Description:
1. Quantize Linear Layer Weights to 4-bits:
Quantize the weights of the Linear layer to 4 bits, using symmetric quantization.
Pack two 4-bit weights into one uint8 container.
Choose a quantization scheme (channel-wise or group-wise), with the group size being a multiple of 32.
2. Prepare Quantized Weights, Scales, and Optional Bias:
After quantizing, obtain the quantized_weights, scales, and groupsize.
If the original Linear layer has a bias, prepare it as well.
3. Pack the Weights Efficiently:
Use torch.ops.aten._dyn_quant_pack_4bit_weight to optimally pack the weights, scales, and optional bias.
```python
packed_weights = torch.ops.aten._dyn_quant_pack_4bit_weight(weight, scales_and_zeros, bias, groupsize, in_features, out_features)
```
Input parameters should include:
in_features and out_features (the same as the Linear layer’s corresponding parameters).
4. Perform Dynamic Quantized Matrix Multiplication:
Use torch.ops.aten._dyn_quant_matmul_4bit to perform matrix multiplication with quantized weights.
```python
output = torch.ops.aten._dyn_quant_matmul_4bit(input, packed_weights, groupsize, in_features, out_features)
```
Inputs required include:
The input tensor, packed_weights , groupsize, and the in_features and out_features.
API Usage: https://github.com/pytorch/pytorch/issues/143289
Model Perf :
7B Transformer model:
Prefill : 340 t/s
Decode : 40 t/s
2B Transformer model
Prefill : 747 t/s
Decode : 80 t/s
Tests:
python test/test_linalg.py -k test__dyn_quant_pack_4bit_weight
Ran 1 test in 0.016s
OK
python test/test_linalg.py -k test__dyn_quant_matmul_4bit
Ran 8 tests in 0.077s
OK
python test/test_linalg.py -k test_compile_dyn_quant_matmul_4bit
Ran 8 tests in 11.454s
Change-Id: Ia1672bad5e6ec94e64d8bb1971395d60f4b3a452
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134124
Approved by: https://github.com/digantdesai, https://github.com/malfet
Summary: The test is added by D67376995 and it is failing on fbcode
Test Plan: `buck2 test 'fbcode//mode/opt' fbcode//caffe2/test/inductor:mkldnn_pattern_matcher_cpu -- --exact 'caffe2/test/inductor:mkldnn_pattern_matcher_cpu - test_conv2d_linear_add_broadcast_shapes_cpu (caffe2.test.inductor.test_mkldnn_pattern_matcher.TestPatternMatcher)'`
Differential Revision: D67413687
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143530
Approved by: https://github.com/jansel
For torch.export (strict and non-strict), we don't do functional decomposition. Instead, we preserve the custom triton ops as custom ops. This is because we want the exported program to be high-level and serializable.
#### The alternative:
If we decompose the custom op to a functional hop and make it a node in exported program, we need to figure out ways of serializing the hop and its arguments, which can be triton.jited python functions and triton dtypes. This is undesireble because:
- it can be tedious to maintain layer that serialize the jited function (e.g. with a string) and dtypes.
- changes to triton or the serialization logic for triton arguments can be BC breaking
- exported program will expose the implementation detail (i.e. triton source code) for a specific backend (GPU) to users, which mixes levels of abstraction.
#### Future plans:
After this PR, in the short term, we expect users to have a seperate aot_compile stage that compiles the exported program into a Cubin file **on the same machine that users call export**, which does autotuning and removes triton dependency and serve the model with Cubin. This guarantees that triton changes won't break BC.
In the long term, we may export multiple cubins for the triton op directly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142426
Approved by: https://github.com/zou3519
ghstack dependencies: #142425
We added an is_export flag under torch.compiler.is_exporting. This comes handy when we try to do some special logic in user-level and system-level (e.g. in upper of the stack).
In increasing-scope:
- `_is_fx_tracing` is set to True when we use under symbolic_trace or make_fx.
- `is_exporting` is set to True when we're doing strict or non-strict export, which internally has a step that calls make_fx and set _is_fx_tracing to be True.
