Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32745
Some parameters (like `bias` in conv) are optional. To achieve this
previously, you had to add `bias` as a constant, which would invoke some
pretty weird behavior in the frontend, summarized as:
```
if bias is not None:
add it as a parameter normally
else: # bias is None
add it as a constant with the value None
```
There are several things bad about this:
1. Bias is not a constant. Marking it `__constants__` is confusing.
2. It basically relies on an implementation detail (the frontend
processes parameters before constants) to work.
Okay, whatever. I don't even know why we did this originally, but
getting rid of it doesn't break anything, so I assume improved NoneType
refinement has made this a non-issue.
Note on perf: this will make no difference; if bias was `None` it's still
folded out today, if bias is a Tensor it would be added as a parameter
both before and after this change
Test Plan: Imported from OSS
Differential Revision: D19628634
Pulled By: suo
fbshipit-source-id: d9128a09c5d096b938fcf567b8c23b09ac9ab37f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30362
Right now the qat modules(qat.ConvBn2d, qat.ConvBnReLU2d, qat.Conv2d)
are not convinent to support other dimensions of Conv, this PR refactors
these modules so that we can support Conv1d/Conv3d better
Test Plan:
python test/test_quantization.py
Imported from OSS
Differential Revision: D18691152
fbshipit-source-id: 5b561e6b054eadd31b98cabdf1ac67a61ee9b805
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25326
And also uses self._backend, which I'm trying to kill or at least drastically reduce.
Test Plan: Imported from OSS
Differential Revision: D17097303
Pulled By: gchanan
fbshipit-source-id: f55d7df2a668425978499d4a4338b23ba6cf1b90
Summary:
* Deletes all weak script decorators / associated data structures / methods
* In order to keep supporting the standard library in script, this enables recursive script on any function defined in `torch.nn`
* Most changes in `torch/nn` are the result of `ag -Q "weak" torch/nn/ -l | xargs sed -i '/weak/d'`, only `rnn.py` needed manual editing to use the `ignore` and `export` to continue supporting the overloaded `forward` methods
* `Sequential`/`ModuleList` no longer need to be added to constants since they are compiled on demand
This should also fix https://github.com/pytorch/pytorch/issues/22212
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22212
Differential Revision: D15988346
Pulled By: driazati
fbshipit-source-id: af223e3ad0580be895377312949997a70e988e4f
Summary:
A bunch of modules were missing entries for `__constants__` which was making their `__repr__`s not work. Others had `__constants__` that were not necessary since it was provided by some parent class instead.
Fixes#20978
](https://our.intern.facebook.com/intern/diff/15539518/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21071
Pulled By: driazati
Differential Revision: D15539518
fbshipit-source-id: 24bdd1ef41ef636eefd5d2bad4ab2d79646ed4f0
Summary:
n was set as self.in_channels, but not used within the scope of the function.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19194
Differential Revision: D14937764
Pulled By: ezyang
fbshipit-source-id: 55cb599109309503fee897f77d798fd454fcc02d
Summary:
Remove calls to torch.jit._unwrap_optional that are no longer needed.
The remaining instances would require control flow logic for exceptions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16245
Differential Revision: D13804292
Pulled By: eellison
fbshipit-source-id: 08c5cbe4b956519be2333de5cf4e202488aff626
Summary:
Fixes#14099
I attempted to be as consistent as possible with the formatting, hence why my equation reads d*(k - 1) instead of (k - 1)*d.
Also there is an unused variable on line 46: `n = self.in_channels`. I could fix that here too if that's not too out of scope.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14876
Differential Revision: D13374317
Pulled By: soumith
fbshipit-source-id: a9f110acafa58cdb4206956dbe3ab4738d48292d
Summary:
This PR add resnet to test_jit and convert more nn modules, stacked on #14533 and #14715
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14437
Differential Revision: D13325871
Pulled By: wanchaol
fbshipit-source-id: 6c94a988b36794a373af6541c0c262a07291f7b1
Summary:
In the example for ConvTranspose3d, the docstring had "Conv3d" instead of "ConvTranspose3d" in one instance.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13668
Differential Revision: D12958372
Pulled By: soumith
fbshipit-source-id: 5ec901e20b90f4eed2bf04c5b417183ec2096447
Summary:
Closes#2119.
There was a small bug where the output_size got sliced with `[-2:]`
where we really meant to slice it as `[2:]` (to remove the batch and
channel dimensions).
