Commit Graph

168 Commits

Author SHA1 Message Date
Will Feng
5099db08d4 Ignore nn::Functional submodules in nn::Module serialization (#19740)
Summary:
Currently, the Python API doesn't serialize layers that don't have weights (such as `nn.ReLU` and `nn.MaxPool2d`e.g. in https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py#L80-L81). If one saves a model that contains weight-less layers in Python and tries to load it into C++, the C++ module loading code (`torch::load(...)`) will throw an error complaining that the expected layers are not found in the serialized file (e.g. https://github.com/pytorch/vision/pull/728#issuecomment-480974175). This PR solves the problem by ignoring layers that are not serializable (which currently only include `nn::Functional`) in the C++ module serialization code (`torch::save(...)` and `torch::load(...)`), and the user is expected to use `nn::Functional` to wrap the weight-less layers so that they can be ignored when serializing / deserializing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19740

Differential Revision: D15100575

Pulled By: yf225

fbshipit-source-id: 956481a2355d1de45341585abedda05e35d2ee8b
2019-04-26 12:47:23 -07:00
Will Feng
9aa0e6078f Support serializing std::vector<torch::Tensor> (#19677)
Summary:
In the distributed training development work, we need to be able to serialize a `std::vector` of `torch::Tensor`s. This PR adds support for serializing `std::vector<torch::Tensor>`.

cc. mrshenli
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19677

Differential Revision: D15069860

Pulled By: yf225

fbshipit-source-id: 505147e5f5fea78be1bf60fb8418bc187dbc2a98
2019-04-24 16:50:16 -07:00
Roy Li
ab78449e8c Add ScalarType argument to Type::options() (#19270)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19270
ghimport-source-id: a5ade6131f3260066c5750ea1fa9ed5c998bb791

Differential Revision: D14938707

Pulled By: li-roy

fbshipit-source-id: 018fb3f01706531a06515d6d861e5683a455a705
2019-04-21 21:16:07 -07:00
David Riazati
a0e09216f0 Fix test build (#19444)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19444
ghimport-source-id: c85db00e8037e7f6f0424eb8bd17f957d20b7247

Reviewed By: eellison

Differential Revision: D15008679

Pulled By: driazati

fbshipit-source-id: 0987035116d9d0069794d96395c8ad458ba7c121
2019-04-18 18:05:04 -07:00
David Riazati
d9052b2176 Allow optionals arguments from C++ (#19311)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19311
ghimport-source-id: 699f62eb2bbad53ff2045fb2e217eb1402f2cdc5

Reviewed By: eellison

Differential Revision: D14983059

Pulled By: driazati

fbshipit-source-id: 442f96d6bd2a8ce67807ccad2594b39aae489ca5
2019-04-18 17:15:05 -07:00
Omegastick
31ff0ecd2b Fix torch::nn::init::orthogonal_ with CNNs (#18915)
Summary:
Fixes #18518

I changed the C++ API torch::nn::init::orthogonal_ implementation to match the Python implementation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18915

Differential Revision: D14851833

Pulled By: ezyang

fbshipit-source-id: 45b5e9741582777c203e9ebed564ab3ac1f94baf
2019-04-09 10:39:15 -07:00
Soumith Chintala
b5d8844bbe push magma init into lazyInitCUDA (#18527)
Summary:
Tries to fix C++ API's usage of MAGMA-based functions.

Attempts to Fix https://github.com/pytorch/pytorch/issues/18074
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18527

Differential Revision: D14691694

Pulled By: soumith

fbshipit-source-id: dd04e74418e486d73ea4a92193ddf79352ed71ba
2019-04-03 12:47:34 -07:00
Will Feng
6ebfbdf4c6 Add named submodule support to nn::Sequential (#17552)
Summary:
Previously, we were not able to assign names to `nn::Sequential`'s submodules. This PR adds this feature to match the Python API. Example use:
```cpp
Sequential sequential(named_submodule({
      {"linear", Linear(10, 3)},
      {"conv2d", Conv2d(1, 2, 3)},
      {"dropout", Dropout(0.5)},
      {"batchnorm", BatchNorm(5)},
      {"embedding", Embedding(4, 10)},
      {"lstm", LSTM(4, 5)}
}));
```

