Summary:
Hi guys,
I'd like to build Caffe2 with more supported options in Windows with Microsoft Visual Studios.
This is the first pull request.
Running scripts/build_windows_shared.bat is able to build Caffe2 with both CMAKE_BUILD_TYPE=Debug and CMAKE_BUILD_TYPE=Release with Visual Studio 14 2015.
CUDA is 9.0, cudnn is 7.0.5, glog, gflags and lmdb are supported on my system.
Python is 3.5, Detectron works from python interface as well.
It was even possible to debug detectron code and step into caffe2_gpu.dll with pdbs built.
What is disappointing, that c10/experimental ops don't build with this Visual Studio generator, I added special option INCLUDE_EXPERIMENTAL_C10_OPS (default ON) to deal with it in build_windows_shared.bat.
After this pull request the next step is to add Visual Studio 2017 support in the script.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13550
Reviewed By: ezyang
Differential Revision: D13042597
Pulled By: orionr
fbshipit-source-id: f313f909f599cd582a1d000eff766eef3a9fc4fc
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12714
This is a short change to enable c10 namespace in caffe2. We did not enable
it before due to gflags global variable confusion, but it should have been
mostly cleaned now. Right now, the plan on record is that namespace caffe2 and
namespace aten will fully be supersets of namespace c10.
Most of the diff is codemod, and only two places of non-codemod is in caffe2/core/common.h, where
```
using namespace c10;
```
is added, and in Flags.h, where instead of creating aliasing variables in c10 namespace, we directly put it in the global namespace to match gflags (and same behavior if gflags is not being built with).
Reviewed By: dzhulgakov
Differential Revision: D10390486
fbshipit-source-id: 5e2df730e28e29a052f513bddc558d9f78a23b9b
* Fix some signed/unsigned mismatches
* Skip unused result warning
* Explict fallthrough for murmur hash
* Enable aligned new support to eliminate warning
* Switch to int instead of unsigned in some cases
Adding NUMA awareness through numa_node_id in DeviceOption. Blobs of operators
with numa_node_id are allocated on corr. memory banks, using CPU pools with
NUMA affinity set to run operators.