This PR makes libtorch behave the same as PyTorch when loading optimizer state from archive. With PyTorch, options of parameter groups are loaded from the archive, which is missing currently in libtorch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125215
Approved by: https://github.com/janeyx99
Summary:
We found that some dumps are missing when monitoring thread timeout.
This is likely due to multiple PGs could still dump the same records
at the same time. So we should allow only PG0 to actualy dump
Test Plan:
unit test
python test/run_test.py --cpp --verbose -i cpp/ProcessGroupNCCLErrorsTest
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125356
Approved by: https://github.com/c-p-i-o
This PR continues to clean clang-tidy warnings in torch/csrc/distributed/c10d, following #124701. In addition, libfmt dependency is added in CMake code to enable using it in the headers. The libfmt has to be added as private dependency to torch_cuda and torch_hip because they include torch/csrc/distributed/c10d/Utils.hpp which uses libfmt.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124987
Approved by: https://github.com/malfet
Summary: Now that we have reached nanosecond granularity, we can now remove the temporary guards that were previously required for nanosecond precision.
Test Plan: Regression should cover this change
Reviewed By: aaronenyeshi
Differential Revision: D56444570
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124734
Approved by: https://github.com/aaronenyeshi
Summary: In AOTInductor generated CPU model code, there can be direct references to some aten/c10 utility functions and data structures, e.g. at::vec and c10::Half. These are performance critical and thus it doesn't make sense to create C shim for them. Instead, we make sure they are implemented in a header-only way, and use this set of tests to guard future changes.
There are more header files to be updated, but we will do it in other followup PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123848
Approved by: https://github.com/jansel
ghstack dependencies: #123847
Summary:
Kineto traces use microsecond level granularity because of chrome tracing defaults to that precision. Fix by adding preprocessor flag to TARGETS and BUCK files. Also remove any unnecessary ns to us conversions made in the profiler itself.
This diff contains profiler changes only. Libkineto changes found in D54964435.
Test Plan:
Check JSON and chrome tracing to make sure values are as expected. Tracing with flags enabled should have ns precision. Tracings without flags should be same as master.
Zoomer: https://www.internalfb.com/intern/zoomer/?profiling_run_fbid=796886748550189
Ran key_averages() to make sure FunctionEvent code working as expected:
-- ------------ ------------
Name Self CPU % Self CPU CPU total % CPU total CPU time avg Self CUDA Self CUDA % CUDA total CUDA time avg # of Calls
ProfilerStep* 0.74% 3.976ms 64.40% 346.613ms 69.323ms 0.000us 0.00% 61.710ms 12.342ms 5
Optimizer.zero_grad#SGD.zero_grad 0.76% 4.109ms 0.76% 4.109ms 821.743us 0.000us 0.00% 0.000us 0.000us 5
## forward ## 6.89% 37.057ms 27.19% 146.320ms 29.264ms 0.000us 0.00% 58.708ms 11.742ms 5
aten::conv2d 0.22% 1.176ms 7.74% 41.658ms 157.199us 0.000us 0.00% 27.550ms 103.962us 265
aten::convolution 0.79% 4.273ms 7.52% 40.482ms 152.762us 0.000us 0.00% 27.550ms 103.962us 265
aten::_convolution 0.69% 3.688ms 6.73% 36.209ms 136.637us 0.000us 0.00% 27.550ms 103.962us 265
aten::cudnn_convolution 6.04% 32.520ms 6.04% 32.520ms 122.719us 27.550ms 8.44% 27.550ms 103.962us 265
aten::add_ 2.42% 13.045ms 2.42% 13.045ms 30.694us 12.700ms 3.89% 12.700ms 29.882us 425
aten::batch_norm 0.19% 1.027ms 8.12% 43.717ms 164.971us 0.000us 0.00% 16.744ms 63.185us 265
aten::_batch_norm_impl_index 0.31% 1.646ms 7.93% 42.691ms 161.096us 0.000us 0.00% 16.744ms 63.185us 265
------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Differential Revision: D55925068
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123650
Approved by: https://github.com/aaronenyeshi
Summary:
Kineto traces use microsecond level granularity because of chrome tracing defaults to that precision. Fix by adding preprocessor flag to TARGETS and BUCK files. Also remove any unnecessary ns to us conversions made in the profiler itself.
This diff contains profiler changes only. Libkineto changes found in D54964435.
Test Plan:
Check JSON and chrome tracing to make sure values are as expected. Tracing with flags enabled should have ns precision. Tracings without flags should be same as master.