It also enables loading parameters of Python `nn.Sequential` module with custom submodules names into C++ frontend, unblocking https://github.com/pytorch/vision/pull/728#issuecomment-466661344.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17552

Differential Revision: D14246834

Pulled By: yf225

fbshipit-source-id: 3030b5c5d68f6dd5d3e37ac4b4f98dc6d6d9ba72
2019-03-29 13:06:29 -07:00
Roy Li
7aae51cded Replace tensor.type().scalarType() calls with tensor.scalar_type()
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17515

Reviewed By: ezyang

Differential Revision: D14233250

fbshipit-source-id: 6c7af8d2291c0c2b148001b30cf03834f34366c0
2019-03-08 14:08:18 -08:00
Elias Ellison
10ea02facf fix tuple matching (#17687)
Summary:
Check for Tuple Matching in isSubvalueOf, since they may contain container types that need to be recursed within isSubvalueOf

Fix for https://github.com/pytorch/pytorch/issues/17650
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17687

Differential Revision: D14324642

Pulled By: eellison

fbshipit-source-id: 7f1e019875286b2640a3b9c003d1635dda8cf543
2019-03-06 11:25:36 -08:00
Jaliya Ekanayake
bb3a2d99ac Jaliyae/chunk buffer fix (#17409)
Summary:
The chunk buffer had a possibility to hang when no data is read and the buffer size is lower than chunk size. We detected this while running with larger dataset and hence the fix. I added a test to mimic the situation and validated that the fix is working. Thank you Xueyun for finding this issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17409

Differential Revision: D14198546

Pulled By: soumith

fbshipit-source-id: b8ca43b0400deaae2ebb6601fdc65b47f32b0554
2019-02-23 08:48:53 -08:00
Will Feng
be6ad7ddde Rename BatchNorm running_variance to running_var (#17371)
Summary:
Currently there is a mismatch in naming between Python BatchNorm `running_var` and C++ BatchNorm `running_variance`, which causes JIT model parameters loading to fail (https://github.com/pytorch/vision/pull/728#issuecomment-466067138):
```
terminate called after throwing an instance of 'c10::Error'
  what():  No such serialized tensor 'running_variance' (read at /home/shahriar/Build/pytorch/torch/csrc/api/src/serialize/input-archive.cpp:27)
frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x85 (0x7f2d92d32f95 in /usr/local/lib/libc10.so)
frame #1: torch::serialize::InputArchive::read(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, at::Tensor&, bool) + 0xdeb (0x7f2d938551ab in /usr/local/lib/libtorch.so.1)
frame #2: torch::nn::Module::load(torch::serialize::InputArchive&) + 0x98 (0x7f2d9381cd08 in /usr/local/lib/libtorch.so.1)
frame #3: torch::nn::Module::load(torch::serialize::InputArchive&) + 0xf9 (0x7f2d9381cd69 in /usr/local/lib/libtorch.so.1)
frame #4: torch::nn::Module::load(torch::serialize::InputArchive&) + 0xf9 (0x7f2d9381cd69 in /usr/local/lib/libtorch.so.1)
frame #5: torch::nn::operator>>(torch::serialize::InputArchive&, std::shared_ptr<torch::nn::Module> const&) + 0x32 (0x7f2d9381c7b2 in /usr/local/lib/libtorch.so.1)
frame #6: <unknown function> + 0x2b16c (0x5645f4d1916c in /home/shahriar/Projects/CXX/build-TorchVisionTest-Desktop_Qt_5_12_1_GCC_64bit-Debug/TorchVisionTest)
frame #7: <unknown function> + 0x27a3c (0x5645f4d15a3c in /home/shahriar/Projects/CXX/build-TorchVisionTest-Desktop_Qt_5_12_1_GCC_64bit-Debug/TorchVisionTest)
frame #8: <unknown function> + 0x2165c (0x5645f4d0f65c in /home/shahriar/Projects/CXX/build-TorchVisionTest-Desktop_Qt_5_12_1_GCC_64bit-Debug/TorchVisionTest)
frame #9: <unknown function> + 0x1540b (0x5645f4d0340b in /home/shahriar/Projects/CXX/build-TorchVisionTest-Desktop_Qt_5_12_1_GCC_64bit-Debug/TorchVisionTest)
frame #10: __libc_start_main + 0xf3 (0x7f2d051dd223 in /usr/lib/libc.so.6)
frame #11: <unknown function> + 0x1381e (0x5645f4d0181e in /home/shahriar/Projects/CXX/build-TorchVisionTest-Desktop_Qt_5_12_1_GCC_64bit-Debug/TorchVisionTest)
```
Renaming C++ BatchNorm `running_variance` to `running_var` should fix this problem.

