Also Back out "Revert D39075159: [acc_tensor] Use SymIntArrayRef for overloaded empty.memory_format's signature"
Original commit changeset: dab4a9dba4fa
Original commit changeset: dcaf16c037a9
Original Phabricator Diff: D38984222
Original Phabricator Diff: D39075159
Also update Metal registrations for C++ registration changes.
Also update NNPI registration to account for tightened schema checking
Differential Revision: [D39084762](https://our.internmc.facebook.com/intern/diff/D39084762/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D39084762/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84173
Approved by: https://github.com/Krovatkin
Previously, we introduced new SymInt overloads for every function we wanted. This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.
This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.
This is BC-breaking in the following ways:
* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change. Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually. This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.
This is not BC-breaking in the following ways:
* The user facing C++ API remains compatible. Even if a function changes from int to SymInt, the default C++ binding still takes only ints. (e.g., at::empty(IntArrayRef, ...). To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.
Structure of the PR:
* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
* The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
* When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
* In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
* In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
Addresses `Wc++98-compat-extra-semi` warning from https://github.com/llvm/torch-mlir/issues/1264 by removing extraneous semicolon after autogen LTC native function definitions.
```
/home/runner/work/torch-mlir/torch-mlir/build/tools/torch-mlir/python/torch_mlir/csrc/base_lazy_backend/generated/LazyNativeFunctions.cpp:4241:6: warning: extra ';' outside of a function is incompatible with C++98 [-Wc++98-compat-extra-semi]
};
^
```
cc: @wconstab @desertfire @ke1337 @antoniojkim
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83955
Approved by: https://github.com/wconstab
Fix use-dict-literal pylint suggestions by changing `dict()` to `{}`. This PR should do the change for every Python file except test/jit/test_list_dict.py, where I think the intent is to test the constructor.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83718
Approved by: https://github.com/albanD
Previously, we introduced new SymInt overloads for every function we wanted. This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.
This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.
This is BC-breaking in the following ways:
* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change. Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually. This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.
This is not BC-breaking in the following ways:
* The user facing C++ API remains compatible. Even if a function changes from int to SymInt, the default C++ binding still takes only ints. (e.g., at::empty(IntArrayRef, ...). To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.
Structure of the PR:
* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
* The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
* When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
* In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
* In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
In order to avoid extra round trips, and avoid confusion in places such as
this to manually pull in the latest copy of the shape_functions.py file
This also fixes the cases where people pull in the wrong version of the file. This can happen in cases such as when developers run `python setup.py install` instead of `python setup.py develop` to generate their current copy of Pytorch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83629
Approved by: https://github.com/davidberard98
Add is_symint_like, by way of is_base_ty_like which generalizes
the pattern for is_tensor_like and is_generator_like. Now that
we can query if a signature contains a SymInt, we can enforce that
you must name the overload with SymInt if the signature contains
SymInt.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83668
Approved by: https://github.com/bdhirsh, https://github.com/larryliu0820
- nondeterministic_seeded was not applied to enough functions. I added
some heuristics to codegen for identifying functions that are likely
to be random and added a bunch of these tags to functions. Not sure
I got all of them.
- Don't constant propagate through nondeterministic functions in FX
tracing.
It would be better to do some testing for the tag but this would be quite an effort.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83650
Approved by: https://github.com/bdhirsh, https://github.com/eellison
Summary:
We started to see use cases where it involves more than 1 custom namespace to live within the same yaml file. Hence relaxing the restriction that 1 yaml file can only have 1 custom namespace other than `aten`. Updated unit test as well.
Differential Revision: D38775685
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83580
Approved by: https://github.com/JacobSzwejbka
Extending the current regex in `model.py` to support annotation alias set. See issue #83214.
Ideally we should have a full fledged lexer similar to `schema_type_parser.cpp`, since regex can be more and more difficult to read if we add more support to it.
Adding this to unblock this issue for now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83501
Approved by: https://github.com/SherlockNoMad
Summary:
Previously we don't generate out variant (both schema and kernel) for an operator with functional variant only. This adds support for that and adds test.
## Changes on `native_function_generation.py`
We are generating out variant for all functional variants if possible. This PR introduces a lot of newly generated out variants and `native_functions.yaml` needs to incorporate the changes by adding `autogen` keywords.
The logic for determining what operators we should generate an out variant for is the following:
1. No existing out variant for this `NativeFunction`
2. Contains an existing in place, mutable or functional variant
3. Contains at least 1 tensor like return(s)
For operators matching the first two conditions but failing the third, I listed them in `FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT`.
## Special handling
The following operators satisfy all 3 criteria above but we chose to not autogen them, with some reasons.
* `mkldnn_adaptive_avg_pool2d`, the generated out variant `mkldnn_adaptive_avg_pool2d.out` is colliding with the `mkldnn_adaptive_avg_pool2d_out` kernel in `adaptive_avg_pool2d.out` operator. I manually created `mkldnn_adaptive_avg_pool2d.out` and renamed `mkldnn_adaptive_avg_pool2d_out` to `mkldnn_adaptive_avg_pool2d_out_stub`.
* `min`, `max` and `mean`. There already exist `min.out`, `max.out` and `mean.out` but they are having different semantics with the functional ones. I manually created `min.unary_out`, `max.unary_out` and `mean.dtype_out` to disambiguate.
## Autograd Changes
We introduced a logic to not match derivatives info in `derivatives.yaml` to out variant, since we are generating `NOT_IMPLEMENTED` kernels for those out variants anyway. The issue we are seeing with the original logic is that it doesn't handle `TensorOption` arguments really well. For example we have these two operators:
* `_to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor`
* `_to_copy.out(Tensor self, *, bool non_blocking=False, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)`
If we uses `_to_copy` derivative info, there will be compilation error since `dtype` is missing from `_to_copy.out` signature.
Test Plan: Rely on unit test
Differential Revision: D37832342
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81437
Approved by: https://github.com/iseeyuan, https://github.com/bdhirsh
Summary: Currently `SelectiveBuilder` is hardcoding namespace `aten` for operators. This is not working anymore since operators started to have custom namespaces. This fixes it.