Tracing with flags enabled: https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/traces/dynocli/devvm2185.cco0.facebook.com/rank-0.Mar_18_14_37_22.4155151.pt.trace.json.gz&bucket=gpu_traces
Tracing without flags enabled: https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/traces/dynocli/devvm2185.cco0.facebook.com/rank-0.Mar_18_14_39_15.4166047.pt.trace.json.gz&bucket=gpu_traces
Tracing on main: https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/traces/dynocli/devvm2185.cco0.facebook.com/rank-0.Mar_18_14_42_43.4177559.pt.trace.json.gz&bucket=gpu_traces
Ran key_averages() to make sure FunctionEvent code working as expected:
-- ------------ ------------
Name Self CPU % Self CPU CPU total % CPU total CPU time avg Self CUDA Self CUDA % CUDA total CUDA time avg # of Calls
ProfilerStep* 0.74% 3.976ms 64.40% 346.613ms 69.323ms 0.000us 0.00% 61.710ms 12.342ms 5
Optimizer.zero_grad#SGD.zero_grad 0.76% 4.109ms 0.76% 4.109ms 821.743us 0.000us 0.00% 0.000us 0.000us 5
## forward ## 6.89% 37.057ms 27.19% 146.320ms 29.264ms 0.000us 0.00% 58.708ms 11.742ms 5
aten::conv2d 0.22% 1.176ms 7.74% 41.658ms 157.199us 0.000us 0.00% 27.550ms 103.962us 265
aten::convolution 0.79% 4.273ms 7.52% 40.482ms 152.762us 0.000us 0.00% 27.550ms 103.962us 265
aten::_convolution 0.69% 3.688ms 6.73% 36.209ms 136.637us 0.000us 0.00% 27.550ms 103.962us 265
aten::cudnn_convolution 6.04% 32.520ms 6.04% 32.520ms 122.719us 27.550ms 8.44% 27.550ms 103.962us 265
aten::add_ 2.42% 13.045ms 2.42% 13.045ms 30.694us 12.700ms 3.89% 12.700ms 29.882us 425
aten::batch_norm 0.19% 1.027ms 8.12% 43.717ms 164.971us 0.000us 0.00% 16.744ms 63.185us 265
aten::_batch_norm_impl_index 0.31% 1.646ms 7.93% 42.691ms 161.096us 0.000us 0.00% 16.744ms 63.185us 265
------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Differential Revision: D55087993
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122425
Approved by: https://github.com/aaronenyeshi
This PR updates the error message in autograd when an input tensor does not set to `require_grad`. The original message does not contain the index info, making users hard to debug.
The error message style consists with that on line 105-109.
Co-authored-by: Jeffrey Wan <soulitzer@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123154
Approved by: https://github.com/soulitzer
This PR only adds abstract class registration logic without touching existing tests so they still trace with real script object. The added tests are only for registration APIs and test error messages.
Our design is that the abstract implementation should be in Python. This is much better in terms of usability. But this also has implications for custom op that takes script object as input, which is detailed later in this stack.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122622
Approved by: https://github.com/zou3519
ghstack dependencies: #122619, #122620, #122621
Summary:
During tracing, some constants (tensor_constant{idx}) are being generated internally.
Those constants are neither parameters or buffers, and users have zero control on them.
To accomodate this, we should allow users not passing in those constants generated internally but still be able the constants in the model.
Test Plan:
Included in commit.
```
build/bin/test_aot_inductor
```
Reviewed By: zoranzhao
Differential Revision: D55354548
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122690
Approved by: https://github.com/khabinov
Summary:
During tracing, some constants (tensor_constant{idx}) are being generated internally.
Those constants are neither parameters or buffers, and users have zero control on them.
To accomodate this, we should allow users not passing in those constants generated internally but still be able the constants in the model.
Test Plan:
Included in commit.
```
build/bin/test_aot_inductor
```
Differential Revision: D55286634
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122562
Approved by: https://github.com/chenyang78, https://github.com/khabinov
Fix and test issues with both coalesced and individual send/recv ops
Considered an alternate approach and then ditched it
- alternate approach: #119757
- reason ditched: prefer recording individual collective events inside
coalescing region instead of just the event at the end of the region,
which also would not have tensor sizes or opnames without additional
state variables added
Another approach also ditched
- record events on workEnqueue instead of initWork
- reason ditched: too messy to get input/output shapes tagged on
recording when recording in workEnqueue. Adding the info onto the
Work obj would be possible, but adds to overhead of copying Works
which we do on every collective. We can get info off the input/output
tensors directly in initWork, but we don't want to keep refs to those
tensors alive while the work is Enqueued, so we'd have to specifically
copy size lists or something.
This PR instead avoids creating a work inside pointToPoint when
coalescing is active. Instead, only at endCoalescing() is a work finally
intialized and enqueued. But it adds a record() call inside
pointToPoint() instead of creating a work, during coalescing. This
record() call picks up tensor shapes and op names.
It ALSO changes initWork to accept a 'record' argument. This defaults to
false, and should only be set to true if the caller ensures the work
will be enqueued by workEnqueue, ensuring its cuda events are live when
used by flight recorder's update_state().
The testing uncovers some odd pre-existing behavior and leaves them
alone for now. We could change some of these
- seq starts off at 1, not 0 for first op (but this is inconistent)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120270
Approved by: https://github.com/shuqiangzhang
ghstack dependencies: #120724
Summary:
The current dump timeout logic is a bit cumbersome as it needs 2 times: 1.
timeout, 2. wake up time. And in theory the caller just needs to wait
for a max of timeout value for the dump and declare the dump to be
either successful or not. Also we unify the async call using std::async
instead of a customized async lauch function for each operation.
