Summary:
It's not intended that Storages have 'default' CUDA devices, but this is allowable via the Storage::create_legacy codepath.
This also messages with device_caching, because the initial cache is obtained from the Storage, which may have a 'default' device.
Instead, we materialize a device by allocating 0 bytes via the allocator.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18605
Differential Revision: D14680620
Pulled By: gchanan
fbshipit-source-id: 6d43383d836e90beaf12bfe37c3f0506843f5432
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17623
Despite it's generic sounding name, caffe2::DeviceGuard actually
only worked on CUDA devices. Rename it to something that more
clearly spells out its applicability.
I'm not sure if it's the right call, but in this patch I added
'using CUDAGuard = c10::cuda::CUDAGuard', as this seems to be more
in-line with how the Caffe2 codebase is currently written. More
idiomatic c10 namespace style would be to say cuda::CUDAGuard.
Willing to change this if people shout.
This is a respin of D13156470 (#14284)
Reviewed By: dzhulgakov
Differential Revision: D14285504
fbshipit-source-id: 93b8ab938b064572b3b010c307e1261fde0fff3d
Summary:
In the NUMA case, PinnedCPUAllocator's allocate() would return a
DataPtr constructed by DefaultCPUAllocator, which would reference
the Default... Delete() rather than the Pinned... Delete(). That
meant Pinned... Delete() would never run, so cudaHostUnregister()
would never be called when regions were freed.
See: https://github.com/pytorch/pytorch/issues/16280
This change adds a 'naked_allocate()' method to the Default allocator
that just returns a pointer to the allocated memory rather than
wrapping it in a DataPtr. Pinned allocator uses that then constructs
a DataPtr with reference to its own Delete().
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16340
Reviewed By: dzhulgakov
Differential Revision: D13843206
Pulled By: ezyang
fbshipit-source-id: 9efb572e5a01b49ef2a4aceeccc13cd0b1066528
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16721
The very key line is we have to set the stream to the default
stream before calling the allocator. This is very interesting.
It shouldn't be necessary, but seemingly is!
Reviewed By: dzhulgakov
Differential Revision: D13943193
fbshipit-source-id: c21014917d9fe504fab0ad8abbc025787f559287
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16615
This is another go at landing https://github.com/pytorch/pytorch/pull/16226
Now that the caching allocator is moved to c10_cuda, we can
delete the duplicate copy from Caffe2.
The difference between this and the previous PR is that this
version faithfully maintains the binding code; in particular,
we end up with a SECOND copy of the caching allocator in
this patch. I verified that this code does NOT cause a crash
in the workflow we canaried last time.
In further diffs, I plan to eliminate the second copy, and then
adjust the binding code.
Reviewed By: dzhulgakov
Differential Revision: D13901067
fbshipit-source-id: 66331fd4eadffd0a5defb3cea532d5cd07287872
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16510
This diff was supposed to be memory usage neutral, but based on
some internal flows involving cuDNN, it was not. Reverting pending
further investigation.
Original commit changeset: 03f1ebf7f11c
Reviewed By: xw285cornell
Differential Revision: D13863610
fbshipit-source-id: 15517e255fd6b0c064b65fb99f0ef19742236cfd
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16226
Now that the caching allocator is moved to c10_cuda, we can
delete the duplicate copy from Caffe2.
Reviewed By: dzhulgakov, smessmer
Differential Revision: D13762540
fbshipit-source-id: 03f1ebf7f11c68c19aa0d66110156fe228da6138
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15692
It was leading to ocassional crashes with dynamically linked CUDA because runtime was already destroyed.
Also, unique_ptr<T[]> is more suitable than deque<T> for the purpose.
Reviewed By: Yangqing
Differential Revision: D13571988
fbshipit-source-id: 37eb26dfbe361c49160367b53f87bd037c6c0e46
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14838
The GPU memory tracking logs are incredibly annoying and merely serve
to pollute output. I `VLOG(1)`ed them. Hopefully, this is non-controversial.
Reviewed By: kuttas
Differential Revision: D13343290
fbshipit-source-id: b3cae99346c97b66e97ea660061e15dc5c99b9fc
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14282
This also is a substantive change, as 'DeviceIndex' and 'StreamId' are
narrower types than 'int'.
