Commit Graph

35 Commits

Author SHA1 Message Date
cyy
37f7c00a8a More fixes and improved clang-tidy checkers (#93213)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93213
Approved by: https://github.com/Skylion007
2023-02-01 14:44:17 +00:00
Hangchen Yu
5a0fa04a49 Add MTIA DeviceType for Meta training and inference devices (#92232)
Summary: This adds a new MTIA DeviceType which is associated with the MTIA DispatchKey and will be used for the Meta in-house training and inference accelerators.

Test Plan: All CI should pass.

Differential Revision: D42526044

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92232
Approved by: https://github.com/ezyang
2023-01-16 12:20:23 +00:00
Brian Hirsh
ce0c6e828e Reland "add an API for external backends to register custom device names (#86992)" (#87453)
Re-land of https://github.com/pytorch/pytorch/pull/86992

This reverts commit a895af9250.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87453
Approved by: https://github.com/ezyang, https://github.com/albanD
2022-10-21 16:51:36 +00:00
PyTorch MergeBot
a895af9250 Revert "add an API for external backends to register custom device names (#86992)"
This reverts commit fb6826bfd8.

Reverted https://github.com/pytorch/pytorch/pull/86992 on behalf of https://github.com/jeanschmidt due to breaking internal builds - D40534212 - arstudio-windows-tests-landcastle-0
2022-10-20 14:51:08 +00:00
Brian Hirsh
fb6826bfd8 add an API for external backends to register custom device names (#86992)
This API adds some improvements to external backends who are building C++ backends out of tree using the `PrivateUse1` dispatch key.

The docs and linked examples go over the API in more detail, but you should be able to use it like:
```
# This should probably be in the __init__.py file of a external backend's python package
> torch.register_privateuse1_backend("foo")`
# And it will allow the user to do this:
> a = torch.ones(2, device="foo")
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/86992
Approved by: https://github.com/albanD
2022-10-19 16:44:17 +00:00
Nikita Shulga
1c97084685 [BE] Generate names of known device from array (#85982)
Rather than hardcoding list of device names, generate it from list of known types.
Performance is not important at the error codepath, as it will not be evaluated during normal codepath.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85982
Approved by: https://github.com/kit1980
2022-09-30 20:58:56 +00:00
Hangchen Yu
abb6fab0f4 Add new PrivateUse1 DeviceType for non-public devices (#77208)
Summary: The new PrivateUse1 DeviceType is associated with the PrivateUse1 DispatchKey, which can be used for non-public devices without introducing a new device type. Note that the stringified name of the PrivateUse1 device is "privateuseone".

Test Plan: All CI should pass.

Differential Revision: D35859437

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77208
Approved by: https://github.com/bdhirsh
2022-05-13 16:03:27 +00:00
Kulin Seth
54c75e1e8f Add "mps" device to PyTorch framework.
Remove the "mlc" device for Mac platforms.

This commit will be followed up with:

* adding MPS runtime components
* PyTorch ops for MPS device

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76291
Approved by: https://github.com/albanD
2022-04-27 19:21:57 +00:00
Anthony Barbier
ce9e27a0fc Add new keys for Graphcore IPU (DispatchKey / Backend / DeviceType)
We need a key to register our out of tree backend: https://github.com/graphcore/poptorch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74763
Approved by: https://github.com/bdhirsh
2022-04-07 17:18:45 +00:00
Aaron Bockover
c78ab28441 Add support for the ONNX Runtime Eager Mode backend (#58248)
Summary:
This PR implements the necessary hooks/stubs/enums/etc for complete ONNX Runtime (ORT) Eager Mode integration. The actual extension will live out of tree at https://github.com/pytorch/ort.

We have been [working on this at Microsoft](https://github.com/microsoft/onnxruntime-pytorch/tree/eager-ort/torch_onnxruntime) for the last few months, and are finally ready to contribute the PyTorch core changes upstream (nothing major or exciting, just the usual boilerplate for adding new backends).

The ORT backend will allow us to ferry [almost] all torch ops into granular ONNX kernels that ORT will eagerly execute against any devices it supports (therefore, we only need a single ORT backend from a PyTorch perspective).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58248

Reviewed By: astaff

Differential Revision: D30344992

Pulled By: albanD

fbshipit-source-id: 69082b32121246340d686e16653626114b7714b2
2021-08-20 11:17:13 -07:00
Dhruv Matani
9bbf80969e [PyTorch] Avoid using std::regex for device string parsing in Device.cpp (#63464)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63464

This was previously committed as D30281388 (4d6f98ecad), but was reverted due to t98478641. jnkwok1 confirmed that this change was not the root cause, so trying to land it again.

Currently, `std::regex` is used for parsing device strings. This is undesirable for a few reasons.

1. Increases binary size
2. Slows down model loading
3. Potentially uses more memory at runtime
4. Takes marginally longer time to build code that uses std::regex v/s not using std::regex

This change avoids the use of `std::regex` for parsing the device string since we don't need to.
ghstack-source-id: 136006963
ghstack-source-id: 136081898

Test Plan:
### AI Bench Runs

**Before this change:**
1. Model Load time: [252ms](https://www.internalfb.com/intern/aibench/details/332471502816548)
2. Model unload time: 3.5ms

**After this change:**
1. Model Load time: [240ms](https://www.internalfb.com/intern/aibench/details/652195589031318), which is an approx 5% reduction for the current model. I suspect percentage wise, it will be larger for smaller models since this is a fixed cost reduction.
2. Model unload time: 3.3ms (probably too small to be meaningfully impactful to an end user).

### BSB Results