Test Plan:
Unit tests
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120331
Approved by: https://github.com/wconstab
Do not run test ConstantPropagation.CustomClassesCanBePropagated on a platform where QNNPACK is not supported.
For example, this test fails on M1 Mac because QNNPACK is not supported on M1 Mac:
[----------] 1 test from ConstantPropagation
[ RUN ] ConstantPropagation.CustomClassesCanBePropagated
unknown file: Failure
as described in more details in the issue #88613.
After the PR, test passes successfully as below:
[----------] 1 test from ConstantPropagation
[ RUN ] ConstantPropagation.CustomClassesCanBePropagated
[ OK ] ConstantPropagation.CustomClassesCanBePropagated (0 ms)
[----------] 1 test from ConstantPropagation (0 ms total)
Fixes#88613
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119139
Approved by: https://github.com/jcaip
Recently we made it possible to serialize ExportedPrograms with fake parameters/buffers/etc.
The serialization regime was kind of whacky; basically we serialized a stub and reassembled the FakeTensor using metadata that we had stashed elsewhere in the Graph state.
This was bad for a few reasons:
- Storing the metadata separately from the actual serialized object caused situations where you could have one but not the other. An example case is if you had a FakeTensor contained inside a TorchBind object—there was no obviously place to store the metadata for this. This actually happens—TensorQueue in fbgemm does this.
- It created an annoying cycle: we had to deserialize the Graph's tensor metadata in order to deserialize (potentially faked) constants, but we need constants in order to deserialize the Graph.
This fixes all that. The basic idea is to patch the reducer function for FakeTensor at serialization time, and serialize a copy of the FakeTensor metadata. We already are policing BC for the TensorMeta schema struct so it's not a net increase in the BC surface.
As a bonus, I fixed a weird bug with torchbind tracing where we were accidentally reinterpreting a torch.ScriptObject as a torch.ScriptModule (which was the root cause of some weird behavior @bahuang was seeing last week).
Differential Revision: [D53601251](https://our.internmc.facebook.com/intern/diff/D53601251/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119531
Approved by: https://github.com/zhxchen17
Summary:
Add Runtime Constant-folding for AOTInductor.
This also include the invocation of constant folding at load time.
The constant folding lowering is a 2-step process.
First, we split the graph into 2 modules, one of it is the constant module, which doesn't depend on any input and the whole module could be inferred (constant-folded) one-time and be reused. The constant module, is lowered, and being codegen-ed as usual and cached (let's call this constant code). The constant code reuses the whole lowering/profiling/etc. process, only difference is that we do not generate any headers or initialization for the constant code.
Second, after handling the constant module, we take care of the main module (which is the part that would depend on the user input.) For the main module, we take in one additional component, the constant code, compare with a normal lowering. Addition step we do here is that, we inject the constant code into the codegen-ed main module, and create the caller for the main module to consume the result of the constant module.
Test Plan: Unit tests included in commit.
Differential Revision: D53274382
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118765
Approved by: https://github.com/chenyang78
Summary: `constraints` argument for `torch.export` has been deprecated in favor of the `dynamic_shapes` argument. This PR updates the use of the deprecated API in `caffe2/test/cpp` and `torchrec/distributed/test/test_pt2`.
Test Plan: CI
Differential Revision: D52977354
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118026
Approved by: https://github.com/chenyang78
This PR adds the bare minimum functionality to get torchbind working in an e2e testable way on PT2.
It implements:
* ProxyTensor support
* Simple torch.export support (proxytensor-only path, e.g. non-strict).
* add some tests exercising the path.
Because all this is not fully baked, I hide the functionality behind a feature flag (`enable_torchbind_tracing()`) so it does not affect regular users for now.
Still on the agenda:
* Dynamo support
* Actual FakeMode support
* Mutability support
Hoping to get this first bit in as a standalone, as it will unblock some more extensive experimentation/testing going on internally.
Differential Revision: [D51825372](https://our.internmc.facebook.com/intern/diff/D51825372/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117697
Approved by: https://github.com/SherlockNoMad
Today watchdog's sleep interval is 1s. That's a bit long compared to modern GPU link's (or network link's) speed.
Take DDP and Ampere for example:
DDP's bucket size = 25 MB
Ampere's NVLink speed = 250 GB/s
25 MB / 250 GB/s = 100 ms.
So we are updating the interval to 100 ms.
Update:
25 MB / 250 GB/s = 0.1 ms
But let's see how it goes so far between making the checking more aggressive.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117297
Approved by: https://github.com/fduwjj
Previously, we have the writer register to each NCCL PG(backend), so for every pg, we have a NCCL PG instance, so if we use some customized writer when multiple sub-PGs are used, we need to ensure user to register the writer for every backend which indicates a bad UX. Furthermore, the debug info is global, so it does not make sense to have the writer for each instance. We even have a static mutex in the `dumpDebuggingInfo` to ensure we serialize the write, that makes it more obvious that we can make the writer a singleton so that we only have one writer instance for all PG instances.
Although the rationale is clear, the implementation may vary a lot. So this PR is RFC for now to see if this implementation makes sense or not.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116489
Approved by: https://github.com/kwen2501
Summary:
Refactor update inactive constant buffer to allow updating with active
buffer.