Reviewed By: Yangqing, smessmer
Differential Revision: D13156471
fbshipit-source-id: 08aa0f70c4142415b6bd4d17c57da0641c1d0e9a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14268
Removes the need for Context in Tensor by doing simple dispatch for CopyBytes. It'd eventually be subsumed by Roy Li's changes of proper copy_ op, but before that is done, let's get a clear logic of how copies are implemented and clean up some craft in CopyFrom implementation.
Note, that with these changes, one can probably can get rid of Context::CopyFromCPU/CopyToCPU, but it's a matter for follow up diffs.
This diff doesn't change the API of Tensor yet, but relies on the fact that passing `Context` to CopyFrom makes copy async if the device is CUDA and doesn't have any effect otherwise (that's how Context methods are implemented).
This doesn't change semantics of copy async implementation - as before it blindly calls cudaMemcpyAsync which probably means that it can be misused if invoked separately outside of operator body. I'll leave it for the follow up copy_ unification.
For Extend() we always do async copy - it makes sense as it's an in-place device-device operation and only any further op would be observable.
Note: there are now three ways of invoking copy in C2 code - templated CopyBytes, virtual CopyFromCPU/etc, and double-dispatch free method here. Hopefully we can get rid of the second one.
Also, please advise whether it's c10-worthy :)
Reviewed By: ezyang
Differential Revision: D13117987
fbshipit-source-id: a6772d6dcf3effaf06717da3a656fc9873b310b5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12714
This is a short change to enable c10 namespace in caffe2. We did not enable
it before due to gflags global variable confusion, but it should have been
mostly cleaned now. Right now, the plan on record is that namespace caffe2 and
namespace aten will fully be supersets of namespace c10.
Most of the diff is codemod, and only two places of non-codemod is in caffe2/core/common.h, where
```
using namespace c10;
```
is added, and in Flags.h, where instead of creating aliasing variables in c10 namespace, we directly put it in the global namespace to match gflags (and same behavior if gflags is not being built with).
Reviewed By: dzhulgakov
Differential Revision: D10390486
fbshipit-source-id: 5e2df730e28e29a052f513bddc558d9f78a23b9b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12304
- make ExtractDeviceOption to be a free function.
- Add a Strorage(at::Device) constructor in order to preserve the device_id.
Reviewed By: dzhulgakov
Differential Revision: D10069839
fbshipit-source-id: a5f3994a39bdf1b7503b39bb42c228e438b52bfa
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12029
In order to remove New() function in StaticContext(to remove StaticContext) and converge to the Allocator design, we'll first change the return type of New to at::DataPtr.
Reviewed By: ezyang
Differential Revision: D9889990
fbshipit-source-id: 3257c763530b987025f428741bdd2e089d11bad4
Summary:
Original commit changeset: f5614a5d2607
D9986213 is causing Multifeed Aggregator a [huge performance different](https://our.intern.facebook.com/intern/ads/analyze_canary/412951953278781781/) and is blocking aggregator push since last Friday night: https://fburl.com/feedtools/b6izvwjz
We need to land this revert ASAP to unblock aggregator push.
Reviewed By: orionr
Differential Revision: D10123245
fbshipit-source-id: d83da8e00a1250f5d09811a0a587c127e377aab2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11688
As a first step to remove static context(merge with allocator), we'll create a
global registries for context constructors, and remove CreateContext function from tensor.
Reviewed By: ezyang, dzhulgakov
Differential Revision: D9779821
fbshipit-source-id: 8b239ea50af7a0556fde2382f58f79194f0e3dc1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11254
Previously we use DeviceType in caffe2.proto directly, but it's an `enum` and have implicit conversion to int, which does not have type safety, e.g. we have to explicitly check for a device type is valid in event.h:
```
template <int d>
struct EventCreateFunctionRegisterer {
explicit EventCreateFunctionRegisterer(EventCreateFunction f) {
static_assert(d < MaxDeviceTypes, "");
Event::event_creator_[d] = f;
}
};
```
at::DeviceType is an `enum class`, and it does not have implicit conversion to int, and provides better type safety guarantees. In this diff we have done the following refactor(taking CPU as an example):
1. caffe2::DeviceType → caffe2::DeviceTypeProto
2. caffe2::CPU → caffe2::PROTO_CPU
3. caffe2::DeviceType = at::DeviceType
4. caffe2::CPU = at::DeviceType::CPU
codemod -d caffe2/caffe2 --extensions h,cc,cpp 'device_type\(\), ' 'device_type(), PROTO_'
+ some manual changes
In short, after this diff, in c++, caffe2::CPU refers to the at::DeviceType::CPU and the old proto caffe2::CPU will be caffe2::PROTO_CPU.
