Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a
Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**
This was requested by someone at Facebook; this lint is turned
on for Facebook by default. "Sure, why not."
I had to noqa a number of imports in __init__. Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it. Left for future work.
Be careful! flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments. flake8-3 will
report an import unused; flake8-2 will not. For now, I just
noqa'd all these sites.
All the changes were done by hand.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: D14687478
fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
Summary:
Enable unit tests working with ROCm 2.3. In particular, these are unit tests where we skipped for double data types previously and some tests for multi-GPU setups.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18537
Differential Revision: D14651822
Pulled By: ezyang
fbshipit-source-id: 7dd575504ebe235a91489866c91000e9754b1235
Summary:
When adaptive pooling has to produce a single pixel feature map, it is faster to do so by calling .mean(). Backward calls a pretty inefficient cuda kernel with atomics, which becomes ridiculously slow for halfs. For half this PR provides approx 30x speed-up for adaptive average pooling, which results in 30% end-to-end speed-up on senet. Improvements are smaller for float, but still significant (approx 5x).
Also this PR unifies handling of 3d (no batch dimension) and 4d tensors, using negative dimension indices.
cc ezyang for review.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17011
Reviewed By: ailzhang
Differential Revision: D14078747
Pulled By: soumith
fbshipit-source-id: 0eb9255da2351190a6bcaf68c30e2ae2402a2dd9
Summary:
1. Port the FractionalMaxPool3d implementation from THNN/THCUNN to ATen.
2. Expose this function to Python module nn.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15575
Differential Revision: D13612848
Pulled By: chandlerzuo
fbshipit-source-id: 5f474b39005efa7788e984e8a805456dcdc43f6c
Summary:
Addresses #918, interpolation results should be similar to tf
* Adds bicubic interpolation operator to `nn.functional.interpolate`
* Corresponding test in `test_nn.py`
The operator is added in legacy `TH` to be aligned with the other upsampling operators; they can be refactored/moved to ATen all at once when #10482 is resolved
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9849
Differential Revision: D9007525
Pulled By: driazati
fbshipit-source-id: 93ef49a34ce4e5ffd4bda94cd9a6ddc939f0a4cc
Summary:
This PR adds `None` buffers as parameters (similarly to #14715). It also cleans up a bunch of the `test_jit.py` tests that should be covered by `common_nn.py` and brings in `criterion_tests` to test loss functions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14778
Differential Revision: D13330849
Pulled By: driazati
fbshipit-source-id: 924cc4cf94e0dcd11e811a55222fd2ebc42a9e76
Summary:
Fixes#6622 .
We used to average over all elements for kl divergence, which is not aligned with its math definition.
This PR corrects the default reduction behavior of KL divergence that it now naverages over batch dimension.
- In KL, default behavior `reduction=mean` averages over batch dimension. While for most other loss functions, `reduction=mean` averages over all elements.
- We used to support scalar tensor as well. For BC purpose, we still support it, no reduction is performed on scalar tensor.
- Added a new reduction mode called `batchmean` which has the correct behavior for KL. Add a warning to make `batchmean` as default for KL instead of `mean` in next major release.
- [deprecated]I chose to not add a new reduction option, since "mean over batch dimension" is kinda special, and it only makes sense in few cases like KL. We don't want to explain why there's a option "batchmean" but it's not applicable for all other functions. I'm open to discussion on this one, as I cannot think of a perfect solution for this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14457
Differential Revision: D13236016
Pulled By: ailzhang
fbshipit-source-id: 905cc7b3bfc35a11d7cf098b1ebc382170a087a7
Summary:
Add support for interpolate and upsampling in weak_script mode.
Because the function parameters are overloaded, i had to add it as a builtin op. For interpolate:
size can be ?int | int[]?, and scale_factor can be ?float | float[]?. Every combination of the two parameters needs to be supported.
The same logic applies for upsample_nearest, upsample_bilinear, and upsample.