Test Plan:
Existing test to test inactive buffer updates.
UpdateConstantsCuda in cpp test for active buffer updates.
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116001
Approved by: https://github.com/chenyang78
Replaces the "always sleep 30 sec before abort" with "wait up to 30 sec
for the future to complete then abort". The difference in this case is
the abort happens as soon as the dump finishes up to a maximum, instead
of always waiting the maximum.
Allows multiple calls to dump, which will be serialized.
Renames tryWriteDebugInfo to launchAsyncDebugDump in spirit of the
change to support more than one launch and to always launch rather than
only launching on the first call.
Adds a test for dumping on timeout.
This reverts commit ac7d14baad.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115332
Approved by: https://github.com/fduwjj
Replaces the "always sleep 30 sec before abort" with "wait up to 30 sec
for the future to complete then abort". The difference in this case is
the abort happens as soon as the dump finishes up to a maximum, instead
of always waiting the maximum.
Allows multiple calls to dump, which will be serialized.
Renames `tryWriteDebugInfo` to `launchAsyncDebugDump` in spirit of the
change to support more than one launch and to always launch rather than
only launching on the first call.
Adds a test for dumping on timeout.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115176
Approved by: https://github.com/zdevito
Summary:
This adds function to model container doing weight swapping with double buffering.
There are 2 parts for double buffering
a) Write constants into inactive buffer
b) Swap active buffer
For (a), we write the constants into the buffer that's currently not in use, and store the information in both constants map and the corresponding constant array to read.
For (b), we obtain the lock, and activate the constant map/constant array that is inactive, and flag the one that's currently in use to inactive.
Test Plan:
test/cpp/aot_inductor/test.cpp
Reviewers:
Subscribers:
Tasks:
Tags:
Differential Revision: [D51543732](https://our.internmc.facebook.com/intern/diff/D51543732)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114446
Approved by: https://github.com/chenyang78, https://github.com/eellison
Previously:
```
[W Utils.hpp:133] Warning: Environment variable NCCL_ASYNC_ERROR_HANDLING is deprecated; use TORCH_NCCL_ASYNC_ERROR_HANDLING instead (function getCvarInt)
[W Utils.hpp:133] Warning: Environment variable NCCL_ASYNC_ERROR_HANDLING is deprecated; use TORCH_NCCL_ASYNC_ERROR_HANDLING instead (function getCvarInt)
```
With this PR, those warnings disappear. They were introduced in #114077
This change was generated with this sed script, applied with `sed -i -f /tmp/x **/*.{py,hpp,cpp,cc}` and hand inspected.
```
s/\bNCCL_BLOCKING_WAIT\b/TORCH_NCCL_BLOCKING_WAIT/g
s/\bNCCL_ENABLE_TIMING\b/TORCH_NCCL_ENABLE_TIMING/g
s/\bNCCL_DESYNC_DEBUG\b/TORCH_NCCL_DESYNC_DEBUG/g
s/\bNCCL_ASYNC_ERROR_HANDLING\b/TORCH_NCCL_ASYNC_ERROR_HANDLING/g
s/\bENABLE_NCCL_HEALTH_CHECK\b/TORCH_ENABLE_NCCL_HEALTH_CHECK/g
s/\bNCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK\b/TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK/g
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114880
Approved by: https://github.com/kwen2501
- [c10d] (retry) Opportunistically use `ncclCommSplit` when creating new NCCL groups (#112889)
- Guard use of `split_from` with a `hasattr` check for cases when NCCL (or RCCL) lacks `ncclCommSplit`
Fixes cause of revert of original PR
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114385
Approved by: https://github.com/huydhn
Currently `ncclCommInitRankConfig` is always used when creating new
communicator groups. This is wasteful as it creates non-shared pairs
of endpoint queues as well as costs time to re-establish
communication.
This change is transparent and opportunistic; when `dist.new_group` is
called, it will use the existing, healthy world process group to
select the right ranks to include in the process group.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112889
Approved by: https://github.com/kwen2501
NCCL_ prefix should only be used for NCCL library's environment variables. We currently use a few environment variables in PyTorch with the NCCL_ prefix that are the NCCL library does not understand.
This patch renames such environment variables to use the TORCH_NCCL_ prefix instead. We still maintain the old NCCL_ variables, but throw a warning when they are used.
The following env changes have been made:
`NCCL_BLOCKING_WAIT` -> `TORCH_NCCL_BLOCKING_WAIT`
`NCCL_ENABLE_TIMING` -> `TORCH_NCCL_ENABLE_TIMING`
`NCCL_DESYNC_DEBUG` -> `TORCH_NCCL_DESYNC_DEBUG`
`NCCL_ASYNC_ERROR_HANDLING` -> `TORCH_NCCL_ASYNC_ERROR_HANDLING`
`ENABLE_NCCL_HEALTH_CHECK` -> `TORCH_ENABLE_NCCL_HEALTH_CHECK`
`NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK` -> `TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK`
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114077
Approved by: https://github.com/fduwjj
Summary:
The getCvar* functions allow us to provide multiple environment variables for the same value. This allows us to deprecate some variables in favor of others, while still allowing users to temporarily use the old variables for some time.
