Commit Graph

6 Commits

Author SHA1 Message Date
Gal Rotem
11c6a98bca [torch] add use_buffers to swa_utils interface (#109078)
Summary: As title, this already exists in swa_utils.py

Differential Revision: D49155243

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109078
Approved by: https://github.com/janeyx99
2023-09-19 21:30:59 +00:00
Xuehai Pan
1fd119948e [3/3] Update .pyi Python stub files and enable 'UFMT' linter (#95268)
Changes:

- #95200

1. Recognize `.py.in` and `.pyi.in` files as Python in VS Code for a better development experience.
2. Fix deep setting merge in `tools/vscode_settings.py`.

- #95267

3. Use `Namedtuple` rather than `namedtuple + __annotations__` for `torch.nn.utils.rnn.PackedSequence_`:

    `namedtuple + __annotations__`:

    ```python
    PackedSequence_ = namedtuple('PackedSequence_',
                                 ['data', 'batch_sizes', 'sorted_indices', 'unsorted_indices'])

    # type annotation for PackedSequence_ to make it compatible with TorchScript
    PackedSequence_.__annotations__ = {'data': torch.Tensor, 'batch_sizes': torch.Tensor,
                                       'sorted_indices': Optional[torch.Tensor],
                                       'unsorted_indices': Optional[torch.Tensor]}
    ```

    `Namedtuple`: Python 3.6+

    ```python
    class PackedSequence_(NamedTuple):
        data: torch.Tensor
        batch_sizes: torch.Tensor
        sorted_indices: Optional[torch.Tensor]
        unsorted_indices: Optional[torch.Tensor]
    ```

- => this PR: #95268

4. Sort import statements and remove unnecessary imports in `.pyi`, `.pyi.in` files.
5. Format `.pyi`, `.pyi.in` files and remove unnecessary ellipsis `...` in type stubs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95268
Approved by: https://github.com/huydhn
2023-03-01 23:50:56 +00:00
Michael Lazos
1accd915a4 Re-enable optimizers (#90709)
Fixes
https://github.com/pytorch/pytorch/issues/90165
https://github.com/pytorch/torchdynamo/issues/328

Re-enables optimizer capture + compilation now that the dynamo slowdowns have been fixed

and it has speedups, numbers to come soon

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90709
Approved by: https://github.com/anijain2305, https://github.com/jansel, https://github.com/yanboliang
2022-12-19 04:07:41 +00:00
Sam Estep
8c798e0622 Forbid trailing whitespace (#53406)
Summary:
Context: https://github.com/pytorch/pytorch/pull/53299#discussion_r587882857

These are the only hand-written parts of this diff:
- the addition to `.github/workflows/lint.yml`
- the file endings changed in these four files (to appease FB-internal land-blocking lints):
  - `GLOSSARY.md`
  - `aten/src/ATen/core/op_registration/README.md`
  - `scripts/README.md`
  - `torch/csrc/jit/codegen/fuser/README.md`

The rest was generated by running this command (on macOS):
```
git grep -I -l ' $' -- . ':(exclude)**/contrib/**' ':(exclude)third_party' | xargs gsed -i 's/ *$//'
```

I looked over the auto-generated changes and didn't see anything that looked problematic.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53406

Test Plan:
This run (after adding the lint but before removing existing trailing spaces) failed:
- https://github.com/pytorch/pytorch/runs/2043032377

This run (on the tip of this PR) succeeded:
- https://github.com/pytorch/pytorch/runs/2043296348

Reviewed By: walterddr, seemethere

Differential Revision: D26856620

Pulled By: samestep

fbshipit-source-id: 3f0de7f7c2e4b0f1c089eac9b5085a58dd7e0d97
2021-03-05 17:22:55 -08:00
Jasha
a651696ab4 fix misspelling in swa_utils.pyi (#51608)
Summary:
Change `avg_fun -> avg_fn` to match the spelling in the `.py` file.
(`swa_utils.pyi` should match `swa_utils.py`)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51608

Reviewed By: glaringlee

Differential Revision: D26224779

Pulled By: zou3519

fbshipit-source-id: 01ff7173ba0a996f1b7a653438acb6b6b4659de6
2021-02-03 10:51:22 -08:00
Pavel Izmailov
22ac071d9a Add SWA to PyTorch mainline (#35032)
Summary:
This PR is based on the issue https://github.com/pytorch/pytorch/issues/29994#issue-524418771 and the discussion in the previous version of the PR https://github.com/pytorch/pytorch/pull/30559. Specifically, I followed the interface outlined in this [comment](https://github.com/pytorch/pytorch/pull/30559#issuecomment-574864768).

## Structure
- `torch/optim/swa_utils.py` contains the implementation of  `AveragedModel` class, `SWALR` learning rate scheduler and `update_bn` utility
- `test/test_optim.py` contains unit tests for the three components of SWA
- `torch/optim/swa_utils.pyi` describes the interface of `torch/optim/swa_utils.py`

The new implementation consists of
- `AveragedModel` class; this class creates a copy of a given model and allows to compute running averages of the parameters.
- `SWALR` learning rate scheduler; after a certain number of epochs switches to a constant learning rate; this scheduler is supposed to be chained with other schedulers.
- `update_bn` utility; updates the Batch Normalization activation statistics for a given model and dataloader; this utility is meant to be applied to `AveragedModel` instances.

For `update_bn` I simplified the implementation compared to the [original PR](https://github.com/pytorch/pytorch/pull/30559) according to the sugestions by vadimkantorov.

## Example
```python
loader, optimizer, model = ...
swa_model = torch.optim.swa_utils.AveragedModel(model)
# You can use custom averaging functions with `avg_fun` parameter
ema_avg = lambda p_avg, p, n_avg: 0.1 * p_avg + 0.9 * p
ema_model = torch.optim.swa_utils.AveragedModel(model,
                                    avg_function=ema_avg)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
                                    T_max=300)
swa_start = 160
swa_scheduler = SWALR(optimizer, start_epoch=swa_start, swa_lr=0.05)

for i in range(300):
     for input, target in loader:
         optimizer.zero_grad()
         loss_fn(model(input), target).backward()
         optimizer.step()
         scheduler.step()
         swa_scheduler.step()

     if i > swa_start:
         swa_model.update_parameters(model)

# Update bn statistics for the swa_model at the end
torch.optim.swa_utils.update_bn(loader, swa_model)
```

UPDATED:
```python3
loader, optimizer, model, loss_fn = ...
swa_model = torch.optim.swa_utils.AveragedModel(model)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=300)
swa_start = 160
swa_scheduler = SWALR(optimizer, swa_lr=0.05)
for i in range(300):
     for input, target in loader:
         optimizer.zero_grad()
         loss_fn(model(input), target).backward()
         optimizer.step()
     if i > swa_start:
         swa_model.update_parameters(model)
         swa_scheduler.step()
     else:
         scheduler.step()

# Update bn statistics for the swa_model at the end
torch.optim.swa_utils.update_bn(loader, swa_model)
```

Fixes https://github.com/pytorch/pytorch/issues/29994
cc soumith vincentqb andrewgordonwilson vadimkantorov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35032

Differential Revision: D21079606

Pulled By: vincentqb

fbshipit-source-id: e07f5e821f72ada63789814c2dcbdc31f0160c37
2020-04-27 07:42:19 -07:00