every Python file except test/jit/test_list_dict.py, where I think the intent is to test the constructor.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83718
Approved by: https://github.com/albanD
Make it so that it is valid to set metadata after detach calls, like `x.detach().resize_(...)`.
This technically lifts some restrictions around `.data`. This PR means that you can now technically call `x.data.resize_(...)`, which can now directly resize `x` instead of erroring.
My understanding: Before the tensor-variable merge, when `x` and `x.data` were really different tensors, you could resize `x.data` independently of `x`, and during the merge, this error was added to avoid silent confusing behavior changes.
It was agreed that this error has been around long enough (several years) that it's acceptable to drop. cc @albanD @ezyang.
(Ed already had a prototype PR [here](https://github.com/pytorch/pytorch/pull/83545) - I ended up making one to try to slog through test failures).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83590
Approved by: https://github.com/ezyang
Per offline discussion, this will be updated to use expand once expand semantics for nested tensor have been fleshed out.
Next steps will be to add support for other features for forward sum mentioned on #82387 and likewise update the backward
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82625
Approved by: https://github.com/albanD
`derivatives.yaml` can now take a `dispatch` entry which registers per-autograd dispatch key derivatives such as
```
name: foo(Tensor self, Tensor y) -> Tensor
dispatch:
Default:
x: grad
y: grad.expand(y.sizes())
AutogradNestedTensor:
x: grad
y: NestedTensor_foo_backward(grad, y)
output_differentiabilty: [True]
```
However the old schema where there is no `dispatch` entry is still supported.
Would greatly appreciate feedback on *how to improve the testing strategy* of this PR, currently have registered an aten test op in TestOps.cpp with dummy gradients in derivatives.yaml and have some tests in test_autograd.py:TestAutogradMultipleDispatch but I am not sure whether these are sufficiently rigorous.
Additionally, this PR also makes the assumption that sets like [VIEW_FUNCTIONS](ff5399e528/tools/autograd/gen_inplace_or_view_type.py (L60)) are per-native-function and not per-native-function-and-dispatch-key. I'm not sure whether this is necessarily the case, *would there ever be a situation where (e.g. a nested_tensor op is a view op but the aten function is not or vice versa?)*
* __->__ #82801
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82801
Approved by: https://github.com/bhosmer, https://github.com/albanD
### Description
cudaProfilerStart and cudaProfilerStop are deprecated but exposed by torch.cuda.cudart(). HIP has corresponding functions stubbed out, hipProfilerStart and hipProfilerStop, but they return hipErrorNotSupported. Profiling in HIP is supported, but not via these deprecated APIs.
See https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__PROFILER__DEPRECATED.html.
These functions are indirectly used by one or more unit tests that would otherwise pass if the non-functional HIP APIs were replaced with a dummy function.
### Testing
Unskipped a related unit test, run by ciflow/trunk.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82778
Approved by: https://github.com/ezyang
Towards fixing https://github.com/pytorch/pytorch/issues/82482
This PR fixes two things:
## 1) memory leak
The .detach() call prevents a true memory leak in some cases where the user function is using multiple ops in a row that save their inputs. The following chain of objects keep each other alive
- the `storage` object
- a recomputed Tensor y
- y's grad_fn FooBackward (in c++)
- FooBackward's SavedVariables (in c++)
- SavedVariable Hook
- the `inner_pack` function
- captures `storage`
Since part of this cycle is in c++, the python gc is not able to break it.
Should THPCppFunction_traverse actually visit it's SavedVariables which in turn should visit their hooks? I think the answer is yes but I haven't dived into which python object is traversing what as if there is non-unique ownership of the c++ object, it makes the traversal a lot trickier. @ezyang do you think we should dive into this more?
In this case, this can be easily solved anyways by storing `y.detach()` in the `storage` object as we don't care about the temporary backward graph that gets created during the second forward call.
## 2) Lifetime of the recomputed buffers
The new storage system is now such that the lifetime of the recomputed buffer is directly linked to the SavedVariable c++ object. Meaning that this buffer will get deleted IIF the SavedVariable is cleared.
This means that we now get the exact same behavior as the version without the saved variable hook where Tensors are saved directly on the SavedVariable object.
This is great as this solves all the cases where the non-checkpoint version used to work but the checkpoint version does not (even double access or retain_graph=True).
The one drawback of this approach though is that the buffer do NOT get cleared when the user passes in `retain_graph=True`! The next backward won't even re-run the forward as it already has all the buffers available. Is this a problem that you think we would need to find a solution for @rohan-varma or it is niche enough that we don't care for now?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82776
Approved by: https://github.com/ezyang, https://github.com/rohan-varma
I don't think there's a way to avoid functions returning undefined tensors as outputs, so codegen will have to detect them before calling _set_fw_grad. Alternatively, we can just make calling _set_fw_grad with undefined self a no-op, but I'm biasing toward keeping _set_fw_grad more strict in case it is called in other areas.
Fixes https://github.com/pytorch/pytorch/issues/81111
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81114
Approved by: https://github.com/albanD
See this doc: https://docs.google.com/document/d/1KiRdnoj6B4cI3yl017hTbCqcOGO1gWIpUf20sldipHM/edit#
Two issues (1) regarding hooks in general and (2) regarding retains grad hooks are fixed, Python hooks, which rely on a different mechanism are not discussed here:
- Hooks in cpp in general
- (fixed) new hooks to registered to a newer version of the tensor no longer get applied to grad_fn
associated with older version of the tensor when the first hook was ever registered
- (unchanged) hooks registered to the older version of the tensor remain active on
- Retains grad hooks
- (fixed) now get moved to the latest grad_fn. NB: To the user, retains_grad is not considered hooks
or expected to behave like hooks (which we consider properties of the grad_fn) vs retains_gradness
which is a property of the tensor.
- (not in this PR) Python hooks
- (will fix) same issue as hooks in cpp where new hooks are being applied to grad_fn associated
with the older version of the tensor
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79996
Approved by: https://github.com/albanD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77696https://github.com/pytorch/pytorch/pull/63619 added a RECORD_FUNCTION guard to make calls to `Engine::evaluate_function` visible regardless of the underlying op. While useful, this creates a call that looks like a forward call that somewhat complicates stitching forward and backward ops. I don't want to add complexity (and therefore work) on the hot path; instead it's fairly straightforward to stitch things back together in post. This PR simply propagates sequence number and forward tid info up to the `evaluate_function` event.
Differential Revision: [D36302562](https://our.internmc.facebook.com/intern/diff/D36302562/)
Approved by: https://github.com/aaronenyeshi
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76253
We're observing large QPS regression on the original PR https://github.com/pytorch/pytorch/pull/72302. For the training job we had, it regressed from 720k QPS to 450k QPS (see the test plan in FB internal). We suspect this is because the api was changed from `_record_function_enter` to `_record_function_enter_new`, and we're running experiments to confirm that. Will add more details when the runs in the test plan has finished. For now, it's better to revert the diff to unblock internal usecases and we can think about how to reland this diff later.
Original commit changeset: dc9939f1fa6d
Original Phabricator Diff: D35257354
Test Plan:
on trunk: f338665947
with this diff: f338502850
Reviewed By: malfet, robieta
Differential Revision: D35853300
fbshipit-source-id: dd38042aeacb848f66756491a4c849c7c652a0e1