Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70248
Modified loops in files under fbsource/fbcode/caffe2/ from the format
```
for(TYPE var=x0;var<x_max;x++)
```
to the format
```
for(const auto var: irange(xmax))
```
This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand.
Test Plan: Sandcastle
Reviewed By: malfet
Differential Revision: D32813863
fbshipit-source-id: 527244b4a2b220fdfe7f17dee3599603f492a2ca
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66743
Modified loops in files under fbsource/fbcode/caffe2/ from the format
`for(TYPE var=x0;var<x_max;x++)`
to the format
`for(const auto var: irange(xmax))`
This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand.
Test Plan: Sandcastle
Reviewed By: malfet
Differential Revision: D31705359
fbshipit-source-id: c9ea2fbc0f9cd29e97a52dcb203addc5f2abb09b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66234
Modified loops in files under fbsource/fbcode/caffe2/ from the format
`for(TYPE var=x0;var<x_max;x++)`
to the format
`for(const auto var: irange(xmax))`
This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand.
bypass_size_limit
allow-large-files
Test Plan: Sandcastle
Reviewed By: ngimel
Differential Revision: D30652629
fbshipit-source-id: 0ae6c4bbbb554bad42e372792a6430e1acf15e3e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49486
Remove code for Python 3.5 and lower.
There's more that can be removed/modernised, but sticking mainly to redundant version checks here, to keep the diff/PR smaller.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46579
Reviewed By: zou3519
Differential Revision: D24453571
Pulled By: ezyang
fbshipit-source-id: c2cfcf05d6c5f65df64d89c331692c9aec09248e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36267
This makes PythonOp throw the original python exception instead of wrapping it in a c10::Error type. This allows throwing exceptions from Python and preserving the type when they're caught again in Python. This is important for structured logging and handling non-retryable error types.
Test Plan: buck test caffe2/caffe2/python:python_op_test
Reviewed By: wenqicaofb
Differential Revision: D20928098
fbshipit-source-id: 001747f022c657b420f8450b84d64f4d57f6cdf6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26147
We may try to unpickle a byte string in py3 that was pickled from py2. Therefore we need to add encoding latin1.
Reviewed By: kennyhorror
Differential Revision: D17305677
fbshipit-source-id: c0c8a51909629a65eb72bb81cccfbabaee9f8d01
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17623
Despite it's generic sounding name, caffe2::DeviceGuard actually
only worked on CUDA devices. Rename it to something that more
clearly spells out its applicability.
I'm not sure if it's the right call, but in this patch I added
'using CUDAGuard = c10::cuda::CUDAGuard', as this seems to be more
in-line with how the Caffe2 codebase is currently written. More
idiomatic c10 namespace style would be to say cuda::CUDAGuard.
Willing to change this if people shout.
This is a respin of D13156470 (#14284)
Reviewed By: dzhulgakov
Differential Revision: D14285504
fbshipit-source-id: 93b8ab938b064572b3b010c307e1261fde0fff3d
Summary:
Based on offline discussion it should be less surprising to the users of existing code. Thus caffe2::Tensor is now a move-only class (as it used to be), explicit calls to UnsafeSharedInstance() are necessary to get shared_ptr behavior.
This change also identified a few places that misused the copy constructor - those are fixed
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15416
Reviewed By: Yangqing
Differential Revision: D13524598
fbshipit-source-id: aea12d6dff77342606fa88ce4ddddbff266245a7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15417
Right now the way we test whether Blob contains a CPU tensor is broken in ```PythonOpBase``` is broken, which means non-CPU path might never be taken.
Searching through the codebase, non-gpu path is used in PythonDLPack, and it is used in PytorchOp which is unused. So we'll remove non-gpu path in this diff.
Reviewed By: dzhulgakov
Differential Revision: D13495011
fbshipit-source-id: 9fe9537f05026d2a2cf7051efa81d184de722710
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14268
Removes the need for Context in Tensor by doing simple dispatch for CopyBytes. It'd eventually be subsumed by Roy Li's changes of proper copy_ op, but before that is done, let's get a clear logic of how copies are implemented and clean up some craft in CopyFrom implementation.