This is a BC-breaking change, but it should be easy for end user to rename `running_variance` to `running_var` in their call sites.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17371

Reviewed By: goldsborough

Differential Revision: D14172775

Pulled By: yf225

fbshipit-source-id: b9d3729ec79272a8084269756f28a8f7c4dd16b6
2019-02-22 08:00:25 -08:00
Jaliya Ekanayake
9477c143c6 C++ Frontend: adding two distributed samples (Random and Sequential) (#16910)
Summary:
Adding two distrbuted samplers, Random and Sequential to the mix. Similar to python counterpart, DistributedSampler introduces a new method `set_epoch(size_t epoch)` which can be use to shuffle data determinstically between distributed processes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16910

Differential Revision: D14130980

Pulled By: soumith

fbshipit-source-id: ec08b7130c01e2fc6dc3693f7ac622a0a6d60f10
2019-02-19 05:40:37 -08:00
David Riazati
b3d8c569d3 Remove templates for GenericDict
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17175

Differential Revision: D14113022

Pulled By: driazati

fbshipit-source-id: 5183e131cc8ccb58525875f76fa03133570a59ea
2019-02-15 21:35:19 -08:00
Josh Varty
1cdcdd78af Kaiming Initialization (#14718)
Summary:
/cc goldsborough

Working on #14582

The corresponding python implementations are at: [pytorch/torch/nn/init.py](6302e4001a/torch/nn/init.py (L261-L327))

Here is my initial implementation of Kaiming Initialization. I have not been able to figure out how to successfully run tests locally so I haven't added any yet.

A couple questions:
- Are the enums defined in the right place? I copied their names from Python, but do you prefer different naming conventions for C++?
- To run tests locally do I use `python setup.py test`? Can I run just a subset of the tests somehow?
- Should I add my tests at [test/cpp/api/misc.cpp](https://github.com/pytorch/pytorch/blob/master/test/cpp/api/misc.cpp#L47-L54)?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14718

Differential Revision: D14049159

Pulled By: goldsborough

fbshipit-source-id: 966ac5126875936e69b185b5041f16476ed4cf70
2019-02-15 14:58:22 -08:00
Michael Liu
92a516b9ff Apply modernize-use-override - 2/2
Summary:
Use C++11’s override and remove virtual where applicable.
Change are automatically generated.

Reviewed By: Orvid

Differential Revision: D14054721

fbshipit-source-id: 15d266fa1779b1e3ea6270f00841d7fb1e4d44ee
2019-02-13 21:01:28 -08:00
Dmytro Dzhulgakov
46503a7ac0 Trim libshm deps, move tempfile.h to c10 (#17019)
Summary:
libshm_manager doesn't need to depend on all of libtorch. It only uses tiny tempfile.h which can be moved to c10. I could just duplicate the file too, but it's not worth it as c10 is small enough.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17019

Differential Revision: D14052688

Pulled By: dzhulgakov

fbshipit-source-id: 8797d15f8c7c49c49d40b7ab2f43aa3bf6becb0c
2019-02-13 19:38:35 -08:00
Jaliya Ekanayake
bc39cf4d5e Remove chunk count check on the ChunkBuffer (#16868)
Summary:
Previously, the ChunkBuffer depends on the remaining chunk count to signal end of dataloading. This does not work with distributed samplers where each sampler only loads a subset of  chunks. This refactor remove the dependency on the remaining chunk count at the ChunkBuffer.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16868

Differential Revision: D14066517

Pulled By: goldsborough

fbshipit-source-id: 293dfe282ceff326dff0876c2f75c2ee4f4463e2
2019-02-13 11:09:42 -08:00
David Riazati
ee0e71bee7 Allow dicts in C++ frontend (#16846)
Summary:
Fixes #16856
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16846

Differential Revision: D13991103

Pulled By: driazati

fbshipit-source-id: 4830dd6f707fa90429b5d3070eeda0bee53d2f2b
2019-02-07 18:44:49 -08:00
Edward Yang
4404762d7d Rename IntList to IntArrayRef. (#16751)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16751

This was made more complicated by the fact that ivalue::IntList
is a thing.  So I had to fix all of the sites where we referring
to IValue post facto.

