Type annotations for compile_fx.
- Some of the stuff here is pretty complicated (functions which return functions that take functions) so I bailed on those and used `Any` just to get the rest landed.
- There are also changes to type signatures in other files which I did just to let mypy know more about the types in compile_fx.py.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138033
Approved by: https://github.com/Skylion007
This diff is the starting steps of https://docs.google.com/document/u/2/d/1kAEBt4AyW7HTAhXHbjoz8FBFHNyyEA2Qo2mPn7v3WUQ/edit?usp=drive_web&ouid=113555078003219714709
It implements the following changes:
- Only log spans to scuba, so no start events are ever logged
- Log events as the full event name, without "START" or "END"
- Only log to scuba major phases from chromium events. These are:
- entire_frame_compile (dynamo)
- backend_compile (aotdispatch)
- inductor_compile (inductor)
- codegen (inductor codegen)
Tlparse chromium events stay basically the same. But I implemented a few changes to clean that up as well:
- When there's a phase name available, log the phase name instead of the function name as the event name. This simplifies the trace to not have two identical rows. The fn_name is avaliable as metadata on the chromium event, if interested
- Log new events for pre and post grad passes. These do *not* log to scuba.
By making the phases much simpler in Scuba, with only categories for major phases of PT2 Compilation, we pave the way to add **much** more metadata and information to each individual event type. Diffs for that will come later.
**IMPLEMENTATION NOTES:**
- The logic for `log_chromium_event_internal` (which is the function that logs to Scuba) lives in chromium_events for now, but in the future as we add more metadata, it may belong independently in dynamo_timed or even outside of dynamo_timed. I haven't explored in detail what the refactor will look like. Once we start logging metadata for dynamo, aotdispatch, inductor, I suspect we will call log_pt2_compile_event directly, instead of making chromium event logger handle the pt2_compile_event logic. But that refactor is left for another PR on top of this one.
- There's an interesting space after pre grad passes within AOT autograd logic, that's between create_aot_dispatcher_function and pre grad passes. I'm not sure what we're spending time doing in that time, but I'll find out with a profile later.
Differential Revision: [D64479033](https://our.internmc.facebook.com/intern/diff/D64479033/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138093
Approved by: https://github.com/ezyang
This reverts commit 7743149b2b.
Reverts
* https://github.com/pytorch/pytorch/pull/135503
* https://github.com/pytorch/pytorch/pull/135502
* https://github.com/pytorch/pytorch/pull/135422
This passes this test. Earlier, the getitem would stay like a getitem in the Fx graph. But now the fake tensor propagations fails saying that .item is called. It seems that torch function is not getting triggered while fake tensor propagation.
```
import torch
from torch.nn.attention.flex_attention import BlockMask, _mask_mod_signature, _score_mod_signature, flex_attention
from torch._inductor.lowering import make_pointwise, register_lowering
from torch._inductor.virtualized import ops
from torch.nn.attention.flex_attention import create_block_mask
torch.set_default_device('cuda')
flex_attention = torch.compile(flex_attention, dynamic=False)
prefix_lengths = torch.arange(8)
def prefix_lm(b, h, q, kv):
return prefix_lengths[b] >= kv
mask = create_block_mask(prefix_lm, 8, None, 512, 512, _compile=True)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136590
Approved by: https://github.com/Chillee
Summary:
X-link: https://github.com/pytorch/benchmark/pull/2454
This adds structured logging overhead at a per compile basis to compilation metrics.
To do so, we track the frame_id_frame_compile_id that trace_structured uses to categorize compiles, and use that as the key in our timing table.
Implementation notes:
- If there's times we call trace_structured without a compile id, the time won't be measured. Not really a good way around that today given the compile id framework of compilation metrics. Strobelight is still the best way to measure on a per job basis.
- We don't actually measure the time it takes to log the compilation metrics itself. Fundamentally, it's not possible to log this properly if we're storing the logging number *in* compilation metrics, since there's no way to measure it before we do it(unless we want discrepancies between dynamo_compile and tlparse, which seems suboptimal). Hopefully for a large job, the cost of structured_logging compilation metrics itself is small.
