Update ruff to 0.4.1 .
This version fixes a lot false negatives/false positives, is 20-40% faster, and has various other bug fixes.
Below is a before and after table showing the execution time of ruff lint and ruff format in milliseconds courtesy of https://astral.sh/blog/ruff-v0.4.0
| Repository | Linter (v0.3) | Linter (v0.4) | Formatter (v0.3) | Formatter (v0.4) |
|----------------------------------------------------|---------------|---------------|------------------|------------------|
| [pytorch/pytorch](https://github.com/pytorch/pytorch) | 328.7 | 251.8 | 351.1 | 274.9 |
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124549
Approved by: https://github.com/ezyang
This PR unifies the CUDA, XPU and PrivateUse1 in the torch profiler. Now CUDA, XPU and PrivateUse1 can together use string object `use_device` to distinguish each other and share one device path for calculating kineto time durations and memory statistics for post processing.
#suppress-api-compatibility-check
Co-authored-by: Aaron Enye Shi <enye.shi@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123247
Approved by: https://github.com/aaronenyeshi, https://github.com/gujinghui
This PR:
* Introduces an ATen op for creating true jagged views from a dense values buffer
* `_nested_view_from_jagged(values, offsets, lengths, ragged_idx, dummy)`
* This ops is implemented on the Python side using torch.library so we can return a subclass instance
* `jagged_from_list()` now uses this instead of the old autograd.Function `NestedViewFromBuffer`
* The latter op is used for non-contiguous JTs returned via `torch.nested.narrow()`
* `dummy` is an awful hack to ensure that `NestedTensor.__torch_dispatch__()` is invoked for our view
* Introduces an ATen op for accessing the `values` component of an NT via a view
* `_nested_get_values(nt)`
* **Removes** the autograd.Functions `ViewNestedFromBuffer` and `ViewBufferFromNested` in favor of `nested_from_values_offsets()` / `nested_from_values_offsets_lengths()` and `nt.values()`, respectively.
* Changes test code to prefer `as_nested_tensor()` over `jagged_from_list()` directly
* Similarly, avoid `buffer_from_jagged()`, preferring `values()`
* Depends on general subclass view fake-ification on the PT2 side (handled solely in previous PRs in the stack)
With these changes, the semantics of jagged layout NTs are such that they are considered a true view of the underlying `values` buffer. This means views of jagged NTs are views of the underlying buffer as well, simplifying some handling.
Differential Revision: [D54269922](https://our.internmc.facebook.com/intern/diff/D54269922)
Co-authored-by: voznesenskym <voznesenskym@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113279
Approved by: https://github.com/ezyang
This PR:
* Introduces an ATen op for creating true jagged views from a dense values buffer
* `_nested_view_from_jagged(values, offsets, lengths, ragged_idx, dummy)`
* This ops is implemented on the Python side using torch.library so we can return a subclass instance
* `jagged_from_list()` now uses this instead of the old autograd.Function `NestedViewFromBuffer`
* The latter op is used for non-contiguous JTs returned via `torch.nested.narrow()`
* `dummy` is an awful hack to ensure that `NestedTensor.__torch_dispatch__()` is invoked for our view
* Introduces an ATen op for accessing the `values` component of an NT via a view
* `_nested_get_values(nt)`
* **Removes** the autograd.Functions `ViewNestedFromBuffer` and `ViewBufferFromNested` in favor of `nested_from_values_offsets()` / `nested_from_values_offsets_lengths()` and `nt.values()`, respectively.
* Changes test code to prefer `as_nested_tensor()` over `jagged_from_list()` directly
* Similarly, avoid `buffer_from_jagged()`, preferring `values()`
* Depends on general subclass view fake-ification on the PT2 side (handled solely in previous PRs in the stack)
With these changes, the semantics of jagged layout NTs are such that they are considered a true view of the underlying `values` buffer. This means views of jagged NTs are views of the underlying buffer as well, simplifying some handling.
Differential Revision: [D54269922](https://our.internmc.facebook.com/intern/diff/D54269922)
Co-authored-by: voznesenskym <voznesenskym@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113279
Approved by: https://github.com/ezyang
This does not introduce a new test but is tested by checking that all the classes we already have still behave as before now that they don't explicitly disable torch_function.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120632
Approved by: https://github.com/ezyang
- There are no usages of this internally.
- There are very few usages of this in OSS (most of these are forks of old
repositories).
- This flag doesn't do anything.
We're deprecating it to prevent confusion. I will delete it immediately
after the branch cut.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121413
Approved by: https://github.com/albanD, https://github.com/soulitzer
# Motivation
According to [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), the 5th runtime component we would like to upstream is `Guard`. We will cover device guard and stream guard in this PR.
# Design
Device guard is used mainly for op dispatcher in PyTorch. Currently, PyTorch already has a device guard abstraction `c10::impl::DeviceGuardImplInterface`. In our design, we will introduce an `XPUGuardImpl` class inherits from `c10::impl::DeviceGuardImplInterface`. Register `XPUGuardImpl` to PyTorch after we implement the device switch management mechanism in `XPUGuardImpl`. Besides, we will introduce `XPUGuard`, `OptionalXPUGuard`, `XPUStreamGuard`, and `OptionalXPUStreamGuard`. They are all following the design of CUDA's counterpart. The corresponding C++ file should be placed in c10/xpu/ folder.