Note, that with these changes, one can probably can get rid of Context::CopyFromCPU/CopyToCPU, but it's a matter for follow up diffs.
This diff doesn't change the API of Tensor yet, but relies on the fact that passing `Context` to CopyFrom makes copy async if the device is CUDA and doesn't have any effect otherwise (that's how Context methods are implemented).
This doesn't change semantics of copy async implementation - as before it blindly calls cudaMemcpyAsync which probably means that it can be misused if invoked separately outside of operator body. I'll leave it for the follow up copy_ unification.
For Extend() we always do async copy - it makes sense as it's an in-place device-device operation and only any further op would be observable.
Note: there are now three ways of invoking copy in C2 code - templated CopyBytes, virtual CopyFromCPU/etc, and double-dispatch free method here. Hopefully we can get rid of the second one.
Also, please advise whether it's c10-worthy :)
Reviewed By: ezyang
Differential Revision: D13117987
fbshipit-source-id: a6772d6dcf3effaf06717da3a656fc9873b310b5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14196
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13641
FeedTensor function used to take a pointer to Tensor and feed the content using Resize
and mutable_data, but since Tensor is a pointer now, we can just return a Tensor instead.
Reviewed By: dzhulgakov
Differential Revision: D13091163
fbshipit-source-id: 9abf2fd320baca76e050530c500dd29f8e2d0211
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13641
FeedTensor function used to take a pointer to Tensor and feed the content using Resize
and mutable_data, but since Tensor is a pointer now, we can just return a Tensor instead.
Reviewed By: ezyang
Differential Revision: D12873145
fbshipit-source-id: 653735c20d611ff6ac9e380d8b3c721cb396a28f
Summary:
All usages of the `ndarray` construct have now been guarded with `USE_NUMPY`. This eliminates the requirement of NumPy while building PyTorch from source.
Fixes#11757
Reviewed By: Yangqing
Differential Revision: D10031862
Pulled By: SsnL
fbshipit-source-id: 32d84fd770a7714d544e2ca1895a3d7c75b3d712
Summary:
This does 6 things:
- add c10/util/Registry.h as the unified registry util
- cleaned up some APIs such as export condition
- fully remove aten/core/registry.h
- fully remove caffe2/core/registry.h
- remove a bogus aten/registry.h
- unifying all macros
- set up registry testing in c10
Also, an important note that we used to mark the templated Registry class as EXPORT - this should not happen, because one should almost never export a template class. This PR fixes that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12077
Reviewed By: ezyang
Differential Revision: D10050771
Pulled By: Yangqing
fbshipit-source-id: 417b249b49fed6a67956e7c6b6d22374bcee24cf
Summary:
TSIA. Right now we should basically use C10_EXPORT and C10_IMPORT for explicitly marking dllexport and dllimport, as a continued effort of the C10 unification.
This is a codemod by mechanically doing the following change:
CAFFE2_{EXPORT,IMPORT} -> C10_{EXPORT,IMPORT}
AT_CORE_{EXPORT,IMPORT} -> C10_{EXPORT,IMPORT}
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12019
Reviewed By: ezyang, teng-li
Differential Revision: D10016276
Pulled By: Yangqing
fbshipit-source-id: a420d62c43d1110105fc88f9e9076e28a3203164
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12043
Re-trying D9979976, this time with all call sites fixed.
D9979976 got reverted because there was a call site that wasn't covered by sandcastle it seems.
I fixed it and used 'grep' to ensure there aren't any more call sites in fbsource.
Reviewed By: ezyang
Differential Revision: D10026392
fbshipit-source-id: cd341514a8e53a40147ea0ee3e52f63bb6444157
Summary: The controller you requested could not be found. Original commit changeset: 2ea17724e223
Differential Revision:
D10026321
Ninja: stable broken
fbshipit-source-id: faf87cb7cc0f78c2c10d4aa6fceea279cd27acd6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11923
This is pre-work to allow moving Blob to ATen/core, which cannot depend on caffe2 anymore.