Test Plan: Rely on newly added unit test
Differential Revision: D38565527
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83141
Approved by: https://github.com/JacobSzwejbka
`derivatives.yaml` can now take a `dispatch` entry which registers per-autograd dispatch key derivatives such as
```
name: foo(Tensor self, Tensor y) -> Tensor
dispatch:
Default:
x: grad
y: grad.expand(y.sizes())
AutogradNestedTensor:
x: grad
y: NestedTensor_foo_backward(grad, y)
output_differentiabilty: [True]
```
However the old schema where there is no `dispatch` entry is still supported.
Would greatly appreciate feedback on *how to improve the testing strategy* of this PR, currently have registered an aten test op in TestOps.cpp with dummy gradients in derivatives.yaml and have some tests in test_autograd.py:TestAutogradMultipleDispatch but I am not sure whether these are sufficiently rigorous.
Additionally, this PR also makes the assumption that sets like [VIEW_FUNCTIONS](ff5399e528/tools/autograd/gen_inplace_or_view_type.py (L60)) are per-native-function and not per-native-function-and-dispatch-key. I'm not sure whether this is necessarily the case, *would there ever be a situation where (e.g. a nested_tensor op is a view op but the aten function is not or vice versa?)*
* __->__ #82801
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82801
Approved by: https://github.com/bhosmer, https://github.com/albanD
Somehow even with clang-format off, it was unhappy with this line
>>> Lint for torch/csrc/jit/runtime/serialized_shape_function_registry.cpp:
Warning (CLANGFORMAT) format
See https://clang.llvm.org/docs/ClangFormat.html.
Run `lintrunner -a` to apply this patch.
You can run `lintrunner -a` to apply this patch.
2855 2855 | return shape_mappings;
2856 2856 | }
2857 2857 |
2857 |-
2859 2858 | // clang-format on
2860 2859 |
2861 2860 | } // namespace jit
Note that there is no changes to `serialized_shape_function_registry.cpp` in this diff because I had to manually run `lintrunner` to make it format the code correctly in the previous diff so that we can land it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79571
Approved by: https://github.com/eellison
Differential Revision: [D38480514](https://our.internmc.facebook.com/intern/diff/D38480514/)
torchgen schema parser does not support parsing function schemas using custom class so far. Here is an example:
```
quantized::conv2d_relu.new(Tensor qx, __torch__.torch.classes.quantized.Conv2dPackedParamsBase packed_weight, float output_scale, int output_zero_point) -> (Tensor)
```
This PR parse custom class name and encapsulate that into an object of CustomClassType. The only thing we need right now is just store the string class name and return that in `__str__` method.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82925
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
The functional variant of one of the `arange` overloads has a schema mismatch with the out variant. The functional one has `Scalar step`, but the corresponding out variant has `Scalar step=1`. This isn't allowed, so it had to be special-cased in the python codegen and manually bound. This adds the default `step` value to the functional overload and removes the special-casing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81380
Approved by: https://github.com/ngimel
Fixes#81774
`TensorOptions` arguments in the JIT schema are optional, but in the Python API these were being translated to non-optional but with a default value. This change makes the arguments accept `None` for consistency with the JIT schema. However, it also means that `dtype=c10::nullopt` was previously completely untested so this also fixes several related bugs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82241
Approved by: https://github.com/ngimel
Summary:
A follow up of #81581. Before these 2 PRs, if an operator with custom kernel namespace is added to `native_functions.yaml` (or any other yaml consumed by `torchgen`), although we are able to recognize the custom kernel in files such as `NativeFunctions.h` and `RegisterCPU.cpp`, we still generate backend specific wrappers under the hardcoded `at` namespace. This changes the behavior, by generating wrapper functions under custom namespaces.
For example, if the entries in yaml file looks like:
```
- func: op_1(Tensor(a) self) -> Tensor(a)
dispatch:
CPU: at::op_1_kernel # ATen kernel
- func: op_2(Tensor(a) self) -> Tensor(a)
dispatch:
CPU: custom::op_2_kernel # custom kernel
```
We generate the following code for `CPUFunctions_inl.h` and `RegisterCPU.cpp`:
`CPUFunctions_inl.h`:
```
namespace at {
namespace cpu {
TORCH_API at::Tensor & op_1(const at::Tensor & self);
} // namespace cpu
} // namespace at
namespace custom {
namespace cpu {
TORCH_API at::Tensor & op_2(const at::Tensor & self);
} // namespace cpu
} // namespace custom
```
Notice the difference between `at::cpu` and `custom::cpu`.
Then the definition for these can be found in `RegisterCPU.cpp`.
`RegisterCPU.cpp`:
```
#include "CPUFunctions.h"
namespace at {
namespace {
at::Tensor & wrapper_op_1(const at::Tensor & self) {
// No device check
// DeviceGuard omitted
return at::native::op_1_kernel(self);
}
} // anonymous namespace
TORCH_LIBRARY_IMPL(aten, CPU, m) {
m.impl("op_1", TORCH_FN(wrapper_op_1));
}
namespace cpu {
at::Tensor & op_1(at::Tensor & self) {
return wrapper_op_1(self);
}
} // namespace cpu
} // namespace at
namespace custom {
namespace {
at::Tensor & wrapper_op_2(const at::Tensor & self) {
// No device check
// DeviceGuard omitted
return at::native::op_2_kernel(self);
}
} // anonymous namespace
TORCH_LIBRARY_IMPL(aten, CPU, m) {
m.impl("op_2", TORCH_FN(wrapper_op_2));
}
namespace cpu {
at::Tensor & op_2(at::Tensor & self) {
return wrapper_op_2(self);
}
} // namespace cpu
} // namespace custom
```
The benefit for this change is that it unifies all the namespaces derived from custom ops. In the example above, there are:
1. `custom::native` for kernels
2. `custom::<dispatch_key>` e.g., `custom::cpu` for wrappers
This customized operator will have nothing to do with `at::native`, `at::cpu` etc.