Test Plan: OSS CI
Reviewed By: fduwjj, XilunWu
Differential Revision: D51225487
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113797
Approved by: https://github.com/fduwjj
There was missing support for bfloat scalars. When I use gloo backend
`torch.distributed.init_process_group(backend='gloo')`
and run
`torch.nn.parallel.DistributedDataParallel(model)`
and _model_ has Bfloat16 features I receive following error:
`RuntimeError: Invalid scalar type`
This change fix this issue.
c10::BFloat16 defines conversions from/to float, so calculations are made on float for bfloat.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113557
Approved by: https://github.com/XilunWu, https://github.com/jgong5
This PR is to enable the store of NCCL flight recorder to storage and make it configurable by letting users register their own way of storing the debug info. We will then provide users a script to offline parse and process the dumped blobs.
One thing, this PR is not trying to resolve is to decide where to dump the debug info. I will send a follow-up PR to address that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113503
Approved by: https://github.com/zdevito
This PR has the following goals:
1. Detect unhealthy nccl watchdog thread by implementing a heartbeat. NCCL watchdog sometimes can hang for several reasons such as nccl/cuda API bugs or unexpected blocking behaviors. This is the last resort to ensure that we don't silently keep the training job run for hours.
2. Sometimes, the process gets stuck in the destroy of NCCL PG, and this PR will ensure that we will eventually abort it after some time (by default 2 mins)
3. Once heartbeat cannot be heard, we dump debug information (for now, we just use the flight recorder implemented in https://github.com/pytorch/pytorch/pull/110960/files) to disk. (How and where to dump the debug info will be addressed in the following PR).
4. Finally, we initiate std::abort via `LOG(FATAL)` to kill the process.
To clarify further what this PR is trying to solve, we first list are four cases when a NCCL PG can end up with:
- case 1: ncclwatchdog gets stuck (maybe some blocking API) and heartbeat monitor kills it during regular heartbeat monitor loop.
- case 2: ncclwatchdog timeout and desync report or destroy kicked in(let's call it shutdown) but this shutdown takes so long and heartbeat believes it has to kills the process anyway.
- case 3: ncclwatchdog aborts the process (heartbeat monitor not involved)
- case 4: program exits cleanly (heartbeat monitor not involved)
As we can see here, this PR is trying to address case one and two and we also want to ensure adding one more monitor thread does not interfere what we are currently doing in case three and four. That's why we added two flags `terminateHeartbeatMonitorThread_` and `collectiveDebugInfoMode_`.
For case three and four, either `monitorWakeUpCV_` will be waked up in the destructor or `terminateHeartbeatMonitorThread_` will be set to true. So that monitor thread will just exit ASAP.
For case one, both `terminateHeartbeatMonitorThread_` and `collectiveDebugInfoMode_` will still false when monitor thread see there are no heartbeat, so it will directly kill the process. For case two, either `terminateHeartbeatMonitorThread_` and `collectiveDebugInfoMode_` will be true, the monitor thread will wait extra time before killing the process.
Differential Revision: [D51146305](https://our.internmc.facebook.com/intern/diff/D51146305)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112518
Approved by: https://github.com/kwen2501, https://github.com/wconstab
As this is the oldest gcc that is fully compatible with C++17 standard.
- Replace number of conditional version with simpler `if(CMAKE_COMPILER_IS_GNUCXX)` or `append_cxx_flag_if_supported`.
- As `-Wsuggest-override` condition was hidden before incorrect guard, add missing `override` keywords to `torch::autograd::PyFunctionTensorPostAccGradHooks::apply_with_saved` , `caffe2::python::TensorFeeder::Feed` and `cafee2::NetObserverReporterPrint::report```
Fixes https://github.com/pytorch/pytorch/issues/101839
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112858
Approved by: https://github.com/Skylion007, https://github.com/albanD
As this is the oldest gcc that is fully compatible with C++17 standard.
- Replace number of conditional version with simpler `if(CMAKE_COMPILER_IS_GNUCXX)` or `append_cxx_flag_if_supported`.
- As `-Wsuggest-override` condition was hidden before incorrect guard, add missing `override` keywords to `torch::autograd::PyFunctionTensorPostAccGradHooks::apply_with_saved` , `caffe2::python::TensorFeeder::Feed` and `cafee2::NetObserverReporterPrint::report```
Fixes https://github.com/pytorch/pytorch/issues/101839
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112858
Approved by: https://github.com/Skylion007, https://github.com/albanD
If code is compiled without `glog`, there are no way to control log levels other than explicitly calling `c10::initLogging()`
Test plan: Run `TORCH_CPP_LOG_LEVEL=0 ./bin/ProcessGroupNCCLTest` and observe extra log messages
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112809
Approved by: https://github.com/fduwjj
Summary:
Move the profiler's Approximate Clock from libtorch to libc10. The main reason is to allow c10 features to get time.
The clock is using TSC when available for performance. CUDA Caching Allocator's implementation of memory snapshot will add the timestamps to memory events with this same clock in subsequent diff.