In python side, we have a temporary workaround that alias `caffe2_pb2.CPU = caffe2_pb2.PROOT_CPU` to make the change easier to review and this will be removed later.
Reviewed By: ezyang
Differential Revision: D9545704
fbshipit-source-id: 461a28a4ca74e616d3ee183a607078a717fd38a7
Summary:
This completely removes BUILD_CAFFE2 from CMake. There is still a little bit of "full build" stuff in setup.py that enables USE_CUDNN and BUILD_PYTHON, but otherwise everything should be enabled for PyTorch as well as Caffe2. This gets us a lot closer to full unification.
cc mingzhe09088, pjh5, ezyang, smessmer, Yangqing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/8338
Reviewed By: mingzhe09088
Differential Revision: D9600513
Pulled By: orionr
fbshipit-source-id: 9f6ca49df35b920d3439dcec56e7b26ad4768b7d
Summary:
The goal of this PR is to update the hip files to reflect relevant changes in cuda source files.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9826
Differential Revision: D9032840
Pulled By: bddppq
fbshipit-source-id: 504e55c46308eebfee3c9a7beea1f294fe03470f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9939
Pull Request resolved: https://github.com/facebookresearch/weakly-supervised-action-detection/pull/13
Pull Request resolved: https://github.com/pytorch/translate/pull/166
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9125
Closes https://github.com/pytorch/pytorch/pull/9125
Use inheritance for polymorphism, and remove template parameter
This is to change the templating in call sites, the core implementations will change later
Before Caffe2 Tensor class was compile-time fixed to bind to a particular device/context. With this change, we're making it a runtime property (stored inside the tensor), but preserve the same semantics. For example, one has to specify device type in order to create a Tensor - there are no uninitialized tensors. More specifically the changes are:
1. We added an extra argument *DeviceType* to most of the constructors of the tensor, e.g. (Tensor(DeviceType type)),
2. Semantics of constructor Tensor(const Tensor<SrcContext>& src, ContextForCopy* context); is changed, in this constructor, the second context is passed in to enable us to call the templated Copy function, it could be in a different context as source and target previously, now we'll enforce that the context should have same device type as src, if it is provided.
3. To preserve 'get-or-construct' semantics of Blob, we added specialized getter Blob::GetMutableTensor that verifies both that Blob contains a Tensor and that it's of a correct type
4. Specifically, Tensor type is not default-constructible any more (as we don't have unknown device tensors) and thus some of the code handling STL containers needs to change
Note: Some changes are postponed just to keep this diff a bit smaller. Please see `TODO`s.
Reviewed By: ezyang, houseroad
Differential Revision: D9024330
fbshipit-source-id: e0b8295d2dc6ebe2963383ded5af799ad17164ba
Summary:
Pull Request resolved: https://github.com/facebookresearch/weakly-supervised-action-detection/pull/13
Pull Request resolved: https://github.com/pytorch/translate/pull/166
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9125
Closes https://github.com/pytorch/pytorch/pull/9125
Use inheritance for polymorphism, and remove template parameter
This is to change the templating in call sites, the core implementations will change later
Before Caffe2 Tensor class was compile-time fixed to bind to a particular device/context. With this change, we're making it a runtime property (stored inside the tensor), but preserve the same semantics. For example, one has to specify device type in order to create a Tensor - there are no uninitialized tensors. More specifically the changes are:
1. We added an extra argument *DeviceType* to most of the constructors of the tensor, e.g. (Tensor(DeviceType type)),
2. Semantics of constructor Tensor(const Tensor<SrcContext>& src, ContextForCopy* context); is changed, in this constructor, the second context is passed in to enable us to call the templated Copy function, it could be in a different context as source and target previously, now we'll enforce that the context should have same device type as src, if it is provided.
3. To preserve 'get-or-construct' semantics of Blob, we added specialized getter Blob::GetMutableTensor that verifies both that Blob contains a Tensor and that it's of a correct type
4. Specifically, Tensor type is not default-constructible any more (as we don't have unknown device tensors) and thus some of the code handling STL containers needs to change
Note: Some changes are postponed just to keep this diff a bit smaller. Please see `TODO`s.