# Additional Context
It is unnecessary to add `Guard` code to PyTorch frontend.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118523
Approved by: https://github.com/EikanWang, https://github.com/gujinghui, https://github.com/jgong5, https://github.com/malfet
ghstack dependencies: #120315
Replaces `view_func()` closures with a reified `ViewFunc` data structure. Codegen generates a `ViewFunc` subclass for each view op (e.g. `NarrowViewFunc`) containing state needed to reconstruct the view. The `ViewFunc` API allows for querying and hot-swapping any `SymInt`s or `Tensors` in the state through `get_symints()` / `get_tensors()` / `clone_and_set()`, which will be essential for fake-ification later on.
```cpp
/// Base class for view functions, providing reapplication of a view on a new base.
/// Each view op should get a codegenerated subclass of this class containing
/// any state needed to reconstruct the view. The class also provides convenience
/// accessors for saved SymInts / tensor state. This is useful for e.g. fake-ification,
/// where we want to use symbolic values or fake tensors instead.
struct TORCH_API ViewFunc {
virtual ~ViewFunc() {}
/// Returns any SymInts in the saved state.
virtual std::vector<c10::SymInt> get_symints() const { return {}; }
/// Returns the number of SymInts in the saved state.
virtual size_t num_symints() const { return 0; }
/// Returns any tensors in the saved state.
virtual std::vector<at::Tensor> get_tensors() const { return {}; }
/// Returns the number of tensors in the saved state.
virtual size_t num_tensors() const { return 0; }
/// Reapplies the view on the given base using the saved state.
virtual at::Tensor operator()(const at::Tensor&) const = 0;
/// Returns a clone of this ViewFunc, optionally with the specified saved state.
virtual std::unique_ptr<ViewFunc> clone_and_set(
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
std::optional<std::vector<at::Tensor>> = c10::nullopt) const = 0;
protected:
/// Sets the values of any SymInts in the saved state. The input vector size must
/// match the number of SymInts in the saved state (i.e. the size of the list
/// returned by get_symints()).
virtual void set_symints(std::vector<c10::SymInt>) {}
/// Sets the values of any Tensors in the saved state. The input vector size must
/// match the number of Tensors in the saved state (i.e. the size of the list
/// returned by get_tensors()).
virtual void set_tensors(std::vector<at::Tensor>) {}
};
```
New codegen files:
* `torch/csrc/autograd/generated/ViewFunc.h`
* `torch/csrc/autograd/generated/ViewFuncs.cpp`
The templates for these also contains impls for `ChainedViewFunc` and `ErroringViewFunc` which are used in a few places within autograd.
Example codegen for `slice.Tensor`:
```cpp
// torch/csrc/autograd/generated/ViewFuncs.h
#define SLICE_TENSOR_VIEW_FUNC_AVAILABLE
struct SliceTensorViewFunc : public torch::autograd::ViewFunc {
SliceTensorViewFunc(int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step) : dim(dim), start(start), end(end), step(step)
{};
virtual ~SliceTensorViewFunc() override {};
virtual std::vector<c10::SymInt> get_symints() const override;
virtual size_t num_symints() const override;
virtual std::vector<at::Tensor> get_tensors() const override;
virtual size_t num_tensors() const override;
virtual at::Tensor operator()(const at::Tensor&) const override;
virtual std::unique_ptr<ViewFunc> clone_and_set(
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
protected:
virtual void set_symints(std::vector<c10::SymInt>) override;
virtual void set_tensors(std::vector<at::Tensor>) override;
private:
int64_t dim;
c10::optional<c10::SymInt> start;
c10::optional<c10::SymInt> end;
c10::SymInt step;
};
...