Test Plan: This is very hard to test. I will refactor this logic, abstract out some layers so it's testable. Will do it in coming PRs
Differential Revision: D37972772
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81744
Approved by: https://github.com/bdhirsh
`resize_()` is annoying because it needs special casing for functionalization. It's technically an inplace-view op, but it can't really have a pure view variant, since calling resize_() might bust the old storage. I gave it an `inplace_view` tag so that stuff like `FakeTensor` that relies on tags will pick it up properly, which required jumping through some codegen hoops.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82667
Approved by: https://github.com/eellison
Closes#82320
The iteration order of a `set` can change from run to run, resulting
in real content changes to generated files and therefore unnecessary
rebuilding.
The fix is to use a sort to give a repeatable iteration order.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82536
Approved by: https://github.com/ezyang
Summary:
Some quantized operators needs `QuantizedCPU` backend, due to an issue in namespace checking, currently if we have two backends as well as a custom namespaces in native function, codegen will hit assertion error. This PR fixes this issue
The root cause is that codegen right now asserts that a native function should only have one namespace. The current behavior is that If a native function is not found in a `BackendIndex`, we will use default namespace for that backend, for fallback kernels. However that default namespace may not be listed in the yaml file and it should not be counted when checking if we have two different namespaces for that backend. In our error case, we have 2 `BackendIndex`, one for `QuantizedCPU` and one for `CPU`. The native function doesn't have a kernel in `QuantizedCPU` but we still use a default namespace (`at::native`) for it. Since we have a custom namespace for dispatch key `CPU`, we ran into the assertion error.
This PR changes the assertion criteria. We only error out if a namespace has two or more kernels and they have two or more different namespaces.
Test Plan: rely on newly added unit test
Differential Revision: D38101345
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82133
Approved by: https://github.com/iseeyuan
Deprecated signatures are currently "parsed" manually to find the
relative order of the argument names and all other information is
inferred from the aten schema for the non-deprecated overload.
However, this leads to problems if the argument names don't match or
if there are multiple candidates that match the ATen function call.
Instead, this makes the deprecated function a full FunctionSchema and
so the entire python signature comes solely from the deprecated
schema, with the `aten:` clause only used for the dispatch lambda call.
I have confirmed locally that there is no change to
`python_torch_functionsEverything.cpp`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82179
Approved by: https://github.com/albanD
Done via
```
git grep -l 'SymbolicIntNode' | xargs sed -i 's/SymbolicIntNode/SymIntNodeImpl/g'
```
Reasoning for the change:
* Sym is shorter than Symbolic, and consistent with SymInt
* You usually will deal in shared_ptr<...>, so we're going to
reserve the shorter name (SymIntNode) for the shared pointer.
But I don't want to update the Python name, so afterwards I ran
```
git grep -l _C.SymIntNodeImpl | xargs sed -i 's/_C.SymIntNodeImpl/_C.SymIntNode/'
```
and manually fixed up the binding code
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82350
Approved by: https://github.com/Krovatkin
This also makes them not decompose when we switch Python key.
Note that CompositeExplicitAutogradNonFunctional maybe be overly
conservative for some implementations (which actually call into
other functional ops), but for now I just uniformly apply this
everywhere to avoid errors.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82251
Approved by: https://github.com/bdhirsh, https://github.com/zou3519
Motivation
- The initial motivation for the allowlist is that we were checking in
VmapGeneratedPlumbing.h to pytorch/functorch but people were changing
schemas of operators in pytorch/pytorch. The allowlist helped reduce the
number of collisions (because people change schemas of more operators
than we had in the allowlist). This is no longer a problem because
functorch is in the pytorch/pytorch repo
- Avoid merge conflicts. Multiple people editing the allowlist leads to
merge conflicts; getting rid of that alleviates it.
Test Plan:
- wait for CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82352
Approved by: https://github.com/ezyang
This PR changes VmapGeneratedPlumbing.h to be generated by torchgen. The
output file is ATen/VmapGeneratedPlumbing.h.
Why generate this file inside PyTorch codegen instead of a separate step
in functorch?
- I can't figure out how to get functorch's fbcode target to generate
- functorch's build system will, in the mid-term, be absorbed into
pytorch's build system, so I don't want to do the extra work of adding
a step to the functorch build process.
Test Plan:
- build pytorch, build functorch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82351
Approved by: https://github.com/ezyang
Once CompositeImplicitAutograd gets registered to Python key, this will
ensure that tensor subclasses can interpose on these functions directly
rather than getting decomposed. We prefer not decomposing as these
functions are functional, but their implementations use inplace
operations (and are thus more difficult to deal with, unless you use
functionalization.)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82238
Approved by: https://github.com/zou3519, https://github.com/bdhirsh
This is to get a conversation started.
* @JackCaoG we could add attributes to items in `ir_codegen` section to customize IR generation logic (e.g. not generating `::Lower`). Though it could be a bit tricky to thread it through.
* Adding an extra argument to `map_codegen` to filter native functions out seems like a step in the right direction. Otherwise, it's a bit confusing how do we go from a full list to a codegen list.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81847
Approved by: https://github.com/JackCaoG, https://github.com/wconstab, https://github.com/bdhirsh
Currently any function with a default dtype other than None has to be
manually entered into this function. Instead, this reads the default
directly from `native_functions.yaml`. In order to do this, I also
change `PythonSignatureGroup` to take `tensor_options_args` from the
functional variant since the out variant doesn't actually have tensor
options arguments to take the default values from.
Also note that we need to use `default_init` instead of `default`
because the out argument version doesn't have a `tensor_options`
argument to extract the default value from and so the PythonSignature
objects wouldn't match.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81479
Approved by: https://github.com/albanD
The composite kernel for `view_copy` that we generate is special-cased a bit for efficiency to avoid having to do extra clones in some cases.
That logic was slightly wrong though, and is fixed here (it needs to mirror the logic in `reshape()`).