```
D30281388 (4d6f98ecad)-V1 (https://www.internalfb.com/intern/diff/D30281388 (4d6f98ecad)/?dest_number=135713848)

messenger-pika-optimized-device: Succeeded
Change in Download Size for arm64 + 3x assets variation: -7.1 KiB
Change in Uncompressed Size for arm64 + 3x assets variation: -17.6 KiB

Mbex Comparison: https://our.intern.facebook.com/intern/mbex/bsb:551399955987465@base/bsb:551399955987465@diff/
```

Reviewed By: raziel, pavithranrao

Differential Revision: D30388269

fbshipit-source-id: 10942e7aa56f9ea47aa479a8f50187f2ce2899bf
2021-08-18 14:55:12 -07:00
Dhruv Matani
9cd24e12a1 Revert D30281388: [PyTorch] Avoid using std::regex for device string parsing in Device.cpp
Test Plan: revert-hammer

Differential Revision:
D30281388 (4d6f98ecad)

Original commit changeset: 4d998e9f313e

fbshipit-source-id: 11134b3400cc3e851155c9c1b6fb59308ff1567b
2021-08-17 14:40:27 -07:00
Dhruv Matani
4d6f98ecad [PyTorch] Avoid using std::regex for device string parsing in Device.cpp (#63204)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63204

Currently, `std::regex` is used for parsing device strings. This is undesirable for a few reasons.

1. Increases binary size
2. Slows down model loading
3. Potentially uses more memory at runtime
4. Takes marginally longer time to build code that uses std::regex v/s not using std::regex

This change avoids the use of `std::regex` for parsing the device string since we don't need to.
ghstack-source-id: 136006963

Test Plan:
### AI Bench Runs

**Before this change:**
1. Model Load time: [252ms](https://www.internalfb.com/intern/aibench/details/332471502816548)
2. Model unload time: 3.5ms

**After this change:**
1. Model Load time: [240ms](https://www.internalfb.com/intern/aibench/details/652195589031318), which is an approx 5% reduction for the current model. I suspect percentage wise, it will be larger for smaller models since this is a fixed cost reduction.
2. Model unload time: 3.3ms (probably too small to be meaningfully impactful to an end user).

### BSB Results

```
D30281388-V1 (https://www.internalfb.com/intern/diff/D30281388/?dest_number=135713848)

messenger-pika-optimized-device: Succeeded
Change in Download Size for arm64 + 3x assets variation: -7.1 KiB
Change in Uncompressed Size for arm64 + 3x assets variation: -17.6 KiB