The following codemods were run, in this order:

```
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntList IntArrayRef
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntArrayRef::create IntList::create
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in ivalue::IntArrayRef ivalue::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in Tag::IntArrayRef Tag::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in isIntArrayRef isIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in toIntArrayRef toIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'Shared<IntArrayRef>' 'Shared<IntList>'
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'intrusive_ptr<IntArrayRef>' 'intrusive_ptr<IntList>'
```

Some manual fixups were done afterwards; they can be reviewed separately
at https://github.com/pytorch/pytorch/pull/16752

Reviewed By: dzhulgakov

Differential Revision: D13954363

fbshipit-source-id: b5c40aacba042402155a2f5a229fa6db7992ac64
2019-02-05 14:54:34 -08:00
Elias Ellison
18659e1336 Allow generic containers as module inputs (#16482)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/16326

Previously we didn't handle module inputs which included Generic Lists. When checking whether a generic list if a subvalue of the input arg type, I currently recurse on every element of the list. This shouldn't be too slow since the innermost list will be specialized and we won't have to check it's elements.

E.g. Tensor[][] -> GenericList [TensorList ].

The error message could be improved, but extracting the complete type of nested lists would have to deal with unifying types across lists / empty lists & typevars so I'm going to save that for a follow up PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16482

Differential Revision: D13882582

Pulled By: eellison

fbshipit-source-id: 3609bc572f0ee9ebf20a77ea5ebc8fa3b165e24b
2019-01-30 14:20:56 -08:00
xuzhu
6249442e90 Chunk dataset implementation (#15932)
Summary:
This PR contains the implementation of chunk dataset, with the API proposed in PR https://github.com/pytorch/pytorch/pull/15562

A chunk dataset is derived from StatefulDataset. It utilizes worker threads to prefetches chunk data, splits it into batches and caches them into a queue. When get_batch is called from dataloader, batch data is retrieved from the queue, and data in new chunks will be pushed for later following batches.

Chunk dataset uses two samplers (chunk_sampler and example_sampler) to perform sampling. The chunk_sampler decides which chunk to load, and example_sampler shuffles the examples inside a specific chunk. More detail of this sampling approach can be found here: http://martin.zinkevich.org/publications/nips2010.pdf
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15932

Differential Revision: D13868688

Pulled By: soumith

fbshipit-source-id: a43000c478ca2a3c64cc84b3626d6b8b1ad9a07e
2019-01-29 18:06:01 -08:00
Peter Goldsborough
4bdaca827c Make call operator on module holder call forward (#15831)
Summary:
In Python, you can use the call operator to invoke the `forward()` method of a module. In C++ this was currently not possible, because I couldn't figure out how to deduce the return type of a module's `forward()` method under the constraint that `forward()` may not exist at all (since the base module class in C++ does not mandate a `forward()` method). I now figured it out, so the call operator can be used.

ezyang ebetica
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15831

Differential Revision: D13652676

Pulled By: goldsborough

fbshipit-source-id: ccab45a15215dda56460e560f0038781b539135f
2019-01-14 14:40:33 -08:00
Peter Goldsborough
a4c1aa4bc5 Add the normalize transform to the core library (#15891)
Summary:
Adds the `Normalize` transform to the core C++ frontend library.

ebetica ezyang soumith
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15891

Differential Revision: D13642167

Pulled By: goldsborough

fbshipit-source-id: 573428e626d6106cf2aadf3dc2e2aecb9a85efc3
2019-01-11 19:50:18 -08:00
Peter Goldsborough
8232bd526f Move isnan to C++ (#15722)
Summary:
Wanted to use `Tensor.isnan` in C++, figured it'd be nice to have, so I made it into a tiny native function.