Reviewed By: xw285cornell
Differential Revision: D8121878
fbshipit-source-id: 4a5e9a677ba4ac82095df959851a054c81eccf81
* [GanH][Easy]: Add assertion to adaptive weighting layer
0 weight causes numeric instability and exploding ne
* [Easy] Add cast op before computing norm in diagnose options
As LpNorm only takes floats we add a manual casting here.
* Introduce a new caching device allocator
`cudaMalloc` and `cudaFree` calls are slow, and become slower the
more GPUs there are. Essentially, they grab a host-wide (not device-wide) lock
because GPU memory is transparently shared across all GPUs. Normally, this
isn't much of a concern since workloads allocate memory upfront, and reuse it
during later computation.
However, under some computation models (specifically, memory conserving
approaches like checkpoint-and-recompute, see
https://medium.com/@yaroslavvb/fitting-larger-networks-into-memory-583e3c758ff9)
this assumption is no longer true. In these situations, `cudaMalloc` and
`cudaFree` are common and frequent. Furthermore, in data parallel contexts,
these calls happen at nearly the same time from all GPUs worsening lock
contention.
A common solution to this problem is to add a custom allocator. In fact,
nVIDIA provides one out of the box: CUB, which Caffe2 already supports.
Unfortunately, the CUB allocator suffers from very high fragmentation. This is
primarily because it is a "buddy" allocator which neither splits nor merges
free cached blocks. Study
https://github.com/NVlabs/cub/blob/1.8.0/cub/util_allocator.cuh#L357 if you
want to convince yourself.
This diff adapts a caching allocator from the Torch codebase
https://github.com/torch/cutorch/blob/master/lib/THC/THCCachingAllocator.cpp
which does splitting and merging and ends up working really well, at least for
workloads like the checkpoint-and-recompute computation models noted above.
I simplified the implementation a little bit, made it a bit more C++-like. I
also removed a bunch of stream synchronization primitives for this diff. I
plan to add them back in subsequent diffs.
* Report reader progress in fblearner workflows
Integrate with fblearner progress reporting API and add support to report training progress from reader nodes.
If reader is constructed with batch limits, report based on finished batch vs total batch. The finished batch may be more than total batch because we evaludate if we should stop processing everytime we dequeue a split.
If no limit for the reader, report based on finished splits (Hive files) vs total splits. This is fairly accurate.
* [GanH][Diagnose]: fix plotting
1. ganh diagnose needs to set plot options
2. modifier's blob name is used for metric field can need to be fixed before
generating net
* Automatic update of fbcode/onnx to 985af3f5a0f7e7d29bc0ee6b13047e7ead9c90c8
* Make CompositeReader stops as soon as one reader finishes
Previously, CompositeReader calls all readers before stopping. It results in flaky test since the last batch may be read by different threads; resulting in dropped data.
* [dper] make sure loss is not nan
as desc.
* [rosetta2] [mobile-vision] Option to export NHWC order for RoIWarp/RoIAlign
Thanks for finding this @stzpz and @wangyanghan. Looks like NHWC is more
optimized. For OCR though it doesn't yet help since NHWC uses more mem b/w but
will soon become important.
* Intra-op parallel FC operator
Intra-op parallel FC operator
* [C2 Proto] extra info in device option
passing extra information in device option
design doc: https://fb.quip.com/yAiuAXkRXZGx
* Unregister MKL fallbacks for NCHW conversions
* Tracing for more executors
Modified Tracer to work with other executors and add more tracing
* Remove ShiftActivationDevices()
* Check for blob entry iff it is present
When processing the placeholders ops, ignore if the blob is not present in the blob_to_device.
* Internalize use of eigen tensor
Move use of eigen tensor out of the header file so we don't get template partial specialization errors when building other libraries.
* feature importance for transformed features.
* - Fix unused parameter warnings
The changes in this diff comments out unused parameters.
This will allow us to enable -Wunused-parameter as error.
#accept2ship
* add opencv dependencies to caffe2
The video input op requires additional opencv packages. This is to add them to
cmake so that it can build
* Add clip_by_value option in gradient clipping
Add clip_by_value option in gradient clipping
when the value is bigger than max or smaller than min, do the clip
* std::round compat
Summary:
Reason for this change:
(1) Setting/Getting default gpu id doesn't seem to be used at all.