Mbex Comparison: https://our.intern.facebook.com/intern/mbex/bsb:551399955987465@base/bsb:551399955987465@diff/
```

Reviewed By: raziel

Differential Revision: D30281388

fbshipit-source-id: 4d998e9f313e6366d9d89a6a73cd090ddfb059fc
2021-08-17 09:23:48 -07:00
Alex Suhan
b176feec1e Add device and key for lazy tensors (#61621)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/61621

Test Plan: CI

Reviewed By: mruberry

Differential Revision: D29912934

Pulled By: asuhan

fbshipit-source-id: 493c32063a3e756d93cbf1d876563a35eaafb537
2021-07-26 23:00:22 -07:00
Scott Wolchok
523d6fe27c [PyTorch] Remove unnecessary std::string in Device.cpp (#61502)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61502

No reason not to use string literals here.
ghstack-source-id: 133449808

Test Plan: buildsizebot

Reviewed By: dhruvbird

Differential Revision: D29648079

fbshipit-source-id: 74ecf12283c2f196b4b3edb75c6bb1eeed51322e
2021-07-13 14:36:13 -07:00
Nicolas Weber
25e077bce1 [Issue 59296] added VE device (#59620)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/59296

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59620

Reviewed By: zou3519

Differential Revision: D29196830

Pulled By: ezyang

fbshipit-source-id: 7bb49f776dc755804a0ba0bc3a7dbdab9c93914e
2021-06-21 16:44:52 -07:00
Sujoy Saraswati
3c973de543 HABANA Device registration key and Autograd key addition (#57094)
Summary:
Fixes #{issue number}

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57094

Reviewed By: mruberry

Differential Revision: D28355895

Pulled By: wconstab

fbshipit-source-id: 5d8b5762a69f444f4fe7f476891150fa5483d893
2021-05-12 13:07:33 -07:00
Scott Wolchok
44cc873fba [PyTorch] Autoformat c10 (#56830)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56830

Opt into formatting on GitHub and format everything. This is a trial run before turning on formatting for more and eventually all of the codebase.

Test Plan: CI

Reviewed By: zertosh

Differential Revision: D27979080

fbshipit-source-id: a80f0c48691c08ae8ca0af06377b87e6a2351151
2021-04-30 21:23:28 -07:00
Edward Yang
0f81a69a96 Make meta a device (getting rid of empty_meta) (#53143)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53143

Meta is now an honest to goodness device type, like cpu, so you can use
device='meta' to trigger allocation of meta tensors.  This way better
than empty_meta since we now have working API for most factory functions
(they don't necessarily work yet, though, because need to register Meta
versions of those functions.)

Some subtleties:
- I decided to drop the concept of CPU versus CUDA meta tensors; meta
  tensors are device agnostic.  It's hard to say exactly what the
  correct level of abstraction here is, but in this particular case
  implementation considerations trump semantic considerations: it
  is way easier to have just a meta device, than to have a meta device
  AND a cpu device AND a cuda device.  This may limit the applicability
  of meta tensors for tracing models that do explicit cpu()/cuda()
  conversions (unless, perhaps, we make those operations no-ops on meta
  tensors).
- I noticed that the DeviceType uppercase strings are kind of weird.
  Are they really supposed to be all caps?  That's weird.
- I moved the Meta dispatch key to live with the rest of the "device"
  dispatch keys.
- I intentionally did NOT add a Backend for Meta.  For now, I'm going to
  hope meta tensors never exercise any of the Backend conversion code;
  even if it does, better to fix the code to just stop converting to and
  from Backend.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: samestep

Differential Revision: D26763552

Pulled By: ezyang

fbshipit-source-id: 14633b6ca738e60b921db66a763155d01795480d
2021-03-03 11:24:13 -08:00
Lance Ware
fdd25f82c9 Update to replace AT_ERROR with TORCH_CHECK (#52711)
Summary:
Fixes #{52699}

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52711

Reviewed By: ailzhang

Differential Revision: D26654677

Pulled By: malfet

fbshipit-source-id: 97079250d144c9b1c69028f35e4a23a34481b2a5
2021-02-25 19:51:29 -08:00
Bel H
30cb6ac53c Introduce mlc device (ML Compute device) to PyTorch's device list (#50634)
Summary:
Apple recently announced ML Compute, a new framework available in macOS Big Sur, which enables users to accelerate the training of neural networks on Mac hardware. This PR is the first on a series of PRs that will enable the integration with ML Compute. Most of the integration code will live on a separate subrepo named `mlc`.
The integration with `mlc` (ML Compute) will be very similar to that of xla. We rely on registering our ops through:

TORCH_LIBRARY_IMPL(aten, PrivateUse1, m) {
 m.impl_UNBOXED(<op_schema_name>, &customized_op_kernel)
 ...
}

Pull Request resolved: https://github.com/pytorch/pytorch/pull/50634

Reviewed By: malfet

Differential Revision: D26614213

Pulled By: smessmer

fbshipit-source-id: 3b492b346c61cc3950ac880ac01a82fbdddbc07b
2021-02-24 22:39:11 -08:00
chengjun
4a8ef4525e Add new backend type for Intel heterogeneous computation platform. (#49786)
Summary:
Add a new device type 'XPU' ('xpu' for lower case) to PyTorch. Changes are needed for code related to device model and kernel dispatch, e.g. DeviceType, Backend and DispatchKey etc.

https://github.com/pytorch/pytorch/issues/48246

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49786

Reviewed By: mrshenli

Differential Revision: D25893962

Pulled By: ezyang

fbshipit-source-id: 7ff0a316ee34cf0ed6fc7ead08ecdeb7df4b0052
2021-01-20 08:15:18 -08:00
Ivan Kobzarev
3112e23428 [py][vulkan][reland] Add is_vulkan to py api, add vulkan to device type parsing (#46655)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/46655

Test Plan: Imported from OSS

Pulled By: IvanKobzarev

Reviewed By: mrshenli

Differential Revision: D24448984

fbshipit-source-id: 5000846a06077f7a5a06dd51da422d2a42f70820
2020-10-22 09:35:50 -07:00
Shen Li
cebe87fe3a Revert D24379422: [py][vulkan] Add is_vulkan to py api, add vulkan to device type parsing
Test Plan: revert-hammer

Differential Revision:
D24379422 (e8fbe54cf5)

Original commit changeset: afab89bb9e17

fbshipit-source-id: 743c77e453239f10c155c67490cba5a42ab42f58
2020-10-21 08:23:05 -07:00
Ivan Kobzarev
e8fbe54cf5 [py][vulkan] Add is_vulkan to py api, add vulkan to device type parsing (#46511)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/46511

Test Plan: Imported from OSS

Reviewed By: AshkanAliabadi

Differential Revision: D24379422

Pulled By: IvanKobzarev

fbshipit-source-id: afab89bb9e17c50934083598262bbe14ea82e893
2020-10-20 20:04:24 -07:00
Dylan Bespalko
c767d65caf Added FPGA DispatchKey, DeviceType, Backend (#38938)
Summary:
ezyang,

I have added the changes to DispatchKey, DeviceType, Backend to support the out-of-tree FPGA.

cc. tataetae
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38938

Differential Revision: D21748955

Pulled By: ezyang

fbshipit-source-id: fe76d9730818205961430d2a0e00727b5c547b32
2020-06-03 07:28:14 -07:00
SsnL
ae392a77a6 Add better device idx parse checks (#37376)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/32079
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37376

Differential Revision: D21476036

Pulled By: zou3519

fbshipit-source-id: 86907083c23cbaf165b645307fb340f2656b814e
2020-05-14 09:07:12 -07:00
Danny Huang
ced9edbaa4 [Torch Device][c10] Fix the expected torch device error message (#36446)
Summary:
This PR made the expected torch device string error message to include `xla` as the acceptable torch device prefix string.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36446

Test Plan:
No Logic changed, and made sure `xla` is acceptable in `torch.device`.
```
import torch