- `is_compiling` is set to True when we're either doing strict, non-strict export or torch.compile.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142425
Approved by: https://github.com/avikchaudhuri
Fixes#137936
The PR contains:
* Fix for `matmul_offline_tunableop`
* Clean-up try-finally blocks in UTs that don't use environment variables (`test_validator_tunableop_rocm`, `test_minimum_tuning_iteration_tunableop`, `test_disable_tuning_tunableop`)
* Avoid the use of environment variables in `minimum_tuning_iteration_tunableop`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143322
Approved by: https://github.com/jeffdaily
This folder is a tutorial that is not packaged in PyTorch that's an example of how to use the now deprecated Lite Interpreter
People should be using Executorch instead and there's already good documentation on it all over our tutorials and main homepage
Testing to see what breaks in CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143398
Approved by: https://github.com/albanD
Hermite polynomials diverge to NaN at high orders due to numerical overflow. The proposal is to prematurely return NaN of it is known that at this value it will be NaN.
According to my short test
```Python
import torch
device = "cuda"
dtype = torch.float32
x = torch.linspace(-1000, 1000, 100000, device=device, dtype=dtype)
for n in range(1024):
if torch.special.hermite_polynomial_h(x, n).isnan().sum().item() == x.shape[0]:
print(f"hermite_polynomial_h: all outputs are nans! n = {n}")
break
for n in range(1024):
if torch.special.hermite_polynomial_he(x, n).isnan().sum().item() == x.shape[0]:
print(f"hermite_polynomial_he: all outputs are nans! n = {n}")
break
```
The output values become NaNs at these orders:
```
hermite_polynomial_h: all outputs are nans! n = 53, dtype=torch.float32
hermite_polynomial_he: all outputs are nans! n = 61, dtype=torch.float32
hermite_polynomial_h: all outputs are nans! n = 272, dtype=torch.float64
hermite_polynomial_he: all outputs are nans! n = 304, dtype=torch.float64
```
Surely, it makes sense to increase the limit as a safety margin.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141955
Approved by: https://github.com/malfet, https://github.com/eqy
Summary:
In et-replay, random data is used to run the operators. However, it does not work well for the op that uses index to access tensor. For example, embedding ops, which use the indices to look up the embedding table. If random data is used for these index ops, et-replay usually runs into invalid memory access issue.
To fix it, ET provides an environment variable "ENABLE_PYTORCH_EXECUTION_TRACE_INTEGRAL_TENSOR_RANGE", if it is set, ET will capture the min/max value of the flattened integral tensor. Then in et_replay, the min/max is used to generate the random tensor within that range. It fixed invalid memory access issue.
Test Plan: buck2 run mode/opt caffe2/test:test_profiler_cuda -- profiler.test_execution_trace.TestExecutionTraceCUDA.test_execution_trace_record_integral_tensor_range_cuda
Differential Revision: D66666931
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143088
Approved by: https://github.com/sanrise
A bunch of auto dynamic shape tests would fail non-strict retraceability because when checking input constraints, we'd compare non-trivial expressions, which would require / affect shape env.
```
... is not tracked with proxy for <torch.fx.experimental.proxy_tensor._ModuleStackTracer object ...
```
I've also observed this bug internally.
This PR does an early check on whether args passed have concrete shapes, and only then proceeds: as before, we
1. try to unify / solve with the arg dim when the corresponding placeholder node dim is symbolic in one symbol
2. check directly if the placeholder node dim is concrete
3. otherwise defer to run time.
Differential Revision: [D67359596](https://our.internmc.facebook.com/intern/diff/D67359596/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143442
Approved by: https://github.com/tugsbayasgalan
Summary:
Support garbage collection after pt2 compilation.