There are a few fixes that I came to along the way.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14123
Differential Revision: D13278923
Pulled By: eellison
fbshipit-source-id: e59729034369be4ce4b747291a3d1c74e135b869
Summary:
This moves `new_module_tests` from `test_nn.py` to `common_nn.py` so
that they can be used in `test_jit.py` without running any of
`test_nn.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14578
Differential Revision: D13268286
Pulled By: driazati
fbshipit-source-id: 6e8654a4c29ab754d656ac83820c14d1c1843e03
Summary:
This PR adds weak modules for all activation modules and uses `test_nn` module tests to test weak modules that have been annotated with `weak_module` and therefore are in `torch._jit_internal._weak_types`
Also depends on #14379
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14238
Differential Revision: D13252887
Pulled By: driazati
fbshipit-source-id: e9638cf74089884a32b8f0f38396cf432c02c988
Summary:
This PR adds weak modules for all activation modules and uses `test_nn` module tests to test weak modules that have been annotated with `weak_module` and therefore are in `torch._jit_internal._weak_types`
Also depends on #14379
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14238
Differential Revision: D13192230
Pulled By: driazati
fbshipit-source-id: 36488960b6c91448b38c0fa65422539a93af8c5e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12794
common.py is used in base_module for almost all tests in test/. The
name of this file is so common that can easily conflict with other dependencies
if they happen to have another common.py in the base module. Rename the file to
avoid conflict.
Reviewed By: orionr
Differential Revision: D10438204
fbshipit-source-id: 6a996c14980722330be0a9fd3a54c20af4b3d380
Summary:
* improve docker packages (install OpenBLAS to have at-compile-time LAPACK functionality w/ optimizations for both Intel and AMD CPUs)
* integrate rocFFT (i.e., enable Fourier functionality)
* fix bugs in ROCm caused by wrong warp size
* enable more test sets, skip the tests that don't work on ROCm yet
* don't disable asserts any longer in hipification
* small improvements
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10893
Differential Revision: D9615053
Pulled By: ezyang
fbshipit-source-id: 864b4d27bf089421f7dfd8065e5017f9ea2f7b3b
Summary:
The CPU and CUDA variants are a direct transposition of Graves et al.'s description of the algorithm with the
modification that is is in log space.
The there also is a binding for the (much faster) CuDNN implementation.
This could eventually fix#3420
I still need to add tests (TestNN seems much more elaborate than the other testing) and fix the bugs than invariably turn up during the testing. Also, I want to add some more code comments.
I could use feedback on all sorts of things, including:
- Type handling (cuda vs. cpu for the int tensors, dtype for the int tensors)
- Input convention. I use log probs because that is what the gradients are for.
- Launch parameters for the kernels
- Errors and obmissions and anything else I'm not even aware of.
Thank you for looking!
In terms of performance it looks like it is superficially comparable to WarpCTC (and thus, but I have not systematically investigated this).
I have read CuDNN is much faster than implementations because it does *not* use log-space, but also the gathering step is much much faster (but I avoided trying tricky things, it seems to contribute to warpctc's fragility). I might think some more which existing torch function (scatter or index..) I could learn from for that step.
Average timings for the kernels from nvprof for some size:
```
CuDNN:
60.464us compute_alphas_and_betas
16.755us compute_grads_deterministic
Cuda:
121.06us ctc_loss_backward_collect_gpu_kernel (= grads)
109.88us ctc_loss_gpu_kernel (= alphas)
98.517us ctc_loss_backward_betas_gpu_kernel (= betas)
WarpCTC:
299.74us compute_betas_and_grad_kernel
66.977us compute_alpha_kernel
```
Of course, I still have the (silly) outer blocks loop rather than computing consecutive `s` in each thread which I might change, and there are a few other things where one could look for better implementations.
Finally, it might not be unreasonable to start with these implementations, as the performance of the loss has to be seen in the context of the entire training computation, so this would likely dilute the relative speedup considerably.