(1) Removing the Blob -> Tensor dependency allows us to move Blob to ATen/core and use it inside IValue without having to wait for the Tensor merge to be complete.
(2) In the final Blob design, we want it to be a very small class that doesn't have any special treatment for Tensor (or to be more correct, doesn't allow storing Tensor anymore), so this is anyhow the direction we want to go.
This changes call sites that will have to be moved to IValue later, but they cannot be moved to IValue directly, because for that, IValue first needs to be able to store Blob, which in turn first needs this diff and some other changes coming up in future diffs.
Codemods:
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)\\.IsTensorType\\(" "BlobIsTensorType(\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)->IsTensorType\\(" "BlobIsTensorType(*\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)\\.GetMutableTensor\\(" "BlobGetMutableTensor(\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)->GetMutableTensor\\(" "BlobGetMutableTensor(*\\1, "
It is, however, not only these codemods because regex based refactoring was only able to match a small amount of the call sites. To catch more, I wouldn've needed a AST aware tool like clangr, which I didn't figure out how to use.
Reviewed By: ezyang
Differential Revision: D9979976
fbshipit-source-id: 2ea17724e223b5b73b44f99362727759ca689e61
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11688
As a first step to remove static context(merge with allocator), we'll create a
global registries for context constructors, and remove CreateContext function from tensor.
Reviewed By: ezyang, dzhulgakov
Differential Revision: D9779821
fbshipit-source-id: 8b239ea50af7a0556fde2382f58f79194f0e3dc1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11254
Previously we use DeviceType in caffe2.proto directly, but it's an `enum` and have implicit conversion to int, which does not have type safety, e.g. we have to explicitly check for a device type is valid in event.h:
```
template <int d>
struct EventCreateFunctionRegisterer {
explicit EventCreateFunctionRegisterer(EventCreateFunction f) {
static_assert(d < MaxDeviceTypes, "");
Event::event_creator_[d] = f;
}
};
```
at::DeviceType is an `enum class`, and it does not have implicit conversion to int, and provides better type safety guarantees. In this diff we have done the following refactor(taking CPU as an example):
1. caffe2::DeviceType → caffe2::DeviceTypeProto
2. caffe2::CPU → caffe2::PROTO_CPU
3. caffe2::DeviceType = at::DeviceType
4. caffe2::CPU = at::DeviceType::CPU
codemod -d caffe2/caffe2 --extensions h,cc,cpp 'device_type\(\), ' 'device_type(), PROTO_'
+ some manual changes
In short, after this diff, in c++, caffe2::CPU refers to the at::DeviceType::CPU and the old proto caffe2::CPU will be caffe2::PROTO_CPU.
In python side, we have a temporary workaround that alias `caffe2_pb2.CPU = caffe2_pb2.PROOT_CPU` to make the change easier to review and this will be removed later.
Reviewed By: ezyang
Differential Revision: D9545704
fbshipit-source-id: 461a28a4ca74e616d3ee183a607078a717fd38a7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9939
Pull Request resolved: https://github.com/facebookresearch/weakly-supervised-action-detection/pull/13
Pull Request resolved: https://github.com/pytorch/translate/pull/166
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9125
Closes https://github.com/pytorch/pytorch/pull/9125
Use inheritance for polymorphism, and remove template parameter
This is to change the templating in call sites, the core implementations will change later
Before Caffe2 Tensor class was compile-time fixed to bind to a particular device/context. With this change, we're making it a runtime property (stored inside the tensor), but preserve the same semantics. For example, one has to specify device type in order to create a Tensor - there are no uninitialized tensors. More specifically the changes are:
1. We added an extra argument *DeviceType* to most of the constructors of the tensor, e.g. (Tensor(DeviceType type)),
2. Semantics of constructor Tensor(const Tensor<SrcContext>& src, ContextForCopy* context); is changed, in this constructor, the second context is passed in to enable us to call the templated Copy function, it could be in a different context as source and target previously, now we'll enforce that the context should have same device type as src, if it is provided.