// torch/csrc/autograd/generated/ViewFuncs.cpp
std::vector<c10::SymInt> SliceTensorViewFunc::get_symints() const {
::std::vector<c10::SymInt> symints;
symints.reserve((start.has_value() ? 1 : 0) + (end.has_value() ? 1 : 0) + 1);
if(start.has_value()) symints.insert(symints.end(), *(start));
if(end.has_value()) symints.insert(symints.end(), *(end));
symints.push_back(step);
return symints;
}
size_t SliceTensorViewFunc::num_symints() const {
return static_cast<size_t>((start.has_value() ? 1 : 0) + (end.has_value() ? 1 : 0) + 1);
}
void SliceTensorViewFunc::set_symints(std::vector<c10::SymInt> symints) {
TORCH_INTERNAL_ASSERT(symints.size() == num_symints());
auto i = 0;
if(start.has_value()) start = symints[i];
i += (start.has_value() ? 1 : 0);
if(end.has_value()) end = symints[i];
i += (end.has_value() ? 1 : 0);
step = symints[i];
}
std::vector<at::Tensor> SliceTensorViewFunc::get_tensors() const {
::std::vector<at::Tensor> tensors;
return tensors;
}
size_t SliceTensorViewFunc::num_tensors() const {
return static_cast<size_t>(0);
}
void SliceTensorViewFunc::set_tensors(std::vector<at::Tensor> tensors) {
TORCH_INTERNAL_ASSERT(tensors.size() == num_tensors());
}
at::Tensor SliceTensorViewFunc::operator()(const at::Tensor& input_base) const {
return at::_ops::slice_Tensor::call(input_base, dim, start, end, step);
}
std::unique_ptr<ViewFunc> SliceTensorViewFunc::clone_and_set(
std::optional<std::vector<c10::SymInt>> symints,
std::optional<std::vector<at::Tensor>> tensors) const {
auto output = std::make_unique<SliceTensorViewFunc>(dim, start, end, step);
if (symints.has_value()) {
output->set_symints(std::move(*(symints)));
}
if (tensors.has_value()) {
output->set_tensors(std::move(*(tensors)));
}
return output;
}
```
The `_view_func()` / `_view_func_unsafe()` methods now accept two additional (optional) args for `symint_visitor_fn` / `tensor_visitor_fn`. If these are defined, they are expected to be python callables that operate on a single SymInt / tensor and return a new one. This allows for the hot-swapping needed during fake-ification.
For testing, there are extensive pre-existing tests, and I added a test to ensure that hot-swapping functions correctly.
```sh
python test/test_autograd.py -k test_view_func_replay
python test/test_ops.py -k test_view_replay
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118404
Approved by: https://github.com/ezyang
Replaces `view_func()` closures with a reified `ViewFunc` data structure. Codegen generates a `ViewFunc` subclass for each view op (e.g. `NarrowViewFunc`) containing state needed to reconstruct the view. The `ViewFunc` API allows for querying and hot-swapping any `SymInt`s or `Tensors` in the state through `get_symints()` / `get_tensors()` / `clone_and_set()`, which will be essential for fake-ification later on.
```cpp
/// Base class for view functions, providing reapplication of a view on a new base.
/// Each view op should get a codegenerated subclass of this class containing
/// any state needed to reconstruct the view. The class also provides convenience
/// accessors for saved SymInts / tensor state. This is useful for e.g. fake-ification,
/// where we want to use symbolic values or fake tensors instead.
struct TORCH_API ViewFunc {
virtual ~ViewFunc() {}
/// Returns any SymInts in the saved state.
virtual std::vector<c10::SymInt> get_symints() const { return {}; }
/// Returns the number of SymInts in the saved state.
virtual size_t num_symints() const { return 0; }
/// Returns any tensors in the saved state.
virtual std::vector<at::Tensor> get_tensors() const { return {}; }
/// Returns the number of tensors in the saved state.
virtual size_t num_tensors() const { return 0; }
/// Reapplies the view on the given base using the saved state.
virtual at::Tensor operator()(const at::Tensor&) const = 0;
/// Returns a clone of this ViewFunc, optionally with the specified saved state.
virtual std::unique_ptr<ViewFunc> clone_and_set(
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
std::optional<std::vector<at::Tensor>> = c10::nullopt) const = 0;
protected:
/// Sets the values of any SymInts in the saved state. The input vector size must
/// match the number of SymInts in the saved state (i.e. the size of the list
/// returned by get_symints()).
virtual void set_symints(std::vector<c10::SymInt>) {}
/// Sets the values of any Tensors in the saved state. The input vector size must
/// match the number of Tensors in the saved state (i.e. the size of the list
/// returned by get_tensors()).
virtual void set_tensors(std::vector<at::Tensor>) {}
};
```
New codegen files:
* `torch/csrc/autograd/generated/ViewFunc.h`
* `torch/csrc/autograd/generated/ViewFuncs.cpp`
The templates for these also contains impls for `ChainedViewFunc` and `ErroringViewFunc` which are used in a few places within autograd.
Example codegen for `slice.Tensor`:
```cpp
// torch/csrc/autograd/generated/ViewFuncs.h
#define SLICE_TENSOR_VIEW_FUNC_AVAILABLE
struct SliceTensorViewFunc : public torch::autograd::ViewFunc {
SliceTensorViewFunc(int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step) : dim(dim), start(start), end(end), step(step)
{};
virtual ~SliceTensorViewFunc() override {};
virtual std::vector<c10::SymInt> get_symints() const override;
virtual size_t num_symints() const override;
virtual std::vector<at::Tensor> get_tensors() const override;
virtual size_t num_tensors() const override;
virtual at::Tensor operator()(const at::Tensor&) const override;
virtual std::unique_ptr<ViewFunc> clone_and_set(
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
protected:
virtual void set_symints(std::vector<c10::SymInt>) override;
virtual void set_tensors(std::vector<at::Tensor>) override;
private:
int64_t dim;
c10::optional<c10::SymInt> start;
c10::optional<c10::SymInt> end;
c10::SymInt step;
};
...