Test Plan: CI
Differential Revision: D50601935
Pulled By: aaronenyeshi
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111972
Approved by: https://github.com/davidberard98
Updates `_export.aot_compile` to pass a torch IR graph to inductor, allowing inductor to now run the pre_grad_passes, and reuse more of inductor's code.
Also updates the API to only return the `so_path`, and not returning the exported program. The pytree call spec is now serialized and placed inside of the generated model code. When calling the model, because there is no c++ pytree implementation linked yet, we can access the call specs through `get_call_spec()`, and call pytree flatten/unflattenin python.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110020
Approved by: https://github.com/desertfire
- rename `__HIP_PLATFORM_HCC__` to `__HIP_PLATFORM_AMD__`
- rename `HIP_HCC_FLAGS` to `HIP_CLANG_FLAGS`
- rename `PYTORCH_HIP_HCC_LIBRARIES` to `PYTORCH_HIP_LIBRARIES`
- workaround in tools/amd_build/build_amd.py until submodules are updated
These symbols have had a long deprecation cycle and will finally be removed in ROCm 6.0.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111975
Approved by: https://github.com/ezyang, https://github.com/hongxiayang
Keep a buffer of the last 16384 nccl work actions, including the stack
trace that launched the event.
When torch._C._distributed_c10d._dump_nccl_trace(), it an dump these to
a pickled archive.
For each action we get:
process_group_id, seq_id, collective_name, size_of_first_tensor, stack trace
state - issued, started, completed (based on cuda events and queried if
necessary when the dump is requested)
I tested that it is possible to query event state when the streams are
otherwise stuck.
Differential Revision: [D50138956](https://our.internmc.facebook.com/intern/diff/D50138956)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110960
Approved by: https://github.com/wconstab
Summary: Introduce a utility class AOTIModelRunner to take care of running an AOTInductor compiled model. It does things like dlopen a model, initialize the model container, setup inputs and outputs, and destroy the model container.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110891
Approved by: https://github.com/chenyang78
ghstack dependencies: #110652
Avoid changing default for other backends as CPU backend (GLOO) may need
longer timeouts.
Motivated by trying to save cluster time when encountering collective
hangs. Generally collectives should time out within seconds and 30
minutes (or 10 minutes) should provide ample headroom for edge cases.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110947
Approved by: https://github.com/xw285cornell, https://github.com/fduwjj
This is reland of PRs #https://github.com/pytorch/pytorch/pull/108626 and #109564. We fixed the IOS build failure by changing
```
((CHECK) ? (EXPR) : ([] { assert(!#CHECK); }(), (EXPR)))
```
to
```
((CHECK) ? (EXPR) : ([] { assert(false); }(), (EXPR)))
```
in TR2_OPTIONAL_ASSERTED_EXPRESSION, since the former syntax was invalid on Apple Clang. Anyway, we could apply the simple fix hoping that c10::optional would be replaced by std::optional soon.
We also enabled -Wdeprecated on c10.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110019
Approved by: https://github.com/clee2000
Summary:
Change AOTInductor to directly return output tensors instead of taking pre-allocated output tensors to return the results. This gives several benefits:
* It makes sure AOTInductor has the same behavior when managing the output tensors as the default Inductor, which is widely tested and thus more reliable.
* As we have debugged before, there are cases we still have to codegen extra copy_ ops to fill the pre-allocated output tensors which doesn't make sense for performance.
* With the coming enhanced memory planning, this again will make sure the memory planning logic is the between AOTInductor and Inductor, which will greatly simplify the problem and improve the reliability.
This change also combines D49494954 from Yang and https://github.com/pytorch/pytorch/pull/109560 from Angela.
Differential Revision: D49502318
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109790
Approved by: https://github.com/chenyang78
Summary: This PR adds dynamic-shape support for AOTInductor
* On the runtime/interface side, we added two structs, StaticDimInfo
and DynamicDimInfo, to hold values for static and dynamic dimensions,
respectively. Dynamic dimensions are tracked by an unordered map field
defined in AOTInductorModelBase. At inference time, the inference run
method will assign the current real dimensional value to each dynamic
dimension before executing any kernel.
* On the CUDA wrapper codegen side, we generate dynamic symbols
appropriately for shape computations. We simulate kernel launch grids
in the C++ land by re-using the grid functions from the Python world.
The returned grid configs, which may contain symbolic expressions,
are printed out in their C++ forms via the CppPrinter. Note that
when dynamic shapes are involved, we have to compute grid configs
for each kernel at runtime in the same way as we do for launching
the corresponding Triton kernel. Otherwise, we may end up with
memory-access failures or mis-computations caused by invalid indices
for fetching or storing data in device memory.
Differential Revision: D49100472
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109012
Approved by: https://github.com/khabinov, https://github.com/desertfire, https://github.com/hl475
Summary:
Include constants in AOTInductor .so file.
Added some difference:
1) serialize with ctypes instead of the native of torch.storage
2) Use the underlying for_blob instead of from_blob to construct Tensor.
Test Plan:
Unit tests:
```
test/inductor/test_aot_inductor.py
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108473
Approved by: https://github.com/angelayi
Summary: Move AOTInductor runtime header files into its own subdirectory, to separate them from to-be-added libtorch C interface.