gchanan ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15722

Differential Revision: D13591315

Pulled By: goldsborough

fbshipit-source-id: a78bd22101fde87a0257f759b9bfcf3b4208f5fa
2019-01-08 10:42:33 -08:00
Peter Goldsborough
ad6799537e Support stateful dataset (#15096)
Summary:
Currently re-implements the dataloader for stateful datasets. Outstanding work:
- Refactor DataLoader and DataLoader2 to have common base classes and only differ in specifi pieces of logic,
- Figure out how to not duplicate the `MapDataset` logic for stateful vs. non-stateful
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15096

Differential Revision: D13522043

Pulled By: goldsborough

fbshipit-source-id: 08e461ca51783047f11facc4d27dfa2e4f1e4c2a
2018-12-24 06:26:40 -08:00
Zachary DeVito
f3a588fede add len to nativeResolver (#15488)
Summary:
(otherwise len is not resolvable using torch::jit::compile)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15488

Differential Revision: D13539991

Pulled By: zdevito

fbshipit-source-id: 3ba85fa7b1adb163f9229c568f7997d22321903d
2018-12-21 16:47:15 -08:00
Peter Goldsborough
eb5d28ecef Pretty printing of C++ modules (#15326)
Summary:
A long outstanding nicety: pretty printing of C++ modules. E.g.
```
  Sequential sequential(
      Linear(10, 3),
      Conv2d(1, 2, 3),
      Dropout(0.5),
      BatchNorm(5),
      Embedding(4, 10),
      LSTM(4, 5));
std::cout << sequential;
```
prints
```
torch::nn::Sequential(
  (0): torch::nn::Linear(in=10, out=3, with_bias=true)
  (1): torch::nn::Conv2d(input_channels=1, output_channels=2, kernel_size=[3, 3], stride=[1, 1])
  (2): torch::nn::Dropout(rate=0.5)
  (3): torch::nn::BatchNorm(features=5, eps=1e-05, momentum=0.1, affine=true, stateful=true)
  (4): torch::nn::Embedding(count=4, dimension=10)
  (5): torch::nn::LSTM(input_size=4, hidden_size=5, layers=1, dropout=0)
)
```

apaszke ebetica ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15326

Differential Revision: D13518986

Pulled By: goldsborough

fbshipit-source-id: 63bf753672f0e348951de3645208f263581de5fb
2018-12-19 21:55:49 -08:00
Peter Goldsborough
1e9c384afb Enable performance-unnecessary-value-param in .clang-tidy (#15026)
Summary:
This PR fixes around 250 places in the codebase where we were making unnecessary copies of objects (some large, some small).

ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15026

Differential Revision: D13458784

Pulled By: goldsborough

fbshipit-source-id: be5148b2ce09493588d70952e6f6d6ff5ec5199b
2018-12-13 16:15:35 -08:00
Peter Goldsborough
0dade9862c Fix serialization (#15033)
Summary:
Fixes a bug where (de-)/serializing a hierarchy of submodules where one submodule doesn't have any parameters, but its submodules do, doesn't get properly loaded. This had to do with the fact that the old protobuf format couldn't store empty parameters.

Fixes https://github.com/pytorch/pytorch/issues/14891

soumith ezyang ebetica
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15033

Differential Revision: D13411322

Pulled By: goldsborough

fbshipit-source-id: 2ef73b2aa93fa9e46b1cbe1fd47d9f134d6016d5
2018-12-11 22:43:36 -08:00
Sebastian Messmer
086a37876b Fix include paths for TensorOptions
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14747

Reviewed By: ezyang

Differential Revision: D13318645

fbshipit-source-id: f5ba77a93f6019fbf5faffb47a2837c95fad474d
2018-12-07 16:23:44 -08:00
Peter Goldsborough
3ae721d350 Set and get default dtype (#13748)
Summary:
Replaces the `DefaultTensorOptions` with just a global default dtype that you can set and get like in Python.