// torch/csrc/autograd/generated/ViewFuncs.cpp
std::vector<c10::SymInt> SliceTensorViewFunc::get_symints() const {
::std::vector<c10::SymInt> symints;
symints.reserve((start.has_value() ? 1 : 0) + (end.has_value() ? 1 : 0) + 1);
if(start.has_value()) symints.insert(symints.end(), *(start));
if(end.has_value()) symints.insert(symints.end(), *(end));
symints.push_back(step);
return symints;
}
size_t SliceTensorViewFunc::num_symints() const {
return static_cast<size_t>((start.has_value() ? 1 : 0) + (end.has_value() ? 1 : 0) + 1);
}
void SliceTensorViewFunc::set_symints(std::vector<c10::SymInt> symints) {
TORCH_INTERNAL_ASSERT(symints.size() == num_symints());
auto i = 0;
if(start.has_value()) start = symints[i];
i += (start.has_value() ? 1 : 0);
if(end.has_value()) end = symints[i];
i += (end.has_value() ? 1 : 0);
step = symints[i];
}
std::vector<at::Tensor> SliceTensorViewFunc::get_tensors() const {
::std::vector<at::Tensor> tensors;
return tensors;
}
size_t SliceTensorViewFunc::num_tensors() const {
return static_cast<size_t>(0);
}
void SliceTensorViewFunc::set_tensors(std::vector<at::Tensor> tensors) {
TORCH_INTERNAL_ASSERT(tensors.size() == num_tensors());
}
at::Tensor SliceTensorViewFunc::operator()(const at::Tensor& input_base) const {
return at::_ops::slice_Tensor::call(input_base, dim, start, end, step);
}
std::unique_ptr<ViewFunc> SliceTensorViewFunc::clone_and_set(
std::optional<std::vector<c10::SymInt>> symints,
std::optional<std::vector<at::Tensor>> tensors) const {
auto output = std::make_unique<SliceTensorViewFunc>(dim, start, end, step);
if (symints.has_value()) {
output->set_symints(std::move(*(symints)));
}
if (tensors.has_value()) {
output->set_tensors(std::move(*(tensors)));
}
return output;
}
```
The `_view_func()` / `_view_func_unsafe()` methods now accept two additional (optional) args for `symint_visitor_fn` / `tensor_visitor_fn`. If these are defined, they are expected to be python callables that operate on a single SymInt / tensor and return a new one. This allows for the hot-swapping needed during fake-ification.
For testing, there are extensive pre-existing tests, and I added a test to ensure that hot-swapping functions correctly.
```sh
python test/test_autograd.py -k test_view_func_replay
python test/test_ops.py -k test_view_replay
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118404
Approved by: https://github.com/ezyang
Part 2 of implementation for general [subclass view fake-ification](https://docs.google.com/document/d/1C5taWiplmX7nKiURXDOAZG2W5VNJ2iV0fQFq92H0Cxw).
Details:
* Codegen `rev_view_func()` alongside `view_func()`
* Reverse view_func gives you a "base" from a "view": `rev_view_func(new_view) -> new_base` AKA it plays the original view backwards
* Utilizes the functional inverses defined in `FunctionalInverses.cpp`, passing `InverseReturnMode::AlwaysView`
* Manually implements functional inverses for `narrow()` and `chunk()`
* **NB: Multi-output views now set view_func() / rev_view_func() for each of the output views!**
* Due to this, the `as_view()` overload that operates on a list of views is scrapped in favor of iteration via codegen
Example codegen in `ADInplaceOrViewTypeN.cpp`:
```cpp
at::Tensor narrow(c10::DispatchKeySet ks, const at::Tensor & self, int64_t dim, c10::SymInt start, c10::SymInt length) {
auto _tmp = ([&]() {
at::AutoDispatchBelowADInplaceOrView guard;
return at::_ops::narrow::redispatch(ks & c10::after_ADInplaceOrView_keyset, self, dim, start, length);
})();
std::function<at::Tensor(const at::Tensor&)> func=nullptr;
std::function<at::Tensor(const at::Tensor&)> rev_func=nullptr;
if (false || !self.unsafeGetTensorImpl()->support_as_strided() ||
c10::AutogradState::get_tls_state().get_view_replay_enabled()) {
func = [=](const at::Tensor& input_base) {
return at::_ops::narrow::call(input_base, dim, start, length);
};
rev_func = [=](const at::Tensor& input_view) {
// NB: args from narrow() signature are passed along to the inverse
return at::functionalization::FunctionalInverses::narrow_copy_inverse(self, input_view, at::functionalization::InverseReturnMode::AlwaysView, dim, start, length);
};
}
auto result = as_view(/* base */ self, /* output */ _tmp, /* is_bw_differentiable */ true, /* is_fw_differentiable */ true, /* view_func */ func, /* rev_view_func */ rev_func, /* creation_meta */ InferenceMode::is_enabled() ? CreationMeta::INFERENCE_MODE : (at::GradMode::is_enabled() ? CreationMeta::DEFAULT : CreationMeta::NO_GRAD_MODE));
return result;
}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115894
Approved by: https://github.com/soulitzer
Updates flake8 to v6.1.0 and fixes a few lints using sed and some ruff tooling.