It manifested as a debug assert firing for Lazy Tensor, which I confirmed no longer fires when running this script:
```
# ran with "python test_ltc_only_torch.py --device=lazy --sync=1 --nvtx=1"
import torch
import torch._lazy
from torch._lazy.ts_backend import init as init_ts_backend
init_ts_backend()
torch.manual_seed(42)
from transformers import BertForSequenceClassification
def parse_args():
import argparse
parser = argparse.ArgumentParser(description='')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--sync', type=bool, default=False)
parser.add_argument('--nvtx', type=bool, default=False)
return parser.parse_args()
args = parse_args()
device = args.device
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', return_dict=True)
from transformers import AdamW
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
text_batch = ["I love Pixar.", "I don't care for Pixar."]
encoding = tokenizer(text_batch, return_tensors='pt', padding=True, truncation=True)
input_ids = encoding['input_ids'].to(device)
attention_mask = encoding['attention_mask'].to(device)
model = model.to(device)
model.train()
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=1e-5)
labels = torch.tensor([1,0]).unsqueeze(0).to(device)
for _ in range(6):
torch.cuda.nvtx.range_push(f'Iter{_}')
torch.cuda.nvtx.range_push('F')
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
if args.sync:
torch._lazy.mark_step()
torch._lazy.wait_device_ops()
torch.cuda.nvtx.range_pop()
loss = outputs.loss
torch.cuda.nvtx.range_push('B')
optimizer.zero_grad()
loss.backward()
if args.sync:
torch._lazy.mark_step()
torch._lazy.wait_device_ops()
torch.cuda.nvtx.range_pop()
torch.cuda.nvtx.range_push('O')
optimizer.step()
if args.sync:
torch._lazy.mark_step()
torch._lazy.wait_device_ops()
torch.cuda.nvtx.range_pop()
torch.cuda.nvtx.range_pop()
torch._lazy.mark_step()
torch._lazy.wait_device_ops()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81553
Approved by: https://github.com/ezyang
Summary:
In #77710 I introduces some hack to allow static dispatch to take namespaces. After we introduced namespace into ops and kernels, we don't have to pass namespace into `static_dispatch()`; instead we will generate ops with the kernel namespace for `Functions.h`. After this diff:
If we have a yaml file looking like this:
```
- func: op_1(Tensor(a) self) -> Tensor(a)
dispatch:
CPU: at::op_1_kernel # ATen kernel
- func: op_2(Tensor(a) self) -> Tensor(a)
dispatch:
CPU: custom::op_2_kernel # custom kernel
```
`Functions.h` will contain the following C++ APIs:
```
TORCH_API inline at::Tensor & op_1(at::Tensor & self) {
return at::cpu::op_1_kernel(self);
}
TORCH_API inline at::Tensor & op_2(at::Tensor & self) {
return custom::cpu::op_2_kernel(self);
}
```
Test Plan: Rely on CI
Differential Revision: D37900753
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81581
Approved by: https://github.com/iseeyuan
This PR is doing a few interrelated things, all of which are necessary to get correctness. Read the comment in torch/fx/experimental/proxy_tensor.py for the high level overview.
Let's break down the parts of this PR:
* Bug fix where `enable_torch_dispatch_mode` with `None` doesn't work. This make `enable_torch_dispatch_mode(current_mode.inner)` work which is the basis for how we temporarily disable fake tensor mode.
* Bug fix for when fake tensor mode is combined with a non-mode tensor subclass. This actually could be ablated from this PR but it affects where the logic for allowing non fake tensor inputs with lift goes, so it's all in here in one go. There are some relevant tests for the fix in fake tensor, but it turns out I didn't need this because I'm always using proxy tensors as a mode (which ensures the ordering is right.)
* New `lift_fresh` view operator. Note that like lift, we have to manually write the functionalize kernel for these functions.
* The actual change, which is to save constants when we see them in the proxy tensor mode, and then propagate them as we go (because otherwise you'll handle mutations on constants incorrectly--see test.)
This is mildly BC-breaking if anyone was previously interposing on
at::lift, but this operator was relatively new and I checked
functorch which has no explicit reference to lift. So I think it
should not be too disruptive.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81192
Approved by: https://github.com/samdow, https://github.com/bdhirsh
There are small typos in:
- caffe2/python/recurrent.py
- test/distributed/test_c10d_nccl.py
- test/test_fx.py
- torch/csrc/jit/runtime/autodiff.cpp
- torchgen/gen.py
Fixes:
- Should read `propagation` rather than `propogation`.
- Should read `multiplied` rather than `multuplied`.
- Should read `eliminate` rather than `elminate`.
- Should read `dispatcher` rather than `disaptcher`.
Semi-automated pull request generated by
https://github.com/timgates42/meticulous/blob/master/docs/NOTE.md
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81435
Approved by: https://github.com/ngimel
Summary:
A followup to #78015 and #79733. In those PRs I introduced custom namespace support into:
* `Register<DispatchKey>.cpp`
* `RegisterSchema.cpp`
* `NativeFunctions.h`
This PR extracts out logic that generates schema registration code (used in `RegisterSchema.cpp`) into a function so that it can be easily tested and reused. Added unit test to cover the logic as well.
Test Plan: Rely on newly added unit tests.
Differential Revision: D37581186
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80780
Approved by: https://github.com/iseeyuan
`ProxyTorchDispatchMode` was added recently as part of `make_fx`, which was secretly causing the meta tensor calls used inside of functionalization to get baked into the graph. It also wasn't caught because the functionalization tests in core don't use `make_fx`, and the tests in functorch aren't as comprehensive.
Now that `make_fx` is in core, I also ported the functionalization test infra over to use it, which would have caught the regression. This also makes the tests cleaner, since mode-based tracing lets us pick up factory functions in the trace output.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80416
Approved by: https://github.com/ezyang, https://github.com/albanD
This should fix the last issue that @anijain2305 hit when running ResNet with TorchDynamo <> functionalization.
Today if you try to call an `OpOverloadPacket` from python with some arguments, we will use the types of those arguments to perform overload resolution. With some functional variants of ops, this can be ambiguous.
Today this affects just one op: `_fused_moving_avg_obs_fq_helper`, although it would potentially affect e.g. `native_batch_norm` in the future.