(2) It actually is confusing compared to the CUDA_VISIBLE_DEVICES options etc.
(3) When setting cuda_gpu_id=-1 in the CUDAContext arg, it used to use the
default gpu id but probably we should use the current gpu - so that the caller
will be able to control the device placement.
One use case is for TensorRT - if we have a custom callback layer, then it would
be easier for TRT or whatever caller to set the running device.
Reviewed By: dzhulgakov
Differential Revision: D6740357
fbshipit-source-id: 2ea710e434b10220d5a198e31c93847304636863
Summary: This is a reapplication of the earlier PR due to xplat move. Original author is Christoph Conrads <christoph.conrads@fluent.ai> christoph-conrads .
Reviewed By: houseroad
Differential Revision: D6379736
fbshipit-source-id: b7482ecf3b9487a528c15e92976e915791210002
Summary: The default CUB settings led to very slow execution in practice when using "dynamic" memory allocation with C2 (i.e freeing blobs after their use). After some tinkering, I arrived to these numbers, that work with resnet-50 and NVIDIA M40 GPU much better than the origianal defaults. Also made the maximum allocated memory configurable.
Reviewed By: Yangqing
Differential Revision: D5732930
fbshipit-source-id: 9ff34f49d5a3eb138bc6f44c82918731a35325a6
Summary:
These are wrapper functions so that if we run in a Caffe2-only mode, we can
turn the flag on and get some small speedup on cuda device switches.
The purpose of the diff is to allow us to quickly assess the overhead of cuda
device switch functions. Ideally, the caching behavior shall live in the cuda
driver, which is the only safe place to ensure correctness.
If other code is running aside Caffe2 and does not properly do device guard,
this functionality will fail as separate cudaSetDevice() calls will not update
Caffe2's thread local device id. As a result, the functionality is only enabled
when/if one explicitly sets the flag.
This might not be safe, so use with caution.
- cudaGetDevice can go from 90ns to 2ns
- when setting the same device, we can go from 100ns to 2 ns
- when setting a different device, things are the same (1ns overhead on top of 143ns)
Reviewed By: azzolini
Differential Revision: D5709398
fbshipit-source-id: 6255f17a3d41f59a30327436383f306a2287896e
Summary:
As part of the cuda 9 move we have decided to deprecate the cnmem path
as it seems to be superceded by cub if one needs a memory pool.
Closes https://github.com/caffe2/caffe2/pull/1104
Differential Revision: D5647672
Pulled By: Yangqing
fbshipit-source-id: 988af5bf63e24efa1b631fd91ddb58e798ffc5c6
Summary: Users are reporting CUDA illegal access errors happening on some configurations after D5528436 introduced lazy peer connections. Will debug later, but this diff is to revert that change.
Reviewed By: pietern
Differential Revision: D5581673
fbshipit-source-id: ef8e367160a38fc62434d6f5905892db274d9f06
Summary:
Currently Caffe2 enables peer access between all 8 gpus, even if only 1 gpu would be used. This adds several seconds to the startup time, but also takes a lot of memory (110 MB per GPU).
This diff makes the peer access initialization "lazy". When GPU X is first used, pairwise peer access is set between GPUs 0 to X-1 with X. A lookup table is used to ensure no double peer access initialization.
Reviewed By: pietern
Differential Revision: D5528436
fbshipit-source-id: 8f3c2c8154291a7d3a99ee2882e4834ef5e38b66
Summary:
This is in preparation for adding huge pages. There we want to remember for the pointer how we got it - via mmap() or alloc(). One option is to store gigantic map of void* -> destructor, but luckily usages of Context::New are all inside Tensor which already uses shared_ptr with custom deleter.
This diff could have used unique_ptr as the return type but then it's easy to accidentally call release() and loose the deleter. Thus going with std::pair<void*, MemoryDeleter> to be explicit.
Also, now CPUAllocator can be effectively changed to std::function. Haven't done it yet, but can do if necessary.
Let me know whether it's a bad idea to proceed like this.
Reviewed By: Yangqing
Differential Revision: D5429830
fbshipit-source-id: 8382ab7b81592d51272056c05c122894bb203827