- Replace `assert(0)` with `raise AssertionError()`
- Remove extraneous parenthesis i.e.
- `assert(a == b)` -> `assert a == b`
- `if(x > y or y < z):`->`if x > y or y < z:`
- And `return('...')` -> `return '...'`
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116591
Approved by: https://github.com/albanD, https://github.com/malfet
Constant time access of first value in collection. This is a constant time operation instead of converting the item to a list to get the first item which is linear. The rule is turned on which automatically autofixes and enforces this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115507
Approved by: https://github.com/malfet
… device placement of the RNG. This PR now ignores the user-specified default device, allocates the tensor on the CPU and then moves the tensor to the device of the input tensor. This was more or less already the standard procedure in case the default device wasn't set.
Fixes#114536.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114560
Approved by: https://github.com/soulitzer
Summary:
In some cases (especially those involving collective calls) - we would want to always kick off a collective call first before running going down another path.
For example:
```
tbe lookup -> a2a ->
overarch
dense ------------->
```
if the forward code is written as
a2a_out = a2a
dense = dense_net
out = overarch(a2a_out, dense)
out.backward()
The current default is running backwards in the opposite order the forward is called. However, there is no data dependency between a2a and dense, so in reality either of them could be run first. We would like the a2a to run first because it provides optimal (on average) overlap.
Changing the seq_nr of a2a_out to something large enough would allow autograd engine to kick it off first.
Test Plan: Tests incoming
Differential Revision: D51445261
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114120
Approved by: https://github.com/ezyang, https://github.com/albanD
The existing try-catch doesn't work because it doesn't call err.persist(). This is in contrast to the try-catch for evaluate_function which does work because it calls into python_engine's thread_on_exception which calls persist.
Calling persist on a python_error stashes the PyErr state from the thread-local PyThreadState onto the python_error object, so that when this error object is stored onto the future and passed back to the calling cpu thread, python_engine's execute try-catch can then err.restore() the error state. Finally, the python_engine's execute would re-raise so that this is re-caught by the HANDLE_TH_ERRORS macro.
Fixes https://github.com/pytorch/pytorch/issues/75750
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113702
Approved by: https://github.com/albanD
This can be useful for advanced users (like AOTAutograd) who don't want to keep the corresponding Tensor alive (for memory reasons for example) or when inplace op will change the Tensor's grad_fn (but gradients wrt to the original value is needed).
I went minimal API change but open to suggestions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110867
Approved by: https://github.com/soulitzer
People access activation checkpoint through many layers of config and it is not always guaranteed that all the layers of wrapping around checkpoint properly propagate all the kwargs, e.g. debug mode. This context manager offers an alternative way to enable debug mode that bypasses the need for all layers to propagate kwargs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110728
Approved by: https://github.com/albanD
ghstack dependencies: #110673, #110674, #110675, #110676
This PR implements the feature described in #107036 for `no_grad`, `enable_grad` and `inference_mode`.
Users can still use the above as before but they can also use them without parentheses.
For example:
```python
import torch
a = torch.ones(1, requires_grad=True)
def do_something():
print(2 * a)
with torch.no_grad():
do_something() # tensor([2.])
torch.no_grad()(do_something)() # tensor([2.])
torch.no_grad(do_something)() # tensor([2.])
do_something() # tensor([2.], grad_fn=<MulBackward0>)
```
For `inference_mode`, decorating without parenthesis is equivalent to decorating with the default `mode=True`, similiar to how dataclasses behave (https://docs.python.org/3/library/dataclasses.html#module-contents)
Closes#107036
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107086
Approved by: https://github.com/albanD
Fixes https://github.com/pytorch/pytorch/issues/106754
This PR:
- moves test/autograd/test_fallback.py to test_autograd_fallback.py and
removes it from test_autograd.py (necessary for the next step)
- adds test_autograd_fallback.py to parallel test blocklist.
- lintrunner really wanted to make changes to the files, but other than
that, it is a move.
The problem is that we set a global option (the autograd fallback mode)
during these tests which may cause the tests to interfere with each
other.
Test Plan:
- python test/run_test.py -i test_autograd_fallback
NOTE to diff train oncall:
- You'll also need to modify the test/autograd/test_fallback.py TARGET in
caffe2/test/TARGETS since we renamed the file.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106866
Approved by: https://github.com/soulitzer
Fixes#104985
Implemented `set_multithreading_enabled` C++ function to directly alter state rather than using `MultithreadingEnabled` class, which was automatically resetting the state when the object was destroyed. This behavior more closely aligns with set_grad_enabled which does work as expected. This allows us to change python class `set_multithreading_enabled` to act as both a function and context manager.
I also added a getter: `torch._C.is_multithreading_enabled`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105291
Approved by: https://github.com/albanD
Summary:
Context
-------
This PR adds a new fallback to the Autograd dispatch keys.
If you would prefer the old behavior:
- A quick (unsupported) way to get the previous behavior is to call
`torch._C._set_autograd_fallback("nothing")`
- Register "torch::CppFunction::makeFallthrough()" to your Autograd key,
like in https://gist.github.com/zou3519/d09a5f4b1afe2430af09fea67c6ff2c8
It is possible that this PR regresses performance of overhead-bound
models. If this is the case, please reach out (and apply one of the
temporary fixes in the previous section).