Example:
```
# There are technically two overloads:
# torch.ops.aten._fused_moving_avg_obs_fq_helper.default (returns 2 argument, mutates 4 of its inputs inplace)
# torch.ops.aten._fused_moving_avg_obs_fq_helper.functional (returns 6 argument, mutates none of its inputs)
# We pick the wrong one - no way to know that we should pick the functional one, just from the call site.
outs = torch.ops.aten._fused_moving_avg_obs_fq_helper(a, a, a, a, a, a, a, 1.0, 0, 1, 0)
# raises an error - tries to call the overload with only 2 returns
return _fused_moving_avg_obs_fq_helper_functional[5]
```
Specifically, functionalization will bake `_fused_moving_avg_obs_fq_helper.functional` into the graph, but when AOTAutograd tries to compile with TorchScript, it needs to remove the overload name (TS doesn't know how to parse overload names directly, so we need to remove the overload name and let it infer the right overload at runtime later- so it picks the wrong one).
The situation is pretty similar to inplace; `ops.aten.add` and `ops.aten.add_` represent two different `OverloadPacket` objects; they can't be overloads of the same op, because their schemas would be ambiguous - the alias annotations are different, but that isn't enough to disambiguate).
In this PR, I try to fix the situation in a pretty similar way to how we handle `inplace` in the data model: `inplace` ops get their own base operator name, but they are represented as a flag inside of `BaseOperatorName` in the data model.
Two other important changes that I made as part of this PR:
(1) Originally, there were ~100 different `*_functional` operators: e.g. we had operators named `resize.functional` and `zero.functional`. The `_functional` bit isn't actually necessary in most cases: it's only necessary for operators that **also** have a `SchemaKind.mutable` variant, where `_fused_moving_avg_obs_fq_helper` is the only op that fits that description today. So I removed the unnecessary notion of "functional" from those other ops. I also added a bunch of assertions to force this restriction.
I think that makes more sense in the long run, because it eliminates an unnecessary difference in the model. E.g. we don't have `add_.Tensor` and `add.Tensor_functional`. We just have `add_.Tensor` and `add.Tensor`.
(2) I noticed that we actually still weren't pairing up a bunch of `_foreach` operators correctly, because their input arguments were different (`self` vs. `tensors`). Since they're private API's, I went ahead and changed the argument names directly so they get matched up. Before this PR, we were generating a separate `_foreach_add` and `_foreach_add.functional` variant in a bunch of cases, that really did the same thing (but happened to have a different name for the first argument).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80556
Approved by: https://github.com/ezyang, https://github.com/albanD
Which is, in essence is composite of `eq`->`all`->`item`
`native/mps/operators/Equal.cpp` is an almost verbatim copy of `native/cuda/Equal.cpp`
Fix codegen by generating MPSFunctions headers
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80195
Approved by: https://github.com/albanD
This expands the `AT_DISPATCH` macros to enable writing your own
`AT_DISPATCH_SWITCH` statements with multiple `AT_DISPATCH_CASE`
labels. So, where previously you may have written:
```cpp
if (iter.common_dtype() == kBool) {
my_bool_kernel(iter);
} else {
AT_DISPATCH_INTEGRAL_TYPES(iter.common_dtype(), "my_kernel", [&] {
...
});
}
```
You can now instead write
```cpp
AT_DISPATCH_SWITCH(iter.common_dtype(), "my_kernel",
AT_DISPATCH_CASE(kBool, [&] { my_kernel_bool(iter); })
AT_DISPATCH_CASE_INTEGRAL_TYPES([&] { ... })
);
```
The macro syntax is a bit ugly, however the benefits are:
- Greater flexibility, as the kernel code doesn't have to be shared
for all dtypes.
- Selective build and RECORD_KERNEL_FUNCTION work even for single
dtype specializations such as the bool case in the example.
- The compiler sees a single switch for all types, which should be
easier to optimize into a jump table.
- We also now get errors if the same scalar type is handled twice.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79978
Approved by: https://github.com/ezyang
When constructing a lazy::Node, [null operands (optional values that aren't included) are dropped](30fb2c4aba/torch/csrc/lazy/core/ir.cpp (L82-L84)), so it’s possible for the stored operand list to be a different length than the one that was passed into the constructor.
This can become a problem during the call to `CanBeReused` in the autogen `LazyIr.h` code. For example:
```
bool CanBeReused(const torch::lazy::Value& input, const c10::optional<torch::lazy::Value>& weight, const c10::optional<torch::lazy::Value>& bias, const c10::optional<torch::lazy::Value>& running_mean, const c10::optional<torch::lazy::Value>& running_var, const bool& training, const double& momentum, const double& eps) const {
size_t i = 0;
std::cout << "Num operands: " << operands().size() << std::endl;
return (operand(i++) == input &&
operand(i++) == weight.value_or(kNullValue) &&
operand(i++) == bias.value_or(kNullValue) &&
operand(i++) == running_mean.value_or(kNullValue) &&
operand(i++) == running_var.value_or(kNullValue) &&
this->training == training &&
this->momentum == momentum &&
this->eps == eps);
}
```
Here we operate under the assumption that the number of operands stored in the `lazy::Node` is equal to the number of operands originally passed into the constructor. Recall that we drop any null operands though, so it’s possible to inadvertently access an invalid index at this point.
This PR addresses this issue by adding a new nullable_operand method which falls back to a null value instead of producing an index error when going out of bounds.
This should solve the issue found at https://github.com/pytorch/pytorch/pull/79637#issuecomment-1162044545
cc: @antoniojkim @ke1337 @wconstab @desertfire
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80060
Approved by: https://github.com/desertfire
Due to implicit conversion shenanigans, having both IntArrayRef
and SymIntArrayRef overloads makes {} ambiguous. While we could
fix this by making a single unified type that accepts all the overloads
we want, an easier fix was to just push the SymIntArrayRef overload
to its own name.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79281
Approved by: https://github.com/suo
Summary:
Adding a feature to allow user to specify namespaces for operator and kernels.
# Feature
There's a feature request to allow DSL to:
1. take in an operator namespace other than `aten`.
2. take in a kernel that is in a different namespace than `at::native`.
