Commit Graph

3 Commits

Author SHA1 Message Date
Zachary DeVito
afc788a99c Re-land _cycleviz.py: visualize reference cycles holding cuda memory (#104051)
Reference cycles are freed by the cycle collector rather than being cleaned up
when the objects in the cycle first become unreachable. If a cycle points to a tensor,
the CUDA memory for that tensor will not be freed until garbage collection runs.
Accumulation of CUDA allocations can lead to out of memory errors (OOMs), as well as
non-deterministic allocation behavior which is harder to debug.

This visualizer installs a garbage collection hook to look for cycles containing
CUDA tensors and saves a visualization of the garbage:

```
from torch.cuda._cycleviz import warn_tensor_cycles
warn_tensor_cycles()
# do some work that results in a cycle getting garbage collected
# ...
> WARNING:root:Reference cycle includes a CUDA Tensor see visualization of cycle /tmp/tmpeideu9gl.html
```

Reland to make windows skip the test.

This reverts commit 7b3b6dd426.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104051
Approved by: https://github.com/aaronenyeshi, https://github.com/malfet
2023-06-23 13:44:58 +00:00
PyTorch MergeBot
7b3b6dd426 Revert "_cycleviz.py: visualize reference cycles holding cuda memory (#102656)"
This reverts commit dba67f71c9.

Reverted https://github.com/pytorch/pytorch/pull/102656 on behalf of https://github.com/huydhn due to Sorry for reverting your PR. But I think the change is failing on Windows CUDA https://github.com/pytorch/pytorch/actions/runs/5341701630/jobs/9683293600 ([comment](https://github.com/pytorch/pytorch/pull/102656#issuecomment-1603035364))
2023-06-22 17:16:47 +00:00
Zachary DeVito
dba67f71c9 _cycleviz.py: visualize reference cycles holding cuda memory (#102656)
Reference cycles are freed by the cycle collector rather than being cleaned up
when the objects in the cycle first become unreachable. If a cycle points to a tensor,
the CUDA memory for that tensor will not be freed until garbage collection runs.
Accumulatin of CUDA allocations can lead to out of memory errors (OOMs), as well as
non-deterministic allocation behavior which is harder to debug.

This visualizer installs a garbage collection hook to look for cycles containing
CUDA tensors and saves a visualization of the garbage:

```
from torch.cuda._cycleviz import warn_tensor_cycles
warn_tensor_cycles()
# do some work that results in a cycle getting garbage collected
# ...
> WARNING:root:Reference cycle includes a CUDA Tensor see visualization of cycle /tmp/tmpeideu9gl.html
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102656
Approved by: https://github.com/aaronenyeshi
2023-06-22 04:00:28 +00:00