Description for reviewers
-------------------------
In order to deprecate registering autograd kernels at not an autograd
key, we add a fallback to the Autograd dispatch keys. This fallback
raises a warning if the user attempts to backprop through the operator
and is also configurable to either warn or not warn.
The goal of this PR is to
- preserve as much BC as possible
- raise a warning that whatever the user is doing is potentially wrong.
- be as performant as possible
There are roughly two cases:
- if the post-autograd kernels return a Tensor that requires grad, then
we install an autograd hook that raises a warning. We are preserving BC
in that it is possible that the user has a torch::autograd::Function
registered to their CPU key.
- if the post-autograd kernels return Tensors that do not require grad,
then we make them require_grad and install a WarnNotImplemented grad fn
that warns in the backward pass. This is mildy BC-breaking (see next
section).
Test Plan:
- bunch of new tests
BC-Breaking Note
----------------
This PR adds a new fallback to the Autograd dispatch keys. It affects
custom operators that do not have a kernel registered to the Autograd
keys (e.g. AutogradCPU and AutogradCUDA).
If the previous behavior was that the custom operator would return
Tensors that do not require grad if the inputs do require grad, then
this PR changes it so that all floating-point and complex returns do
require grad. See the "Context" section above for how to get the old
behavior.
Differential Revision: D47408353
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105078
Approved by: https://github.com/soulitzer
Context
-------
This PR adds a new fallback to the Autograd dispatch keys.
If you would prefer the old behavior:
- A quick (unsupported) way to get the previous behavior is to call
`torch._C._set_autograd_fallback("nothing")`
- Register "torch::CppFunction::makeFallthrough()" to your Autograd key,
like in https://gist.github.com/zou3519/d09a5f4b1afe2430af09fea67c6ff2c8
It is possible that this PR regresses performance of overhead-bound
models. If this is the case, please reach out (and apply one of the
temporary fixes in the previous section).
Description for reviewers
-------------------------
In order to deprecate registering autograd kernels at not an autograd
key, we add a fallback to the Autograd dispatch keys. This fallback
raises a warning if the user attempts to backprop through the operator
and is also configurable to either warn or not warn.
The goal of this PR is to
- preserve as much BC as possible
- raise a warning that whatever the user is doing is potentially wrong.
- be as performant as possible
There are roughly two cases:
- if the post-autograd kernels return a Tensor that requires grad, then
we install an autograd hook that raises a warning. We are preserving BC
in that it is possible that the user has a torch::autograd::Function
registered to their CPU key.
- if the post-autograd kernels return Tensors that do not require grad,
then we make them require_grad and install a WarnNotImplemented grad fn
that warns in the backward pass. This is mildy BC-breaking (see next
section).
Test Plan:
- bunch of new tests
BC-Breaking Note
----------------
This PR adds a new fallback to the Autograd dispatch keys. It affects
custom operators that do not have a kernel registered to the Autograd
keys (e.g. AutogradCPU and AutogradCUDA).
If the previous behavior was that the custom operator would return
Tensors that do not require grad if the inputs do require grad, then
this PR changes it so that all floating-point and complex returns do
require grad. See the "Context" section above for how to get the old
behavior.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104481
Approved by: https://github.com/soulitzer
Fixes https://github.com/pytorch/pytorch/issues/104272
This PR adds a new private API `materialize_non_diff_grads` (default True) such that when set to False, grad outputs corresponding to outputs marked non-differentiable would receive None instead of a zero-filled tensor. This is overrides the setting of `materialize_grads`, i.e. grad outputs corresponding non-differentiable outputs would still be None even if `materialize_grads=True` (the default).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104291
Approved by: https://github.com/albanD
This PR makes some improvements for debuggability of checkpointing:
- improved error messages that are more understandable
- errors are now `CheckpointError` which subclasses `RuntimeError` (only `CheckpointError` triggers debug message, see below)
- stricter error checking by default:
- shapes, dtypes, and device are compared
- we also now error when more tensors are being saved for backward during recompute
- NOTE: checks are relaxed if it is detected that you are doing backward within forward
- shapes, dtype, and device checking can be disabled by passing `determinism_check="none"`
- new debug flag: more helpful error message when `debug=True`
Note:
- cpp stack trace is only included for x86 linux machines
- the error message if cpp stack trace is included can be quite long. For a function checkpointed with 8 operators, the log was around 1300 lines! (should this be hidden behind a flag?)
[Error message when debug='True' (python stack trace only)](https://gist.github.com/soulitzer/3d5e19c7cceae8e22f9bdd625ec39dd4)
[Error message when debug='True' (with python and cpp stacktrace)](https://gist.github.com/soulitzer/ff8fd8c3ccbb2c90dfe3df6d7713b167)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103859
Approved by: https://github.com/albanD
Now, when you do an inplace mutation and the view is naughty, you get this message:
```
RuntimeError: A view was created in no_grad mode and is being modified inplace with grad mode enabled. Given that this use case is ambiguous and error-prone, it is forbidden. You can clarify your code by moving both the view and the inplace either both inside the no_grad block (if you don't want the inplace to be tracked) or both outside (if you want the inplace to be tracked). To find out where this view was allocated, run your entire forward region under anomaly mode (torch.autograd.detect_anomaly(check_nan=False)).
