Commit Graph

8 Commits

Author SHA1 Message Date
Andy Chen
33ea7eafef Make checkpoint_sequential work with multiple arguments (#14278)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14278

In this commit, we make checkpoint_sequential work for models with multiple tensor inputs. Previously, it only processed the first tensor and ignored the rest.

We introduce a new test in test/test_utils.py that replicates the issue referenced in this [GitHub issue](https://github.com/pytorch/pytorch/issues/11093), and we make sure that the test passes by changing the behavior of checkpoint_sequential to process all input tensors.

Reviewed By: ezyang

Differential Revision: D13144672

fbshipit-source-id: 24f58233a65a0f5b80b89c8d8cbced6f814004f7
2018-12-04 18:47:43 -08:00
Michael Carilli
c36156eded Option to preserve bitwise accuracy of gradient checkpointed vs non-checkpointed dropout (#14253)
Summary:
This issue was noticed, and fix proposed, by raulpuric.

Checkpointing is implemented by rerunning a forward-pass segment for each checkpointed segment during backward.  This can result in the RNG state advancing more than it would without checkpointing, which can cause checkpoints that include dropout invocations to lose end-to-end bitwise accuracy as compared to non-checkpointed passes.

The present PR contains optional logic to juggle the RNG states such that checkpointed passes containing dropout achieve bitwise accuracy with non-checkpointed equivalents.**  The user requests this behavior by supplying `preserve_rng_state=True` to `torch.utils.checkpoint` or `torch.utils.checkpoint_sequential`.

Currently, `preserve_rng_state=True` may incur a moderate performance hit because restoring MTGP states can be expensive.  However, restoring Philox states is dirt cheap, so syed-ahmed's [RNG refactor](https://github.com/pytorch/pytorch/pull/13070#discussion_r235179882), once merged, will make this option more or less free.

I'm a little wary of the [def checkpoint(function, *args, preserve_rng_state=False):](https://github.com/pytorch/pytorch/pull/14253/files#diff-58da227fc9b1d56752b7dfad90428fe0R75) argument-passing method (specifically, putting a kwarg after a variable argument list).  Python 3 seems happy with it.
Edit:  It appears Python 2.7 is NOT happy with a [kwarg after *args](https://travis-ci.org/pytorch/pytorch/builds/457706518?utm_source=github_status&utm_medium=notification).  `preserve_rng_state` also needs to be communicated in a way that doesn't break any existing usage.  I'm open to suggestions (a global flag perhaps)?

**Batchnorm may still be an issue, but that's a battle for another day.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14253

Differential Revision: D13166665

Pulled By: soumith

fbshipit-source-id: 240cddab57ceaccba038b0276151342344eeecd7
2018-11-23 08:09:43 -08:00
Yangqing Jia
c47f680086 arc lint torch/utils (#13141)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13141

This is an example diff to show what lint rules are being applied.

Reviewed By: mingzhe09088

Differential Revision: D10858478

fbshipit-source-id: cbeb013f10f755b0095478adf79366e7cf7836ff
2018-10-25 14:59:03 -07:00
Thomas Viehmann
3799b10c44 various documentation formatting (#9359)
Summary:
This is a grab-bag of documentation formatting fixes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9359

Differential Revision: D8831400

Pulled By: soumith

fbshipit-source-id: 8dac02303168b2ea365e23938ee528d8e8c9f9b7
2018-07-13 02:48:25 -07:00
vfdev
2dc177ac50 Update checkpoint.py (#6943) 2018-04-25 08:43:58 -04:00
Priya Goyal
7d32f6fdc3 Adding runtime warning for checkpointing inputs to have requires_grad=True (#6883)
* Adding the warning for the checkpointing inputs to have requires_grad=True

* fix bug
2018-04-23 22:43:35 -04:00
Tongzhou Wang
c2187790e3 Improve utils.checkpoint docs (#6526)
* improve util.checkpoint docs

* change volatile to no_grad, and add more explanation

* address comments
2018-04-12 16:59:06 -04:00
Priya Goyal
e3196e0ea8
[Re-checkpointing] Autograd container for trading compute for memory (#6467)
* Autograd container for trading compute for memory

* add a unit test for checkpoint

* address comments

* address review comments

* adding some docs for the checkpoint api

* more comments

* more comments

* repro bug

* Fix a subtle bug/apply some review comments

* Update checkpoint.py

* Run everything in grad mode

* fix flake and chunk=1

* use imperative backward as per discussion

* remove Variable and also add models and test for models

* Add a simple thread local variable to check for autograd grad mode

* remove models and models test after debugging

* address review comments

* address more comments

* address more comments
2018-04-10 15:26:24 -04:00