device = torch.device("xla")
```

```
device = torch.device("unrecognized")

RuntimeError: Expected one of cpu, cuda, mkldnn, opengl, opencl, ideep, hip, msnpu, xla device type at start of device string: unrecognized
```

Differential Revision: D20993449

Pulled By: dahsh

fbshipit-source-id: 83afe4f913a650a655bfda9c2a64bf9e5aa27e16
2020-04-13 12:02:07 -07:00
cyy
8a14b41617 fix warnings reported by PVS (#33868)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33868

Differential Revision: D20169059

Pulled By: ailzhang

fbshipit-source-id: ec12226ae27ddd89fa5bacdd35151981ebfedcfd
2020-03-02 18:51:38 -08:00
Jeremy Lilley
abf55eb3a8 Pickler: convert std::stringstream cases. (#29351)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29351

When torch::save()ing a smallish tensor, we spend ~5% of the time
still in std::stringstream constructors.

This removes the last couple of cases. Benchmark shows ~5% improvement:
  TorchSaveSmallTensor Pre: 13.12us
  TorchSaveSmallTensor Post: 12.48us
ghstack-source-id: 93517928

Test Plan:
buck build mode/opt experimental/jeremyl/c2:
   buck-out/opt/gen/experimental/jeremyl/c2/SerializationBench  --bm_regex=TorchSaveSmallTensor

Differential Revision: D18365066

fbshipit-source-id: a3284bec004751cedae1cdadf27f969422faff8e
2019-11-08 14:26:40 -08:00
Sam Gross
dee11a92c1 Use Device instead of Backend in TensorIterator (#20690)
Summary:
This PR also moves Device::validate into the header file, which makes
statements like `Device d = kCPU` effectively free.

Device includes the device's index, so TensorIterator::compute_types
now implicitly checks that all CUDA inputs are on the same GPU.
Previously, this was done ad-hoc in places like TensorIterator::binary_op.

Note that zero-dim Tensor (scalars) are NOT required to be on the
same device as other inputs because they behave almost like Python numbers.
TensorIterator handles copying zero-dim Tensors to the common device.

Prior to this PR, TensorIterator would copy zero-dim Tensors between CPU
and GPU, but not between different GPUs (because Backend didn't encode
the GPU index). This removes that restriction.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20690

Differential Revision: D15414826

Pulled By: colesbury

fbshipit-source-id: 1d0ad1f7d663252af36dd4590bcda418c2f7a09f
2019-05-24 12:14:08 -07:00
Edward Yang
365fc26571 Replace AT_CHECK with TORCH_CHECK [shard 8/10]
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20434

Reviewed By: jerryzh168

Differential Revision: D15318396

fbshipit-source-id: dcd0f51be2d64b9440bb95ce8f40acb12545c2f4
2019-05-15 08:05:56 -07:00
Davide Libenzi
66084c0bc9 Add recognition for XLA device types.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16844

Differential Revision: D13988805

Pulled By: gchanan

fbshipit-source-id: 4e89d6d2cde8bdac41739efa65cc91569a360953
2019-02-07 14:51:28 -08:00
Roy Li
4c803f4ebd Expose backend extensions to python
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16582

Reviewed By: gchanan

Differential Revision: D13887539

fbshipit-source-id: 8755babf2e3e849af974655f2f3a91740efe977e
2019-02-01 11:00:18 -08:00
Sebastian Messmer
d408324350 Move files to/from c10/core and c10/util (#15316)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15316

This starts cleaning up the files in c10 according to the module structure we decided on.

Move to c10/util:
- Half.h, Half-inl.h, Half.cpp, bitcasts.h

Move to c10/core:
- Device.h, Device.cpp
- DeviceType.h, DeviceType.cpp

i-am-not-moving-c2-to-c10

Reviewed By: dzhulgakov

Differential Revision: D13498493

fbshipit-source-id: dfcf1c490474a12ab950c72ca686b8ad86428f63
2019-01-10 16:22:22 -08:00