This is a reland of https://github.com/pytorch/pytorch/pull/100007 with a build fix for Windows debug builds.
`at::native::ParamsHash` only works on structs with standard layout, but `std::string` isn't one in Visual C++ debug builds, which one can easily verified by running something like:
```cpp
#define _DEBUG
#include <type_traits>
#include <string>
static_assert(std::is_standard_layout_v<std::string>, "Oh noes");
```
If above conditon is not met, instead of printing a static_assert output, VC++ raises a very cryptic compilation errors, see https://github.com/pytorch/pytorch/pull/100007#discussion_r1227116292 for more detail.
Also, using `std::hash` for string should result in a faster hash function.
(cherry picked from commit 74b7a6c75e)
<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at 5914771</samp>
This pull request introduces a new function `_group_tensors_by_device_and_dtype` that can group tensors by their device and dtype, and updates the `foreach` utilities and several optimizers to use this function. The goal is to improve the performance, readability, and compatibility of the code that handles tensors with different properties. The pull request also adds a test case and type annotations for the new function, and some error checks for the `fused` argument in Adam and AdamW.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103912
Approved by: https://github.com/janeyx99
Big OOP correction continued. Also added a test this time to verify the defaulting was as expected.
The key here is realizing that the grouping for foreach already assumes that the non-param tensorlists follow suit in dtype and device, so it is too narrow to check that _all_ tensors were on CUDA. The main leeway this allowed was state_steps, which are sometimes cpu tensors. Since foreach _can_ handle cpu tensors, this should not introduce breakage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95820
Approved by: https://github.com/albanD
Rolling back the default change for Adam and rectifying the docs to reflect that AdamW never defaulted to fused.
Since our fused implementations are relatively newer, let's give them a longer bake-in time before flipping the switch for every user.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95241
Approved by: https://github.com/ngimel
This allows it so that ONLY when the users don't set anything for foreach or fused do we switch the default and cascades adam so that we default to fused, then foreach, then single-tensor.
To clarify:
* if the user puts True in foreach _only_, it will run the foreach implementation.
* if the user puts True in fused _only_, it will run the fused implementation.
* if the user puts True in foreach AND for fused, it will run the fused implementation.
And:
* if the user puts False in foreach _only_, it will run the single tensor implementation.
* if the user puts False in fused _only_, it will still run the single tensor implementation.
* if the user puts False in foreach AND for fused, it will run the single tensor implementation.
I also didn't trust myself that much with the helper function, so I ran some local asserts on _default_to_fused_or_foreach. The only point left to really test is the type(p) -- torch.Tensor but I think the distributed tests will catch that in CI.
```
cuda_only_fp_list = [
torch.rand((1, 2), device="cuda", dtype=torch.float32),
torch.rand((1, 2), device="cuda", dtype=torch.float64),
torch.rand((1, 2), device="cuda", dtype=torch.float16),
torch.rand((1, 2), device="cuda", dtype=torch.bfloat16),
]
cuda_only_int_list = [
torch.randint(1024, (1, 2), device="cuda", dtype=torch.int64),
]
cpu_list = [
torch.rand((1, 2), device="cpu", dtype=torch.float32),
torch.rand((1, 2), device="cpu", dtype=torch.float64),
torch.rand((1, 2), device="cpu", dtype=torch.float16),
]
none_list = [None]
# differentiable should always make it return false for both
assert _default_to_fused_or_foreach([cuda_only_fp_list], True, True) == (False, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list], True, False) == (False, False)
# cpu lists should always make it return false for both
assert _default_to_fused_or_foreach([cuda_only_fp_list, cpu_list], False, True) == (False, False)
assert _default_to_fused_or_foreach([cpu_list], False, True) == (False, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list, cpu_list], False, False) == (False, False)
assert _default_to_fused_or_foreach([cpu_list], False, False) == (False, False)
# has fused triggers correctly
assert _default_to_fused_or_foreach([cuda_only_fp_list], False, True) == (True, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list], False, False) == (False, True)
# ints always goes to foreach
assert _default_to_fused_or_foreach([cuda_only_fp_list, cuda_only_int_list], False, True) == (False, True)
assert _default_to_fused_or_foreach([cuda_only_fp_list, cuda_only_int_list], False, False) == (False, True)
# Nones don't error
assert _default_to_fused_or_foreach([cuda_only_fp_list, none_list], False, True) == (True, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list, cuda_only_int_list, none_list], False, True) == (False, True)
assert _default_to_fused_or_foreach([none_list], False, True) == (True, False)
assert _default_to_fused_or_foreach([none_list], False, False) == (False, True)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93184
Approved by: https://github.com/albanD
Old behavior would have adadelta foreach sending tensors to the slow path if they were not all the same dtype nor on the same device.
This PR adds grouping for adadelta optimizer so that it would run foreach in batches, allowing more users to benefit from foreach perf.
Of course, we should ensure that the new implementation works, so there are new tests to ensure this behavior is not broken.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92048
Approved by: https://github.com/albanD
### Description
Across PyTorch's docstrings, both `callable` and `Callable` for variable types. The Callable should be capitalized as we are referring to the `Callable` type, and not the Python `callable()` function.
### Testing
There shouldn't be any testing required.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82487
Approved by: https://github.com/albanD
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69980
- Merged `torch/optim/adadelta.py` and `torch/optim/_multitensor/adadelta.py` into `torch/optim/adadelta.py`
- Moved adadelta functional forms from `torch/optim/_functional.py` and `torch/optim/_multi_tensor/_functional.py` to `torch/optim/adadelta.py`
- `torch/optim/_functional.py` just imports from `torch/optim/adadelta.py`
- Added a test `test_optimizers_foreach_flag` which replicates `test_multi_tensor_optimizers` in `test/test_optim.py`
- Add a test `test_adadelta_new` that replicates the behavior of `test_adadelta` but with `foreach` flag instead of using the multitensor adadleta class. If we delete `_multitensor/` we could replace `test_adadelta` with this
Remaining TODO:
- [ ] single_tensor adadelta supports complex but multitensor does not, need to integrate the singletensor logic in multitensor and switch the `test_adadelta_complex` to test for foreach in [True, False]
Test Plan: Imported from OSS
Reviewed By: VitalyFedyunin, albanD
Differential Revision: D33413059
Pulled By: mikaylagawarecki
fbshipit-source-id: 92a9fa98705762bb6bd464261671e49aef40070e
(cherry picked from commit a008227d22)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52944
This fix the bug introduced during refactoring optimizers https://github.com/pytorch/pytorch/pull/50411. When all parameters have no grads, we should still allows `beta` like hyper params to be defined.
Reviewed By: ngimel
Differential Revision: D26699827
fbshipit-source-id: 8a7074127704c7a4a1fbc17d48a81e23a649f280
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51316
Make optim functional API be private until we release with beta
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D26213469
fbshipit-source-id: b0fd001a8362ec1c152250bcd57c7205ed893107
Here's the command I used to invoke autopep8 (in parallel!):
git ls-files | grep '\.py$' | xargs -n1 -P`nproc` autopep8 -i
Several rules are ignored in setup.cfg. The goal is to let autopep8
handle everything which it can handle safely, and to disable any rules
which are tricky or controversial to address. We may want to come back
and re-enable some of these rules later, but I'm trying to make this
patch as safe as possible.
Also configures flake8 to match pep8's behavior.
Also configures TravisCI to check the whole project for lint.
Scales `delta` before it is applied to the parameters in order to control the learning rate of the optimizer (inspired from climin optim lib for theano).
Also changed the link to the Adadelta paper to point to the right location.