- I wanted to use frame_phase_timing here, but there's a bunch of ids to iron out, and I don't really want to deal with that headache. compilation_time_metrics is sort of what I want, but that isn't by frame/compile id, so it's also a bit off. Putting it into torch.logging as a separate thing so logging tracks its own overhead seems fine, though.
Test Plan:
Run benchmarks/nanogpt and staging logger. See that the new compilation metric is logged to the staged dynamo_compile table:
https://fburl.com/scuba/logger_staging_jjwu_30582a48f1ff9cf5f4ac50a4c40af/xazjg5xq
Note that the sum(structured_logging_overhead_s) / sum(entire_frame_compile_time) = 8.387 / 124.278 = 6%, which seems reasonable as the overhead for a small compilation like this.
You can also look at samples for a more detailed log of this.
Reviewed By: oulgen
Differential Revision: D62643611
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136142
Approved by: https://github.com/bobrenjc93
Summary:
Record remote cache time saved via frame_phase_timing
We add to the "phase" when remote cache hits and saves us time, so that we have a 1:1 correspondence between a frame and time saved.
Test Plan:
Internally run benchmark, see that it's populated in sandbox table after previous diff lands and logger config is actualized.
Show that column exists in table:
https://fburl.com/scuba/logger_staging_jjwu_30582a48f1ff9cf5f4ac50a4c40af/fp2te0ff
Note that an earlier version of D62105258 had the column as a string so the staging table is a bit messed up. But you can see the most recent samples have the column populates as a float.
Reviewed By: aorenste
Differential Revision: D62106921
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135490
Approved by: https://github.com/aorenste
Fixes https://github.com/pytorch/pytorch/issues/133858
Details: Previously Dynamo would treat dataclasses as UserDefinedVariables. This was non-desirable if we would like to proxy the value into the graph, which is needed for TensorSubclassMetadata. To rectify this, frozen dataclasses are now able to be proxied similarly to NamedTuples. We require the object to be frozen, because if arbitrary mutation were allowed, we would need to replay those mutations in the graph after construction of the object.
For tracing construction of the variable, the generated `__init__` for the dataclass uses `object.__setattr__` because frozen dataclasses throw errors on the usual `__setattr__` invocation. With this treatment, no special handling is needed in dynamo for frozen dataclass construction.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134846
Approved by: https://github.com/bdhirsh, https://github.com/anijain2305
Restart the work from PR https://github.com/pytorch/pytorch/pull/100331 in this new PR since it's hard to rebase. It would be expected that some code is copy/pasted from the previous PR and main idea is the same.
Previously we see relatively large compilation time increase due to too many loop orders being considered. This PR tries to continue the work by doing pruning and only considering loop orders that we know for sure are relevant (i.e. do it on demand).
Some manually created cases that loop ordering matters are added as unit tests. The PR can make sure inductor does not miss fusion opportunities for them.
This PR should solve the not-able to fusion problem in https://github.com/pytorch/pytorch/issues/130015
Right now there is still significant increase of compilation time. I'll disable the feature by default. Later on after the compilation time issue is resolved, I'll enable it by default.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126254
Approved by: https://github.com/jansel
PYTHONPATH=$(pwd) python benchmarks/update_hint_benchmark.py out
as of this diff, compile_time_instruction_count counts the number of instruction from within
convert_frame.compile_inner
```
update_hint_regression,compile_time_instruction_count,10522459165
```
will add result from CI once populated.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133834
Approved by: https://github.com/aorenste
Summary:
We should always emit an end event in a finally block so that if a unit test or job fails, the stack is still correct.
Also, we use thread local storage for the stack, so that in multithreaded scenarios the stack will still be correctly added.
Test Plan:
Run benchmark and see that everything still works
Run
```
TORCH_LOGS=dynamo buck run test/functorch:test_aotdispatch -- -r test_backward_mutation_on_grad_out
```
With some extra logging to see that start events with the correct stack are emitted, and the end events are also emitted even though the test fails at runtime.
Differential Revision: D61682556
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134279
Approved by: https://github.com/aorenste