3. To preserve 'get-or-construct' semantics of Blob, we added specialized getter Blob::GetMutableTensor that verifies both that Blob contains a Tensor and that it's of a correct type
4. Specifically, Tensor type is not default-constructible any more (as we don't have unknown device tensors) and thus some of the code handling STL containers needs to change
Note: Some changes are postponed just to keep this diff a bit smaller. Please see `TODO`s.
Reviewed By: ezyang, houseroad
Differential Revision: D9024330
fbshipit-source-id: e0b8295d2dc6ebe2963383ded5af799ad17164ba
Summary:
Pull Request resolved: https://github.com/facebookresearch/weakly-supervised-action-detection/pull/13
Pull Request resolved: https://github.com/pytorch/translate/pull/166
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9125
Closes https://github.com/pytorch/pytorch/pull/9125
Use inheritance for polymorphism, and remove template parameter
This is to change the templating in call sites, the core implementations will change later
Before Caffe2 Tensor class was compile-time fixed to bind to a particular device/context. With this change, we're making it a runtime property (stored inside the tensor), but preserve the same semantics. For example, one has to specify device type in order to create a Tensor - there are no uninitialized tensors. More specifically the changes are:
1. We added an extra argument *DeviceType* to most of the constructors of the tensor, e.g. (Tensor(DeviceType type)),
2. Semantics of constructor Tensor(const Tensor<SrcContext>& src, ContextForCopy* context); is changed, in this constructor, the second context is passed in to enable us to call the templated Copy function, it could be in a different context as source and target previously, now we'll enforce that the context should have same device type as src, if it is provided.
3. To preserve 'get-or-construct' semantics of Blob, we added specialized getter Blob::GetMutableTensor that verifies both that Blob contains a Tensor and that it's of a correct type
4. Specifically, Tensor type is not default-constructible any more (as we don't have unknown device tensors) and thus some of the code handling STL containers needs to change
Note: Some changes are postponed just to keep this diff a bit smaller. Please see `TODO`s.
Reviewed By: xw285cornell
Differential Revision: D8121878
fbshipit-source-id: 4a5e9a677ba4ac82095df959851a054c81eccf81
* Improve TypeId:
- move it to c10 namespace to allow for easy extraction from caffe2 into c10 (i.e. reuseability from aten)
- Use unordered_map/unordered_set instead of map/set for performance
- Make TypeId a type safe class (i.e. no implicit casts from/to int)
- Make TypeId constexpr
- Some readability improvements (e.g. using instead of typedef)
- Don't explicitly implement TypeMeta copy assignment and construction - let the compiler do that for us.
- Add TypeMeta move constructor
- Make TypeMeta members noexcept
- Implement TypeMeta::operator== and operator!= as free functions instead of in-class
* CR comments
* fix
* fix windows
* Rename back to CaffeTypeId
* Remove c10::TypeId/TypeMeta
* remove C10_KNOWN_TYPE
* code review
Summary: Adding support for DLPack tensors to Python op
Reviewed By: Yangqing
Differential Revision: D6577702
fbshipit-source-id: e14ef213fcdb2930ffe164667971a92aa8db503c
Summary:
Implementation of polling async net executor.
Notes:
- New net executor async_polling - schedules CPU and GPU ops asynchronously, uses single polling thread
- Events: update to Caffe2 events to support async CPU events, adding new methods:
Query() - non-blocking checking of event states: INITIALIZED -> RECORDED -> SUCCESS/FAILED
ErrorMessage() - when operation runs asynchronously and fails calling this on event will give error message
- Tasks: using existing DAGNet's algorithm to compute CPU and GPU chains, a separate task for each chain
- Polling: using single thread to query state of events - for CPU tasks atomically queries task state, for GPU task - uses cudaEventQuery; using Event
- Scheduling of CPU ops: using global thread pools
- Scheduling of GPU ops: using GPU thread pool per GPU device
Reviewed By: dzhulgakov
Differential Revision: D5985110
fbshipit-source-id: a9de7fcbb71d046a3aa1b573072b89a65dfeee8c