My performance measuring testing script:
```
import timeit
import sys
import torch
num_labels = 10
target_length = 30
input_length = 50
eps = 1e-5
BLANK = 0#num_labels
batch_size = 16
torch.manual_seed(5)
activations = torch.randn(input_length, batch_size, num_labels + 1)
log_probs = torch.log_softmax(activations, 2)
probs = torch.exp(log_probs)
targets = torch.randint(1, num_labels+1, (batch_size * target_length,), dtype=torch.long)
targets_2d = targets.view(batch_size, target_length)
target_lengths = torch.tensor(batch_size*[target_length])
input_lengths = torch.tensor(batch_size*[input_length])
activations = log_probs.detach()
def time_cuda_ctc_loss(grout, *args):
torch.cuda.synchronize()
culo, culog_alpha = torch._ctc_loss(*args)
g, = torch.autograd.grad(culo, args[0], grout)
torch.cuda.synchronize()
def time_cudnn_ctc_loss(groupt, *args):
torch.cuda.synchronize()
culo, cugra= torch._cudnn_ctc_loss(*args)
g, = torch.autograd.grad(culo, args[0], grout)
torch.cuda.synchronize()
def time_warp_ctc_loss(grout, *args):
torch.cuda.synchronize()
culo = warpctc.ctc_loss(*args, blank_label=BLANK, size_average=False, length_average=False, reduce=False)
g, = torch.autograd.grad(culo, args[0], grout)
torch.cuda.synchronize()
if sys.argv[1] == 'cuda':
lpcu = log_probs.float().cuda().detach().requires_grad_()
args = [lpcu, targets_2d.cuda(), input_lengths.cuda(), target_lengths.cuda(), BLANK]
grout = lpcu.new_ones((batch_size,))
torch.cuda.synchronize()
print(timeit.repeat("time_cuda_ctc_loss(grout, *args)", number=1000, globals=globals()))
elif sys.argv[1] == 'cudnn':
lpcu = log_probs.float().cuda().detach().requires_grad_()
args = [lpcu, targets.int(), input_lengths.int(), target_lengths.int(), BLANK, True]
grout = lpcu.new_ones((batch_size,))
torch.cuda.synchronize()
print(timeit.repeat("time_cudnn_ctc_loss(grout, *args)", number=1000, globals=globals()))
elif sys.argv[1] == 'warpctc':
import warpctc
activations = activations.cuda().detach().requires_grad_()
args = [activations, input_lengths.int(), targets.int(), target_lengths.int()]
grout = activations.new_ones((batch_size,), device='cpu')
torch.cuda.synchronize()
print(timeit.repeat("time_warp_ctc_loss(grout, *args)", number=1000, globals=globals()))
```
I'll also link to a notebook that I used for writing up the algorithm in simple form and then test the against implementations against it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9628
Differential Revision: D8952453
Pulled By: ezyang
fbshipit-source-id: 18e073f40c2d01a7c96c1cdd41f6c70a06e35860
Summary:
THNN was accumulating the result of reduction loss functions
into real instead of accreal. This was causing precision issues with
MSELoss.
This patch only fixes MSELoss. Some of the other losses exhibit bad precision as well (because they accumulate into real instead of accreal) and require more investigation. I will open an issue for those (#9286)
Fixes#8710
cc li-roy SsnL
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9287
Reviewed By: SsnL
Differential Revision: D8775708
Pulled By: zou3519
fbshipit-source-id: d1a1f159deee0cb90fd8e81e63b246115eea8e9e
Summary:
1. Let `ModuleTest` raise when they fail on non-contiguous inputs. Fix legacy modules.
2. Fix BN (both THNN and cuDNN) not working on non-contiguous inputs.
3. Fix CUDA EmbeddingBag not working on non-contiguous inputs. To prevent calling `.contiguous()` on in both `forward` and `backward`,
a. prefix all current `embedding_bag*` functions with `_`, indicating that they require input to be contiguous (there is a check in each function).
b. create `embedding_bag`, which makes input arguments `.contiguous()`, and calls `_embedding_bag`
3. Make many ATen `embedding*` functions to work on non-contiguous inputs so we don't need to call `input = input.contiguous()` in Python `nn.functional.embedding`.