For both features, we only allow user to have a single layer of namespace for the sake of simplicity. If user specify `custom::function` as kernel, the codegen will depend on `custom::native::function` where `native` is hardcoded.
# Proposal
For feature 1, add a `namespace` attribute to data class `NativeFunction`. The namespace will be extract out by matching pattern "::" on the `func` variable. For `NativeFunctionsGroup` there's an assumption that all variants (function, inplace, out) will have the same namespace. By default (if not specified) the namespace will be "aten".
For feature 2, add a `namespace` attribute to `BackendMetadata` class, similarly match pattern "::" on the kernel field. Remove the `cpp_namespace` field from `register_dispatch_key` data class. By default (if not specified) the namespace for a kernel would be "at::native".
Test Plan:
Example yaml entries:
```
- func: custom::gelu.out(Tensor self, *, str approximate='none', Tensor(a!) out) -> Tensor(a!)
structured: True
structured_inherits: TensorIteratorBase
device_check: NoCheck # TensorIterator
python_module: nn
dispatch:
CPU: custom::gelu_out_cpu
CUDA: custom::gelu_out_cuda
MPS: custom::gelu_out_mps
- func: custom::gelu_(Tensor(a!) self, *, str approximate='none') -> Tensor(a!)
structured_delegate: gelu.out
device_check: NoCheck # TensorIterator
python_module: nn
dispatch:
NestedTensorCPU, NestedTensorCUDA: custom::NestedTensor_gelu_
- func: custom::gelu(Tensor self, *, str approximate='none') -> Tensor
structured_delegate: gelu.out
device_check: NoCheck # TensorIterator
python_module: nn
dispatch:
MkldnnCPU: custom::mkldnn_gelu
QuantizedCPU: custom::gelu_quantized_cpu
NestedTensorCPU, NestedTensorCUDA: custom::NestedTensor_gelu
```
see generated code:
`RegisterCPU.cpp`:
```
TORCH_LIBRARY_IMPL(aten, CPU, m) {
...
}
TORCH_LIBRARY_IMPL(custom, CPU, m) {
m.impl("gelu", TORCH_FN(wrapper_gelu));
m.impl("gelu.out", TORCH_FN(wrapper_gelu_out_out));
m.impl("gelu_", TORCH_FN(wrapper_gelu_));
};
```
```
struct structured_gelu_out_cpu_inplace final : public custom::native::structured_gelu_out_cpu {
structured_gelu_out_cpu_inplace(Tensor& self) : outputs_{std::ref(self)} {}
void set_output_strided(
int64_t output_idx, IntArrayRef sizes, IntArrayRef strides,
TensorOptions options, DimnameList names
) override {
const auto& out = outputs_[output_idx].get();
check_inplace(out, sizes, options);
auto maybe_proxy = maybe_create_proxy(out, sizes, strides, options);
if (C10_UNLIKELY(maybe_proxy.has_value())) {
proxy_outputs_[output_idx] = c10::ExclusivelyOwned<Tensor>(std::move(maybe_proxy).value());
}
if (!names.empty()) {
namedinference::propagate_names(outputs_[output_idx], names);
}
// super must happen after, so that downstream can use maybe_get_output
// to retrieve the output
custom::native::structured_gelu_out_cpu::set_output_raw_strided(output_idx, sizes, strides, options, names);
}
void set_output_raw_strided(
int64_t output_idx, IntArrayRef sizes, IntArrayRef strides,
TensorOptions options, DimnameList names
) override {
const auto& out = outputs_[output_idx].get();
check_inplace(out, sizes, options);
if (!names.empty()) {
namedinference::propagate_names(outputs_[output_idx], names);
}
// super must happen after, so that downstream can use maybe_get_output
// to retrieve the output
custom::native::structured_gelu_out_cpu::set_output_raw_strided(output_idx, sizes, strides, options, names);
}
const Tensor& maybe_get_output(int64_t output_idx) override {
return proxy_outputs_[output_idx].has_value() ? **proxy_outputs_[output_idx] : outputs_[output_idx].get();
}
std::array<std::reference_wrapper<Tensor>, 1> outputs_;
std::array<c10::optional<c10::ExclusivelyOwned<Tensor>>, 1> proxy_outputs_;
};
```
`RegisterSchema.cpp`
```
TORCH_LIBRARY(aten, m) {
...
}
TORCH_LIBRARY(custom, m) {
m.def("gelu.out(Tensor self, *, str approximate='none', Tensor(a!) out) -> Tensor(a!)");
m.def("gelu_(Tensor(a!) self, *, str approximate='none') -> Tensor(a!)");
m.def("gelu(Tensor self, *, str approximate='none') -> Tensor");
};
```
Differential Revision: D36558459
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78015
Approved by: https://github.com/bdhirsh
Package config/template files with torchgen
This PR packages native_functions.yaml, tags.yaml and ATen/templates
with torchgen.
This PR:
- adds a step to setup.py to copy the relevant files over into torchgen
- adds a docstring for torchgen (so `import torchgen; help(torchgen)`
says something)
- adds a helper function in torchgen so you can get the torchgen root
directory (and figure out where the packaged files are)
- changes some scripts to explicitly pass the location of torchgen,
which will be helpful for the first item in the Future section.
Future
======
- torchgen, when invoked from the command line, should use sources
in torchgen/packaged instead of aten/src. I'm unable to do this because
people (aka PyTorch CI) invokes `python -m torchgen.gen` without
installing torchgen.
- the source of truth for all of these files should be in torchgen.
This is a bit annoying to execute on due to potential merge conflicts
and dealing with merge systems
- CI and testing. The way things are set up right now is really fragile,
we should have a CI job for torchgen.
Test Plan
=========
I ran the following locally:
```
python -m torchgen.gen -s torchgen/packaged
```
and verified that it outputted files.
Furthermore, I did a setup.py install and checked that the files are
actually being packaged with torchgen.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78942
Approved by: https://github.com/ezyang
Summary:
Add script to go through view ops in "native_functions.yaml" and auto-register them into static runtime and auto-generate op unit tests for each.