Add jk to control the global rollout / rollback of this functionality
Add env var to control individual job's rollout
Test Plan:
Test the model training job with / without this changes
Reviewers:
@yuxihu @ezyang , @Yuzhen11 ,
Subscribers:
Tasks:
Tags:
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143364
Approved by: https://github.com/ezyang
Summary:
This diff mainly adds code changes to dump `inductor_triton_kernel_to_post_grad_nodes.json` artifact which contains mapping info from post_grad -> inductor kernel code:
`{"inductor_triton_kernel_name": [post_grad_node_0, post_grad_node_1, ..., ], "..."}.`
Example paste: P1695235000 verified on the test model. See "Test Plan":
We use this artifact to demonstrate provenance tracking in the frontend 3-tab highlighter tool:
https://github.com/YUNQIUGUO/compiler_explorer (copy/pasted the input files for demo purpose for now and will integrate with Shangdi's tool to 4-tab)
https://pxl.cl/66BzK
Note: Currently only supports mapping for inductor's`TritonKernel` type. TODO for enhancing more support for `ExternKernel` and other inductor generated kernel type, etc.
Test Plan:
test_model_coverage.sh:
```
#!/bin/sh
MODEL_ENTITY_ID=644688112
SNAPSHOT_ID=32
MODULE=merge
# buck2 build --show-output mode/opt -c=python.package_style=inplace -c fbcode.enable_gpu_sections=true -c fbcode.platform=platform010 -c fbcode.split-dwarf=true -c fbcode.nvcc_arch=a100,h100 caffe2/torch/fb/model_transform/experimental/benchmark:mts_gpu_benchmark
TORCH_COMPILE_DEBUG=1 CUDA_VISIBLE_DEVICES=0 TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 TORCH_LOGS="+inductor, schedule, fusion, output_code" TORCH_TRACE="tmp/guorachel_tt" TORCHINDUCTOR_MAX_AUTOTUNE=1 TORCHINDUCTOR_UNIQUE_KERNEL_NAMES=1 ../buck-out/v2/gen/fbcode/d29ee94b913014f1/caffe2/torch/fb/model_transform/experimental/benchmark/__mts_gpu_benchmark__/mts_gpu_benchmark.par --model-path manifold://ads_storage_fblearner/tree/user/facebook/fblearner/predictor/${MODEL_ENTITY_ID}/${SNAPSHOT_ID}/gpu_lowering/input.predictor.disagg.gpu.merge --lower-backend AOT_INDUCTOR_EP --gpu-trace --aot-inductor-config="{'max_autotune': True}" 2>&1 | tee output.txt
```
{F1973765026}
```
buck2 test 'fbcode//mode/opt' fbcode//caffe2/test/inductor:provenance_tracing -- --exact 'caffe2/test/inductor:provenance_tracing - test_triton_kernel_post_grad_mapping_aot_inductor (caffe2.test.inductor.test_provenance_tracing.TestProvenanceTracingArtifact)'
```
```
TORCH_LOGS="+inductor, output_code" buck2 run -c fbcode.enable_gpu_sections=true -c fbcode.nvcc_arch=h100 @//mode/opt fbcode//caffe2/test/inductor:provenance_tracing -- -r test_triton_kernel_post_grad_mapping_aot_inductor
```
Differential Revision: D66967510
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143055
Approved by: https://github.com/chenyang78
Remove erroneous assert assuming a dependent (user) node to be in the partition. This partially reverts #136616 by removing the assert.
Tested locally with a failing ExecuTorch Arm test using
```
$ python -m examples.arm.aot_arm_compiler --model_name mv2 --target ethos-u55-128 --delegate --quantize
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143376
Approved by: https://github.com/tarun292
Step required for performance in #143122
Adds support for CPU scalar for tensor_2 in addcmul. For example:
```
import torch
a = torch.rand(2, 2, device="cuda")
b = torch.tensor(1e-3)
torch.add(a, b)
torch.addcmul(a, a, b) # used to fail, now works
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143264
Approved by: https://github.com/janeyx99
Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
Summary:
we have seen cases where some workers don't receive stop signals, meaning watchdog isn't stopped accordingly. this diff introduces logic to kill the current pid alongside the worker pid
something to note is that there is a case where the worker pid to be killed either doesn't exist or cannot be killed for some reason which will result in the current pid also not being killed. this seems okay since the watchdog loop will just attempt to kill the worker pid on the next iteration but just wanted to point this out
Test Plan: experiment in next diff shows this works
Differential Revision: D65837085
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141060
Approved by: https://github.com/gag1jain