4. Fix dense-sparse addition when the sparse input is not coalesced and indices or values tensor is not contiguous. This came up in the test cases of Embedding modules with `sparse=True`. Added tests.
5. Update `TensorUtils.cpp` to use `AT_*` macros.
Request:
review from cpuhrsch on the `Embedding*` changes.
review from ezyang on ATen sparse & BN changes.
Closes https://github.com/pytorch/pytorch/pull/9114
Differential Revision: D8717299
Pulled By: SsnL
fbshipit-source-id: 0acc6f1c9522b5b605361e75112c16bbe1e98527
Summary:
The tests were using the old args, which caused them to emit a lot of deprecation warnings.
closes#9103.
Reviewed By: ezyang
Differential Revision: D8720581
Pulled By: li-roy
fbshipit-source-id: 3b79527f6fe862fb48b99a6394e8d7b89fc7a8c8
* Add memory leak check in CUDA tests
* Tracking multi-GPU too
* fix run_test.py not running __name__ == '__main__' content; add test for make_cuda_memory_checked_test
* add a comment
* skip if cuda
* 1. Change the wrapper to a method in common.py:TestCase
2. Refactor common constants/method that initialize CUDA context into common_cuda.py
3. Update some test files to use TEST_CUDA and TEST_MULTIGPU
* Fix MaxUnpool3d forward memory leak
* Fix MultiLabelMarginCriterion forward memory leak
* Fix MultiMarginLoss backward memory leak
* default doCUDAMemoryCheck to False
* make the wrapper skip-able
* use TEST_MULTIGPU
* add align_corners=True/False tests for Upsample; fix TEST_CUDNN
* finalize interface
* VolumetricMaxUnpooling_updateOutput
* fix test_nccl
* rename THC caching allocator methods to be clearer
* make the wrapped function a method
* address comments; revert changes to aten/src/THC/THCCachingAllocator.cpp
* fix renamed var
* Change backward calls to grad to avoid memory leak from #7343; Replace unnecesary create_graph=True with retain_graph=True
* fix gradgradcheck use of make_non_contiguous
* allow non-contguous target
* remove unnecessray .grad.zero_()
* remove contiguous_detach
* fix PReLU double backward always returning ggW as a scalar
* let noncontig gO require grad
* move requires_grad to return
* Codemod to update our codebase to 0.4 standard
* Update some of the test scri[ts
* remove Variable in test_clip_grad_value
* fix _symbolic_override_wrapper_maker
* add reduce=True arg to MarginRankingLoss
* make default margin arg match for legacy
* remove accidentally added test
* fix test
* fix native_functions.yaml alphabetical order
* implement TripletMarginLoss as a native function
* implement TripletMarginLoss as native function
* fix compile error
* address comments
* address comments
* Add keepdim arg to pairwise distance
* implement CosineEmbeddingLoss as a native function and add reduce=True arg to it
* fix flake8
* address comments
* add reference function to tests
* fix flake8
This replaces the torch.Tensor constructors with factories that produce
Variables. Similarly, functions on the torch module (e.g. torch.randn)
now return Variables.
To keep the PR to a reasonable size, I've left most of the unused tensor
code. Subsequent PRs will remove the dead code, clean-up calls to
torch.autograd.Variable, and rename Variable to Tensor everywhere.
There are some breaking changes because Variable and Tensors had
slightly different semantics. There's a list of those changes here:
https://github.com/pytorch/pytorch/wiki/Breaking-Changes-from-Variable-and-Tensor-merge
* add reduce=True arg to HingeEmbeddingLoss
* pass arg to super constructor in HingeEmbeddingLoss
* make HingeEmbeddingLoss reference fn work on legacy