Reviewed By: frank-wei
Differential Revision: D48905038
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108564
Approved by: https://github.com/frank-wei
This PR replace c10::guts::to_string with std::to_string. The major part of changes is using void* as optimizer state key since string is used only for serialization and using pointers as hashing keys is more efficient than a string.
Some other guts functions in the affected source files are also replaced.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108480
Approved by: https://github.com/Skylion007
Summary:
This is a prototype for running extern fallback kernels with a host side proxy executor.
Sample of generated cpp wrapper call:
```
at::Tensor buf0; // output buffer
void* tensor_args_var_0[] = {&arg0_1, &arg0_1, &arg1_1, &arg0_1, &arg1_1, &buf0};
int64_t int_args_var_1[] = {81, 81, 7, 7, 7, 81};
proxy_executor->call_function("buf0", int_args_var_1, tensor_args_var_0);
```
- In my current implementation, proxy executor interprets the raw pointers according to the ops schema.
This assumes that custom op MUST have a valid schema registered to Dispatcher. (I would like to validate this assumption)
- I am using callboxed() API of the custom kernels. This is inevitable, as we wish to have a single call_function API for all possible custom kernels.
- These are all the input argument types I have support so far.
union Argument {
# Bool value does not matter
1: bool asNone;
2: TensorArgument asTensor;
3: list<TensorArgument> asTensors;
5: i64 asInt;
7: list<i64> asInts;
8: double asFloat;
9: list<double> asFloats;
10: string asString;
10.5: list<string> asStrings;
11: SymIntArgument asSymInt;
12: list<SymIntArgument> asSymInts;
13: ScalarType asScalarType;
14: MemoryFormat asMemoryFormat;
15: Layout asLayout;
16: Device asDevice;
17: bool asBool;
18: list<bool> asBools;
}
- Need a policy for handling unpopulated argument with default values. Here are the options, and it has BC implications.
1. requires exported fx graph to explicitly populate default values, if users doesn't specify.
2. requires cpp wrapper to explicitly populate default values, if fx graph doesn't specify.
3. Proxy executor look up from opSchema for default values.
For fixing T162112344
Test Plan:
frontend:
buck2 run mode/dev-sand mode/inplace -c fbcode.enable_gpu_sections=True sigmoid/frontend:export_main
test:
buck2 run mode/dev-sand //deeplearning/aot_inductor/test:test_custom_ops
backend:
buck2 run mode/dev-nosan //deeplearning/aot_inductor/fb:main
buck2 test 'fbcode//mode/opt' fbcode//caffe2/torch/fb/model_transform/experimental/benchmark/test:test_aot_inductor_benchmark -- --exact 'caffe2/torch/fb/model_transform/experimental/benchmark/test:test_aot_inductor_benchmark - test_aot_inductor_benchmark_cmf30x (caffe2.torch.fb.model_transform.experimental.benchmark.test.test_aot_inductor_benchmark.AOTInductorBenchmark)'
Reviewed By: suo
Differential Revision: D48747417
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108350
Approved by: https://github.com/izaitsevfb
We have a plethora of error types for various errors raised from c10d. These include `RuntimeError`, `TimeoutError`, `SocketError`, `DistBackendError` etc.
This results in messy code during error handling somewhat like this:
```
if "NCCL" in exception_str:
...
if "Timed out initializing process group in store based barrier on rank" in exception_str:
...
if "The client socket has timed out after" in exception_str:
...
if "Broken pipe" in exception_str:
...
if "Connection reset by peer" in exception_str:
...
```
To address this issue, in this PR I've ensured added these error types:
1. **DistError** - the base type of all distributed errors
2. **DistBackendError** - this already existed and referred to PG backend errors
3. **DistStoreError** - for errors originating from the store
4. **DistNetworkError** - for general network errors coming from the socket library
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108191
Approved by: https://github.com/H-Huang
Summary:
Include the constants into AOTInductor .so file.
We do not modify existing API signatures but create necessary format with weight lifted out instead.
Test Plan:
test/inductor/test_aot_inductor.py
Reviewers:
Subscribers:
Tasks:
Tags:
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107718
Approved by: https://github.com/angelayi, https://github.com/eellison
We have a plethora of error types for various errors raised from c10d. These include `RuntimeError`, `TimeoutError`, `SocketError`, `DistBackendError` etc.
This results in messy code during error handling somewhat like this:
```
if "NCCL" in exception_str:
...
if "Timed out initializing process group in store based barrier on rank" in exception_str:
...
if "The client socket has timed out after" in exception_str:
...
if "Broken pipe" in exception_str:
...
if "Connection reset by peer" in exception_str:
...
```
To address this issue, in this PR I've ensured added these error types:
1. **DistError** - the base type of all distributed errors
2. **DistBackendError** - this already existed and referred to PG backend errors
3. **DistStoreError** - for errors originating from the store
4. **DistNetworkError** - for general network errors coming from the socket library
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107651
Approved by: https://github.com/H-Huang
```
In file included from /local/pytorch3/test/cpp/api/optim.cpp:7:
local/pytorch3/test/cpp/api/support.h:44:3: warning: '~WarningCapture' overrides a destructor but is not marked 'override' [-Winconsistent-missing-destructor-override]
~WarningCapture() {
^
local/pytorch3/c10/util/Exception.h:167:11: note: overridden virtual function is here
virtual ~WarningHandler() = default;
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107191
Approved by: https://github.com/janeyx99
This is part of effort to enable missed cpp tests for ROCm platform.