Also, calls `set_default_dtype` in the implementation of `torch.set_default_dtype`. Right now these two default values are separate but will always be the same. Should we just bind `set_default_dtype`  into Python? I think that might be good to do in a separate PR though.

ezyang gchanan

Also CC colesbury who wanted to do this for ATen for a while? What do you think about it?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13748

Differential Revision: D13340207

Pulled By: goldsborough

fbshipit-source-id: 2689b09eb137fabb3a92d1ad1635782bee9398e8
2018-12-05 10:28:41 -08:00
Peter Goldsborough
875be849e9 Rename _local_scalar to item() (#13676)
Summary:
Make `at::_local_scalar` more "official" by renaming it to `item()`.

gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13676

Differential Revision: D13003020

Pulled By: goldsborough

fbshipit-source-id: 0ac25f5237fb81a1576304a0a02f840ff44168a4
2018-12-04 13:19:26 -08:00
Sebastian Messmer
ff7deb95d7 Back out "Fix include paths for TensorOptions, DefaultTensorOptions, OptionsGuard" (#14744)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14744

Original commit changeset: d236d5351ecf

Reviewed By: suo

Differential Revision: D13318596

fbshipit-source-id: 55f1e9472d05fb5a9c47dc82c32e9a66b5e4308c
2018-12-04 08:59:07 -08:00
Lu Fang
6e0c5a8a4e Restore device in cpp API (#14711)
Summary:
This is a stack PR based on https://github.com/pytorch/pytorch/pull/14454.

It enables the restoring the storage to appropriate device.

~~[TODO]: add/modify appropriate tests~~ Done
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14711

Reviewed By: dzhulgakov

Differential Revision: D13315746

Pulled By: houseroad

fbshipit-source-id: fe6f24a45c35e88fd1a2eebc09950d4430fac185
2018-12-04 00:46:41 -08:00
Sebastian Messmer
d063c9c330 Fix include paths for TensorOptions, DefaultTensorOptions, OptionsGuard
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14647

Reviewed By: ezyang

Differential Revision: D13283497

fbshipit-source-id: d236d5351ecf7ab9712a55e9ef12d8bba48eb53f
2018-12-03 21:53:26 -08:00
Edward Yang
eb71df3e63 Delete at::current_device(), Context::current_device() and Context::getNumGPUs() (#14414)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14414

The previous functions were CUDA-centric, and lead to lots of places
where we improperly assumed that CUDA is the only game in town (it's not).
Best to delete them.

What are your alternatives?  This diff fix some use sites which may give
you some ideas.  In particular, the "given a device type, give me the
current device for that device type" might be a good function to enshrine
for real.

Reviewed By: gchanan

Differential Revision: D13218540

fbshipit-source-id: 2f42cd6b9bdab4930d25166b8041c9466a1c6e0a
2018-12-03 10:54:52 -08:00
Peter Goldsborough
5c1692840e Remove OptionsGuard from ATen (#14524)
Summary:
Resubmission of https://github.com/pytorch/pytorch/pull/13738
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14524

Differential Revision: D13268031

Pulled By: goldsborough

fbshipit-source-id: fb306464b673c05ebd26d0f44d688ccd92d1d8c5
2018-11-30 13:30:35 -08:00
Jaliya Ekanayake
44cb43bcc1 Jaliyae/samplers (#13870)
Summary:
Make Samplers optionally accept new size in their reset() method. This helps dataloader or dataset to reset the sampler for an epoch or a chunk of data with different sizes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13870

Differential Revision: D13240120

Pulled By: soumith

fbshipit-source-id: 19c53f8be13c0fdcf504f0637b0d3e6009a8e599
2018-11-29 07:07:19 -08:00
Sebastian Messmer
44e21cf5bb Fix include paths for Scalar.h and ScalarType.h
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14023

Reviewed By: ezyang

Differential Revision: D13081609

fbshipit-source-id: c27eeafa381b39e043f0261ea7f6f634ee8bc238
2018-11-27 12:59:38 -08:00
Sebastian Messmer
50e9c56830 Move Scalar and ScalarType to c10/core
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14022

Reviewed By: ezyang

Differential Revision: D13015236

fbshipit-source-id: 92aac4e342d85f75a31837b2943fa5b80f0c35c9
2018-11-27 12:59:36 -08:00
Peter Goldsborough
f639249d51 Fix dataloader iterator test (#14045)
Summary:
I noticed the test `DataLoaderTest.CanDereferenceIteratorMultipleTimes` doesn't test proper progression of the iterator. I also added a test for using `std::copy`.