```
When you run under anomaly mode, you get:
```
RuntimeError: A view was created in no_grad mode and is being modified inplace with grad mode enabled. Given that this use case is ambiguous and error-prone, it is forbidden. You can clarify your code by moving both the view and the inplace either both inside the no_grad block (if you don't want the inplace to be tracked) or both outside (if you want the inplace to be tracked). This view was allocated at:
File "/data/users/ezyang/c/pytorch/test/test_autograd.py", line 4299, in arglebargle
File "/data/users/ezyang/c/pytorch/test/test_autograd.py", line 4306, in test_anomaly_gives_view_stack
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/case.py", line 549, in _callTestMethod
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/case.py", line 591, in run
File "/data/users/ezyang/c/pytorch/torch/testing/_internal/common_utils.py", line 2266, in _run_with_retry
File "/data/users/ezyang/c/pytorch/torch/testing/_internal/common_utils.py", line 2337, in run
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/case.py", line 650, in __call__
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/suite.py", line 122, in run
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/suite.py", line 84, in __call__
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/suite.py", line 122, in run
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/suite.py", line 84, in __call__
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/runner.py", line 184, in run
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/main.py", line 271, in runTests
File "/home/ezyang/local/c/pytorch-env/lib/python3.10/unittest/main.py", line 101, in __init__
File "/data/users/ezyang/c/pytorch/torch/testing/_internal/common_utils.py", line 894, in run_tests
File "/data/users/ezyang/c/pytorch/test/test_autograd.py", line 11209, in <module>
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103185
Approved by: https://github.com/zdevito
Now that we have updated all internal callsites, per https://fb.workplace.com/groups/pytorch.oss.dev/permalink/1635183750239493/ we should raise a warning when use_reentrant is not explicitly passed for 2.1
Deprecation note:
- Not passing in use_reentrant explicitly is now deprecated and will raise a warning. In the future the default value of use-reentrant will be False. To preserve the existing behavior you can pass in use_reentrant=True. It is recommended that you use use_reentrant=False.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100551
Approved by: https://github.com/Skylion007
Why did I choose context manager instead of per-call? Early stopping is not part of the model definition, and depending on how a particular model is used, e.g., with PT2 or not we may or may not want to disable early stopping.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96866
Approved by: https://github.com/albanD
Fixes#44189
Adds a new parameter, zero_grad_unused, to the torch.autograd.grad() function. This parameter allows for the gradient to be set to 0 instead of None when a variable is unused, which can be helpful for higher-order partial differentials.
Here is an example of using this new parameter to solve d^3y/dx^3 given y = a * x:
```python
x = torch.tensor(0.5, dtype=torch.float32, requires_grad=True)
a = torch.tensor(1, dtype=torch.float32, requires_grad=True)
y = x * a
dydx = torch.autograd.grad(y, x, create_graph=True, allow_unused=True)
d2ydx2 = torch.autograd.grad(dydx, x, allow_unused=True, zero_grad_unused=True)
try:
d3ydx3 = torch.autograd.grad(d2ydx2, x, allow_unused=True, zero_grad_unused=True)
except RuntimeError as e:
assert False, "Should not raise error"
```
With `zero_grad_unused`, d2ydx2 could be 0 instead of None, enabling d3ydx3 to be calculated as defined in math without throwing an error.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97015
Approved by: https://github.com/soulitzer
Changes:
- bc-breaking change: The main difference between this and the old non-reentrant impl that it replaces is that we clear recomputed tensors on backward immediately upon unpack, even if retain_graph=True. This has the following additional implications:
- Accessing _saved_tensors multiple times will silently recompute forward multiple times.
- Accessing ctx.saved_tensor twice in the same backward will now raise an error.
- To avoid dealing with the potential consequences, early stopping has been hidden behind a global flag that is by default False, and can be enabled via a context manager. We can remove this in a follow up. Some features of nesting as a result do not work by default.
Before land:
- import to check for more bc-breakingness
- implement any workarounds for the bc-breaking-ness, if we decide on any
- update docs to reflect new lifetime of recomputed variables
- update docs to mention the early stop feature
Follow ups:
- enable early-stopping by default
- update docs/tutorial to feature nested use cases
Related docs:
- code comment: https://github.com/pytorch/pytorch/pull/90105/files#diff-9dcd955620b52ce128e18e3567be88edbb238810460d1288a86fabc20e483b30R448
- design doc: https://docs.google.com/document/d/1UDLhTNv6_kvuDTRlsjfj9WdqtNaQNr8ahrvdBIB6914/edit#
- retains_grad <> checkpiont https://docs.google.com/document/d/1maiGmuFUxysQL0AdYUU88kngAaXh_L0XpDcLDh_5Ors/edit
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90105
Approved by: https://github.com/albanD
tldr; this should fix some minor perf regressions that were caused by adding more as_strided() calls in aot autograd.