Overall there are 96 grouped view ops, among which 21 is already registered by hand; 9 (including sparse ops/training related ops etc.) are not the target of static runtime; 30 has list args or list ret; and 7 has non-basic types such as "Dimname", "MemoryFormat", etc. In summary, this script auto-generate 29 view ops for now.
Run `buck run //caffe2/torch/fb/jit:gen_static_runtime_ops` to generate static runtime ops, and the results with this script are,
```
total grouped native ops: 1582
grouped native ops with out variant: 548
generated functions groups with out variant: 241
view grouped native ops: 96
generated functions view groups: 29
overall generated : 270
```
The generated view ops are added in D36258968
Test Plan:
Generate static runtime ops: `buck run //caffe2/torch/fb/jit:gen_static_runtime_ops`
Unit tests: `buck run mode/opt //caffe2/benchmarks/static_runtime:static_runtime_cpptest`
Differential Revision: D36258767
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77105
Approved by: https://github.com/mikeiovine
Add codegen infrastructure to generate IR nodes for non-native ops.
The proposed change is to add a `non_native` key to the `{backend}_native_functions.yaml` file that contains schema definitions similar to what is found in `native_functions.yaml`. e.g.
```
non_native:
...
- func: expand(Tensor input, int[] size, bool is_scalar_expand) -> Tensor
...
```
these definitions are parsed into a `LazyIrSchema` that can be used for generating IR nodes using `GenLazyIR`.
Fixes#74628
CC: @wconstab @desertfire @henrytwo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76535
Approved by: https://github.com/wconstab
For static dispatch we are hardcoding namespace to be `at` for backend-specific C++ functions, e.g., `at::cpu::add()`. We are extending it to accept namespaces from callsite. This is a temporary solution, in the long run we want to introduce custom namespace into codegen system, e.g., we should be able to add `at::` to `native_functions.yaml` and parse it into `NativeFunction`. This needs a bit more design.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77710
Approved by: https://github.com/ezyang
Previously when codegening ops like `zeros_` or `ones_` we'd hit a `Code below assumes there is at least one tensor arg error`. This check is not entirely correct which is what is causing the error to be thrown. There are ops like the ones mentioned that pass in a `device` parameter that can be used in place of the "first tensor".
CC: @wconstab @desertfire @henrytwo @ke1337
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76917
Approved by: https://github.com/desertfire
Partially fix#69813
This PR does mainly 3 things:
1. Introduces new methods for the `MetaBase` API:
- `set_output_strided`: creates proxy tensors with exact strides, if strides don't match
- `set_output_contiguous`: alias for `set_output_strided` with contiguous strides
- `set_output_raw_strided`: does not create proxy tensors
2. Modifies codegen for handling proxy tensors:
- Creates a new field for out-of-place kernels: `proxy_output_`
- Implements `set_output_strided` by creating a proxy tensor if necessary
- Passes the proxy tensor to them `IMPL` function
- Copy the result back to the real output, in the end, whenever a proxy was created
3. Replace `set_output` by `set_output_raw_strided` for `TensorIterator*`
- Needed, since it overrides `set_output`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76096
Approved by: https://github.com/ezyang
Unfortunately the built-in pprint module support pretty-print of dataclasses only from python 3.10. The code that I wrote in method `__str__` of OpInfo should do the same job and should also work for any dataclass. For now I've put it there but we can create a function and put it somewhere where is accessible also for other dataclasses. Also the max width (80) is now hardcode but it would ideally be the parameter of the function.
when you call print on an OpInfo you get:
```
OpInfo(name = '__getitem__',
ref = None,
aliases = (),
variant_test_name = '',
op = <slot wrapper '__getitem__' of 'torch._C._TensorBase' objects>,
method_variant = <slot wrapper '__getitem__' of 'torch._C._TensorBase' objects>,
inplace_variant = None,
skips = (<torch.testing._internal.common_methods_invocations.DecorateInfo object at 0x7f463acbca90>,
<torch.testing._internal.common_methods_invocations.DecorateInfo object at 0x7f463acbcae0>),
decorators = (<torch.testing._internal.common_methods_invocations.DecorateInfo object at 0x7f463acbca90>,
<torch.testing._internal.common_methods_invocations.DecorateInfo object at 0x7f463acbcae0>),
sample_inputs_func = <function sample_inputs_getitem at 0x7f463acc6af0>,
reference_inputs_func = None,
error_inputs_func = None,
sample_inputs_sparse_coo_func = <function _DecoratorContextManager.__call__.<locals>.decorate_context at 0x7f463acc6b80>,
sample_inputs_sparse_csr_func = <function _DecoratorContextManager.__call__.<locals>.decorate_context at 0x7f463acc6c10>,
dtypes = {torch.int16,
torch.float64,
torch.int32,
torch.int64,
torch.complex64,
torch.float16,
torch.bfloat16,
torch.uint8,
torch.complex128,
torch.bool,
torch.float32,
torch.int8},
dtypesIfCUDA = {torch.int16,
torch.float64,
torch.int32,
torch.int64,
torch.complex64,
torch.float16,
torch.bfloat16,
torch.uint8,
torch.complex128,
torch.bool,
torch.float32,
torch.int8},
dtypesIfROCM = {torch.int16,
torch.float64,
torch.int32,
torch.int64,
torch.complex64,
torch.float16,
torch.bfloat16,
torch.uint8,
torch.complex128,
torch.bool,
torch.float32,
torch.int8},
backward_dtypes = {torch.int16,
torch.float64,
torch.int32,
torch.int64,
torch.complex64,
torch.float16,
torch.bfloat16,
torch.uint8,
torch.complex128,
torch.bool,
torch.float32,
torch.int8},
backward_dtypesIfCUDA = {torch.int16,
torch.float64,
torch.int32,
torch.int64,
torch.complex64,
torch.float16,
torch.bfloat16,
torch.uint8,
torch.complex128,
torch.bool,
torch.float32,
torch.int8},
backward_dtypesIfROCM = {torch.int16,
torch.float64,
torch.int32,
torch.int64,
torch.complex64,
torch.float16,
torch.bfloat16,
torch.uint8,
torch.complex128,
torch.bool,
torch.float32,
torch.int8},
supports_out = False,
supports_autograd = True,
supports_gradgrad = True,
supports_fwgrad_bwgrad = True,
supports_inplace_autograd = False,
supports_forward_ad = True,
gradcheck_wrapper = <function OpInfo.<lambda> at 0x7f463a7a40d0>,
check_batched_grad = True,
check_batched_gradgrad = True,
check_batched_forward_grad = True,
check_inplace_batched_forward_grad = True,
gradcheck_nondet_tol = 0.0,
gradcheck_fast_mode = None,
aten_name = '__getitem__',
decomp_aten_name = None,
aten_backward_name = None,
assert_autodiffed = False,
autodiff_nonfusible_nodes = ['aten::__getitem__'],
autodiff_fusible_nodes = [],
supports_sparse = False,
supports_scripting = False,
supports_sparse_csr = False,
test_conjugated_samples = True,
test_neg_view = True,
assert_jit_shape_analysis = False,
supports_expanded_weight = False)
```
cc @ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76810
Approved by: https://github.com/ezyang
Summary: Currently OpKind is stored as an object field called op_ for each IR
node, and one usage of op_ is to avoid dynamic_cast in NodeCast when we
need to downcast a base-node pointer into a concrete sub-node pointer.