Fixes https://github.com/pytorch/pytorch/issues/14276

ebetica ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14045

Differential Revision: D13092187

Pulled By: goldsborough

fbshipit-source-id: 57698ec00fa7b914b159677a4ab38b6b25c2860b
2018-11-26 17:06:41 -08:00
Peter Goldsborough
fa73037233 Add proper from_blob overloads (#13982)
Summary:
There was an overload for `torch::from_blob` missing that allowed passing strides.

ezyang soumith
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13982

Differential Revision: D13108089

Pulled By: goldsborough

fbshipit-source-id: b87594ec0bf55b35d106b4438bc18b2ce9fc8f71
2018-11-26 10:14:51 -08:00
Peter Goldsborough
fb6535ec70 Add SharedDataset (#13800)
Summary:
This PR adds a `SharedDataset` to the C++ frontend data API, which allows wrapping a shared_ptr to a dataset into a class that conforms to the `Dataset` interface (with `get_batch`). This enables use cases where a custom dataset is (1) thread-safe and (2) expensive to copy. All workers will reference a single instance of this dataset. No additional copies are incurred.

jaliyae apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13800

Differential Revision: D13075610

Pulled By: goldsborough

fbshipit-source-id: 4ffdfd7959d49b042c0e254110085f62a0bfeb6c
2018-11-16 13:07:10 -08:00
Your Name
2fe4711eb4 Revert "Remove OptionsGuard from ATen (#13738)" (#14082)
Summary:
This reverts commit 37cb357d8d.

Try to see if it unbreaks master
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14082

Differential Revision: D13095888

Pulled By: bddppq

fbshipit-source-id: c728f80f233b4d9daaf65f43202d8104651029a9
2018-11-15 23:47:36 -08:00
Peter Goldsborough
37cb357d8d Remove OptionsGuard from ATen (#13738)
Summary:
Deletes the `OptionsGuard` from ATen. This works towards the goal of reworking `DefaultTensorOptions`. `OptionsGuard` is troublesome because it relies on mutating thread local state. This PR fixes those code locations and then deletes the `OptionsGuard`.

ezyang gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13738

Differential Revision: D13000962

Pulled By: goldsborough

fbshipit-source-id: c8143ee75070c2280f5fd1d9af86f8ce14279b72
2018-11-15 17:37:27 -08:00
Peter Goldsborough
8f4dc192b6 Fix DataLoaderTest.EnforcesOrderingAmongThreadsWhenConfigured (#14038)
Summary:
I think this will be it. So for one, the previous test was bullshit because it was returning the thread id instead of the sample index (which is the thing whose ordering is enforced). Just turning up the number of threads to 10 from 4 made this very obvious. I also think there is a race condition, which may or may not have surfaced, in that there was nothing stopping one worker to get multiple batches, which would screw with the whole ordering logic. I've added a barrier struct such that workers wait for all workers to be in the `get_batch` function before actually doing something.

Fixes https://github.com/pytorch/pytorch/issues/14002

ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14038

Differential Revision: D13088132

Pulled By: goldsborough

fbshipit-source-id: 4bded63756c6a49502ee07ef8709a03073e7e05f
2018-11-15 17:30:41 -08:00
Edward Yang
0478d32cb8 Move AlignOf, SmallVector and ArrayRef to c10.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13916

Reviewed By: smessmer

Differential Revision: D13046722

fbshipit-source-id: 1583d3170d60e22f0a535cd1fd56bdf928186f5d
2018-11-14 11:13:16 -08:00
Peter Goldsborough
5151d33287 Unflake the ordering enforcement test (#13919)
Summary:
Attempts to unflake the dataloader ordering enforcement test. I think the issue was that the `thread_counter` variable was not atomic. I've made it atomic, and also global just to make it a bit clearer.

Fixes https://github.com/pytorch/pytorch/issues/13634

colesbury SsnL ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13919

Differential Revision: D13051718

Pulled By: goldsborough

fbshipit-source-id: b9f7f6317701a8b861a1d5c6a9b2b17b44782561
2018-11-13 21:05:02 -08:00
Peter Goldsborough
8311bbee7f Fix Windows build and test in CI (#11716)
Summary:
This PR adds Windows support for the C++ frontend. A lot of declarations were missing `TORCH_API` macros, and lots of code just did not compile on MSVC.

ebetica ezyang orionr
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11716

Reviewed By: orionr

Differential Revision: D13038253

Pulled By: goldsborough

fbshipit-source-id: c8e5a45efd26117aeb99e768b56fcd5a89fcb9f8
2018-11-13 16:35:54 -08:00