This PR adds a new context manager, `torch.autograd._set_view_replay_enabled()`.
Context: AOT Autograd has special handling for "outputs that alias graph intermediates". E.g. given this function:
```
def f(x):
y = torch.mul(x, 2)
out = y.view(-1)
return out
```
AOT Autograd will do the following:
```
def fn_to_compile(x):
y = torch.mul(x, 2)
out = y.view(-1)
# return the graph intermediate
return y, out
compiled_fn = compile(fn_to_compile)
def wrapper(x):
y, out = compiled_fn(x)
# regenerate the alias of the graph intermediate
return out._view_func(y)
```
What's annoying is that `out._view_func()` will result in a `.as_strided` call, because `out` is an ordinary runtime tensor. This (likely?) caused a perf regression, because when running the backward, out `as_strided_backward()` is slower than our `view_backward()`.
In this PR, I added some TLS for instructing autograd to do view replay instead of as_strided, even when given a normal tensor. I'm definitely interested in thoughts from autograd folks (cc @albanD @soulitzer). A few points that I want to bring up:
(1) One reason that this API seems generally useful to me is because of the case where you `torch.compile()` a function, and you pass in two inputs that alias each other, and mutate one of the inputs. Autograd is forced to add a bunch of as_strided() calls into the graph when this happens, but this would give users an escape hatch for better compiled perf in this situation
(2) To be fair, AOT Autograd probably won't need this TLS in the long term. There's a better (more complicated) solution, where AOT Autograd manually precomputes the view chain off of graph intermediates during tracing, and re-applies them at runtime. This is kind of complicated though and feels lower priority to implement immediately.
(3) Given all of that I made the API private, but lmk what you all think.
This is a followup of https://github.com/pytorch/pytorch/pull/92255.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92588
Approved by: https://github.com/ezyang, https://github.com/albanD
We would handle py::error_already_set correctly from pybind11 bindings,
but not from our regular TH bindings, which meant that anything from
an inner pybind11 function call was getting unconditionally transformed
into a RuntimeError. Not too many cases where we do this, but
PySymNodeImpl was one of them.
To test this, I need to raise a non-RuntimeError from a function which
is invoked from pybind11 and then propagated to a non-pybind11 call
site. I introduce GuardOnDataDependentSymNode for expressly this
purpose (this is how I discovered the bug anyway.)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93238
Approved by: https://github.com/Skylion007, https://github.com/albanD
For the cudagraphs implementation, we would like to reuse objects that are defined in python across the forward and backward. The backward is run in a different thread, so to handle this we add an api for copying over arbitrary python objects in pytorch's thread local state, in the same way that C++ objects are copied over currently.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89169
Approved by: https://github.com/albanD
This reverts commit e525f433e1.
Original PR: #85849
Fixes #ISSUE_NUMBER
In addition to reverting the revert, this PR:
- defines the virtual destructor of FunctionPreHook in the header. Why? Presumably the internal build imports the header from somewhere, but does not have function_hooks.cpp (where the virtual destructor was previously defined) in the same compilation unit.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92559
Approved by: https://github.com/albanD
This PR:
- registers all of the codegened Nodes to the torch._C._functions module, this is where special nodes like AccumulateGrad are already registered.
- creates a autograd.graph.Node abstract base class that all of the newly registered nodes subclass from. We make the subclassing happen by implementing the ``__subclasshook__`` method
- enables static type checking to work and also enables Sphinx to generate documentation for the Node and its methods
- handles both the custom Function and codegened cases
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91475
Approved by: https://github.com/albanD
Addresses: https://github.com/pytorch/pytorch/issues/35802
Design doc: https://docs.google.com/document/d/19xSib7FFknRQ5f3ptGFUmiOt3BrgXSUlTQH2xMcZJYg/edit#
### Changes in this PR
#### Implementation
- We have now have 3 fields: pre_hooks, retains_grad_hooks, and tensor_pre_hooks so that we can more precisely define their ordering and when they are executed.
- Since retains grad uses an entirely new field, we cannot reuse the old retains grad, logic. We refactor retains grad to call directly into the variable.cpp logic. Other logic in variable.cpp that handle cpp hooks must also be updated.
#### Hooks ordering and execution:
- Defines pre-hooks registered on tensor to run before pre-hooks registered on grad_fn
- Updates pre-hooks registered on tensor to always run, even if they are the inputs= to .grad()
- Post hooks (and pre hooks) can now observe the modifications to gradient by the tensor pre hook
#### Retains grad hooks
- retains grad hooks always execute last, even if there are other tensor pre-hooks registered
#### Unchanged:
- pre_hooks registered to grad_fn aren't expected to execute if they are the inputs= to .grad()
Follow ups:
- simplify retains_grad field to not be a vector, since it always holds a single hook
- potentially merge capture hooks with tensor pre hooks, this would involve some additional refactoring since
- python hooks registered to tensor behavior on in-place is still wrong
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85849
Approved by: https://github.com/albanD