As a result, we need to construct and pass in an op when downcasting
nodes, and this becomes quite anonnying when we start to implement the
trie-based IR node reusing. More importantly, the op for each subclass
should be unique for that subclass and thus making it a const static field
is a more logical design.
In this PR, we still keep the object-level op_ for easier XLA adoption. As
furture work, we can come back to remove op_, make the op() method
virtual, and get rid of OpKind in all the node constructors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76711
Approved by: https://github.com/wconstab, https://github.com/JackCaoG
This PR turns the previously introduced `ITensorList` into a more general `IList`
class. It is a container wrapper for arbitrary types (given their appropriate
implementations).
In summary, I have:
- Renamed `ITensorList` (its iterators and macros, for consistency) to `IList`
- Made `IList` a templated function (for an arbitrary type `T`), given that they:
- Specialize `IListTagImpl<T, Tag>`, for all `IListTag`
- Introduced type aliases (for both list and iterator types):
- `at::ITensorList` -> `c10::IList<at::Tensor>`
- `at::IOptTensorRefList` -> `c10::IList<at::OptionalTensorRef>`
- Added support for `Tensor?[]` in the structured codegen
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69606
Approved by: https://github.com/ezyang
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76203
Request for comments:
This change adds extra code generator support to generate out variant wrappers for operators with unstructured kernels.
The current version generates 105 new out variant wrappers in addition to the existing 136 auto-generated out variants wrappers.
This change shows that a simple tweak can increase the generated op coverage to 16% (241/1559) among all native ops described in native_functions.yaml no. matter if they are structured or not.
Command to generate out variant wrappers.
```
buck run //caffe2/torch/fb/jit:gen_static_runtime_ops
```
- AFTER this change
```
total grouped native ops: 1559
structured grouped native ops: 545
generated grouped native ops: 241
```
- BEFORE this change
```
total grouped native ops: 1503
structured grouped native ops: 540
generated grouped native ops: 136
```
To enable CI tests and make it easier to review, the generated ops are added in a separate diff: D35945633
More details:
We added a block list to remove the generation of around 10 operations that are deprecated or for which the unit test would fail. All generated ops are well *compiled* but the compiled unittest may not pass due to the lack of hand-picked test input values for certain ops. Among the 42 ops whose unittest does not pass, 1 (op "index_select") is repeated from the existing ops; 32 ops are fixed; and 9 ops are removed and blocked from generation because either it is not being commonly used in internal models such as "cholesky", "linalg_householder_product", sparse kernel "sspaddmm", or it causes some errors in static runtime such as "conj_physical" leads to an error in memory planner, and "binary_cross_entropy".
Test Plan:
OP generation:
```buck run //caffe2/torch/fb/jit:gen_static_runtime_ops```
Test generated ops:
```buck run mode/opt //caffe2/benchmarks/static_runtime:static_runtime_cpptest```
Reviewed By: tenpercent
Differential Revision: D34913736
fbshipit-source-id: a6f408321653c3589ae1c76826177fc403d59c44
(cherry picked from commit 6f4501730478dbaeeea7f3ad4f9d29bf6787e7c1)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76471
Make node_base_ctor_call produce the entire node_bace_ctor_call.
Previously it was only producing the beginning of the call, which was unintended.
Addresses part of https://github.com/pytorch/xla/issues/3472
Test Plan: Imported from OSS
Reviewed By: qihqi, ngimel
Differential Revision: D35980436
Pulled By: wconstab
fbshipit-source-id: a443cf593ac7c35b2b65e72b82907e88e1e71c7a
(cherry picked from commit 360ad6d82a7e8303b8a60e61b177dabf0131ea8b)
This **roughly** corresponds to Goal 3.2 in https://docs.google.com/document/d/1iiLNwR5ohAsw_ymfnOpDsyF6L9RTUaHMpD8YLw-jxEw/edit#
Namely:
It adds the following:
* SymbolicIntNode interface
* LazySymbolicIntNode implementation
* Lazy `narrow_copy` implementation
* Need add support for SymInt in codegen
* Test (below)
```cpp
TEST(LazyDynamicOpsTest, NarrowCopy) {
auto x = torch::rand({5, 10, 10}).to(kLazy);
const size_t Y_DIM = 3;
const size_t X_DIM_INDEX = 2;
auto y = torch::rand({Y_DIM}).to(kLazy);
auto ly = torch::lazy::TryGetLtcTensor(y);
auto dim_node = MakeNode<SizeNode>(ly->GetIrValue(), 0);
auto lmn = new torch::lazy::SymbolicIntNode(dim_node);
auto z = x.narrow_copy(X_DIM_INDEX, 0, lmn->toSymInt());
AllClose(z.cpu(), x.cpu().narrow_copy(X_DIM_INDEX, 0, Y_DIM));
}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75759
Approved by: https://github.com/wconstab