Added a new test for this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12952
Differential Revision: D10510678
Pulled By: zou3519
fbshipit-source-id: 4c04a5007fc6d002e1806d6fe981b43d33d6a4f2
Summary:
- fix math formula
- test plan: build html and view on a browser
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12740
Differential Revision: D10419430
Pulled By: weiyangfb
fbshipit-source-id: b8eee9e75c3ce6e37535e3de597431ef5030e9ac
Summary:
- fix https://github.com/pytorch/pytorch/issues/12120
- add `torch.argsort`, `torch.pdist`, `broadcast_tensors` to *.rst files
- add parameter dim to `torch.unique` doc
- fix table and args for `torch.norm`
- test plan: make html and check docs in browser
gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12126
Differential Revision: D10087006
Pulled By: weiyangfb
fbshipit-source-id: 25f65c43d14e02140d0da988d8742c7ade3d8cc9
Summary:
Ping ezyang
This addresses your comment in #114. Strangely, when running the doc build (`make html`) none of my changes are actually showing, could you point out what I'm doing wrong?
Once #11329 is merged it might make sense to link to the reproducibility note everywhere.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11434
Differential Revision: D9751208
Pulled By: ezyang
fbshipit-source-id: cc672472449564ff099323c39603e8ff2b2d35c9
Summary:
Commits:
1. In extension doc, get rid of all references of `Variable` s (Closes#6947 )
+ also add minor improvements
+ also added a section with links to cpp extension :) goldsborough
+ removed mentions of `autograd.Function.requires_grad` as it's not used anywhere and hardcoded to `return_Py_True`.
2. Fix several sphinx warnings
3. Change `*` in equations in `module/conv.py` to `\times`
4. Fix docs for `Fold` and `Unfold`.
+ Added better shape check for `Fold` (it previously may give bogus result when there are not enough blocks). Added test for the checks.
5. Fix doc saying `trtrs` not available for CUDA (#9247 )
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9239
Reviewed By: soumith
Differential Revision: D8762492
Pulled By: SsnL
fbshipit-source-id: 13cd91128981a94493d5efdf250c40465f84346a
This PR enables users to print extra information of their subclassed nn.Module.
Now I simply insert the user-defined string at the ending of module name, which should be discussed in this PR.
Before this PR, users should redefine the __repr__ and copy&paste the source code from Module.
* Add support for extra information on Module
* Rewrite the repr method of Module
* Fix flake8
* Change the __repr__ to get_extra_repr in Linear
* Fix extra new-line for empty line
* Add test for __repr__ method
* Fix bug of block string indent
* Add indent for multi-line repr test.
* Address review comments
* Update tutorial for creating nn.Module
* Fix flake8, add extra_repr of bilinear
* Refactor DropoutNd
* Change to extra_repr in some Modules
* Fix flake8
* Refactor padding modules
* Refactor pooling module
* Fix typo
* Change to extra_repr
* Fix bug for GroupNorm
* Fix bug for LayerNorm
* Fix some minor errors in existing docs.
* Fix Convolution and Pooling docs in torch.nn.functional
* Cleaned up torch.nn.functional docs
* Address @SsnL 's comments
* Add multiplication sign missing in docs
* Fix more typos, and clear some warnings
* Change infinity symbol in LPPool2d
* Revert some changes in torch.nn.functional
* Few more minor changes
* Improvize documentation
1. Add formula for erf, erfinv
2. Make exp, expm1 similar to log, log1p
3. Symbol change in ge, le, ne, isnan
* Fix minor nit in the docstring
* More doc improvements
1. Added some formulae
2. Complete scanning till "Other Operations" in Tensor docs
* Add more changes
1. Modify all torch.Tensor wherever required
* Fix Conv docs
1. Fix minor nits in the references for LAPACK routines
* Improve Pooling docs
1. Fix lint error
* Improve docs for RNN, Normalization and Padding
1. Fix flake8 error for pooling
* Final fixes for torch.nn.* docs.
1. Improve Loss Function documentation
2. Improve Vision Layers documentation
* Fix lint error
* Improve docstrings in torch.nn.init
* Fix lint error
* Fix minor error in torch.nn.init.sparse
* Fix Activation and Utils Docs
1. Fix Math Errors
2. Add explicit clean to Makefile in docs to prevent running graph generation script
while cleaning
3. Fix utils docs
* Make PYCMD a Makefile argument, clear up prints in the build_activation_images.py
* Fix batch norm doc error
The nn.* counterpart of #5443 . Mostly removed Variable wrapper. Also added doc for nn.RReLU.
Notice that torch.randn(*, requires_grad=True) isn't documented until #5462 is done.
Adds a missing bias term to the __repr__ functions of the
Linear and Bilinear modules. Fixes the spacing in the Conv2d
__repr__ to make it consistent with other modules.
* Add a bit of notation explanation
For a first time user of Conv1d, it is not clear from documentation what N, C and L exactly mean. This should clarify this. Same for Conv2d.
3D modules apply padding on all three sides. "Both" doesn't make sense here.
I used the wording of the AvgPool3d docstring, where it was already correct.