In this change,
- enabled test_libtorch cpp tests (more than 3107 tests)
- fixed missing dependency: libcaffe2_nvrtc.so required by FunctionalTest.Conv1d
- test_api binary is changed to exclude failed tests InitTest and IntegrationTest - to revisit later
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106712
Approved by: https://github.com/jithunnair-amd, https://github.com/kit1980
https://github.com/pytorch/pytorch/issues/105555
Existing flow first exports and then calls torch._inductor.aot_compile. However, export calls aot_autograd with the core aten decomposition table, and then torch._inductor.aot_compile calls aot_autograd again with the inductor decomposition table. The 2nd calling of aot_autograd is supposedly causing some problems, and seems excessive, so instead we will create a new function, torch._export.aot_compiler which will export using the inductor decomposition table, pass it to inductor's compile_fx_aot, and because it has already been exported, avoid recalling aot_autograd.
```
def aot_compile(
f: Callable,
args: Tuple[Any],
kwargs: Optional[Dict[str, Any]] = None,
constraints: Optional[List[Constraint]] = None,
) -> Tuple[str, ExportedProgram]:
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105977
Approved by: https://github.com/desertfire, https://github.com/zhxchen17, https://github.com/eellison
The feature was never fully finished and never got any adoption but
TCPStore pays the cost of twice the number of tcp connections anyway.
While the cost of all those idle connections is minimal is doesn't come for free:
- It increases the likelyhood of a connection refused failure during the initialization stampede.
- TCPStore uses poll for checking for socket availability which scales linearly on the number of sockets regardless of their status.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105014
Approved by: https://github.com/fduwjj
When the hook registered by Tensor::register_hook (in C++) gets passed
an undefined tensor, it raises an internal assert in debug mode.
The cause is that we attempt to construct an OptionalTensorRef
(4448c78a5d/aten/src/ATen/core/Tensor.h (L68))
which asserts that the passed-in TensorBase is defined.
The fix is that we create a new TensorRef class to convert the
TensorBase into a Tensor without bumping the refcount (which is what
OptionalTensorRef does). We cannot reuse OptionalTensorRef because
OptionalTensorRef represents `optional<Tensor>` that cannot hold an
Undefined Tensor.
For some more historical context, it looks like this behavior was introduced
in #63612
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105587
Approved by: https://github.com/soulitzer
Summary:
Original PR at https://github.com/pytorch/pytorch/pull/104977. Landing from fbcode instead.
Add an aot_inductor backend (Export+AOTInductor) in the benchmarking harness. Note it is not a dynamo backend.
Moved files from torch/_inductor/aot_inductor_include to torch/csrc/inductor as a more standard way for exposing headers
Created a caching function in benchmarks/dynamo/common.py for compiling, loading and caching the .so file, as a proxy for a pure C++ deployment, but easier for benchmarking.
Differential Revision: D47452591
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105221
Approved by: https://github.com/jansel
This PR combines the C++ code for the AOTInductor's model and interface with Bin Bao's changes to AOTInductor codegen.
It adds a number of AOTInductor C interfaces that can be used by an inference runtime. Under the hood of the interfaces, the model code generated by the AOTInductor's codegen is wrapped into a class, AOTInductorModel, which manages tensors and run the model inference.
On top of AOTInductorModel, we provide one more abstract layer, AOTInductorModelContainer, which allows the user to have multiple inference runs concurrently for the same model.
This PR also adjusts the compilation options for AOT codegen, particularly some fbcode-related changes such as libs to be linked and header-file search paths.
Note that this is the very first version of the AOTInductor model and interface, so many features (e.g. dynamic shape) are incomplete. We will support those missing features in in future PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104202
Approved by: https://github.com/desertfire
This PR enables `-Winconsistent-missing-destructor-override` and `-Winconsistent-missing-override`
and fixes violations.
<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at 47e904e</samp>
This pull request updates the code of various classes and operators in the `caffe2` and `aten` subdirectories to use the `override` specifier instead of the `virtual` keyword for destructors and other virtual functions that override a base class function. This improves the code readability, quality, and consistency with C++ best practices. It also modifies the `./CMakeLists.txt` file to enable warnings for these specifiers, but disable errors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104032
Approved by: https://github.com/malfet
Potential null dereference after dynamic cast was found during static analysis.
**Description:**
Dereference of `ctx` is performed in `TORCH_CHECK` on line 1176, while `ctx` pointer may equal `nullptr`.
Previous `TORCH_CHECK` on line 1175 checks the value of `ctx_ptr` pointer that may be of type that cannot be casted to `TestContext*`. In such case, `dynamic_cast` returns `nullptr` despite `ctx_ptr` is not equal to `nullptr`.
**Fix:**
- Check `ctx` instead of `ctx_ptr` for equality to zero.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97768
Approved by: https://github.com/kit1980