Commit Graph

19 Commits

Author SHA1 Message Date
Justin Chu
5deeb09d4e [ONNX] Annotate all g as GraphContext (#85491)
- Use g.opset to test export opset version
- Annotate all `g` as GraphContext

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85491
Approved by: https://github.com/AllenTiTaiWang, https://github.com/BowenBao
2022-09-28 22:39:28 +00:00
Justin Chu
76d60778eb [ONNX] Use decorators for symbolic function registration (#84448)
This is the 4th PR in the series of #83787. It enables the use of `@onnx_symbolic` across `torch.onnx`.

- **Backward breaking**: Removed some symbolic functions from `__all__` because of the use of  `@onnx_symbolic` for registering the same function on multiple aten names.
- Decorate all symbolic functions with `@onnx_symbolic`
- Move Quantized and Prim ops out from classes to functions defined in the modules. Eliminate the need for `isfunction` checking, speeding up the registration process by 60%.
    - Remove the outdated unit test `test_symbolic_opset9.py`
- Symbolic function registration moved from the first call to `_run_symbolic_function` to init time.
- Registration is fast:
  ![image](https://user-images.githubusercontent.com/11205048/189164959-f3fca173-19bc-4682-b150-f13a586387bf.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84448
Approved by: https://github.com/AllenTiTaiWang, https://github.com/BowenBao
2022-09-22 06:25:24 +00:00
Justin Chu
cd7e6d4ad1 [ONNX] New symbolic function registry (#84382)
## Summary

The change brings the new registry for symbolic functions in ONNX. The `SymbolicRegistry` class in `torch.onnx._internal.registration` replaces the dictionary and various functions defined in `torch.onnx.symbolic_registry`.

The new registry

- Has faster lookup by storing only functions in the opset version they are defined in
- Is easier to manage and interact with due to its class design
- Builds the foundation for the more flexible registration process detailed in #83787

Implementation changes

- **Breaking**: Remove `torch.onnx.symbolic_registry`
- `register_custom_op_symbolic` and `unregister_custom_op_symbolic` in utils maintain their api for compatibility
- Update _onnx_supported_ops.py for doc generation to include quantized ops.
- Update code to register python ops in `torch/csrc/jit/passes/onnx.cpp`

## Profiling results

-0.1 seconds in execution time. -34% time spent in `_run_symbolic_function`. Tested on the alexnet example in public doc.

### After
```
   └─ 1.641 export  <@beartype(torch.onnx.utils.export) at 0x7f19be17f790>:1
      └─ 1.641 export  torch/onnx/utils.py:185
         └─ 1.640 _export  torch/onnx/utils.py:1331
            ├─ 0.889 _model_to_graph  torch/onnx/utils.py:1005
            │  ├─ 0.478 _optimize_graph  torch/onnx/utils.py:535
            │  │  ├─ 0.214 PyCapsule._jit_pass_onnx_graph_shape_type_inference  <built-in>:0
            │  │  │     [2 frames hidden]  <built-in>
            │  │  ├─ 0.190 _run_symbolic_function  torch/onnx/utils.py:1670
            │  │  │  └─ 0.145 Constant  torch/onnx/symbolic_opset9.py:5782
            │  │  │     └─ 0.139 _graph_op  torch/onnx/_patch_torch.py:18
            │  │  │        └─ 0.134 PyCapsule._jit_pass_onnx_node_shape_type_inference  <built-in>:0
            │  │  │              [2 frames hidden]  <built-in>
            │  │  └─ 0.033 [self]
```

### Before
![image](https://user-images.githubusercontent.com/11205048/188032302-688d881e-860d-4046-bdba-90da54233576.png)

### Start up time

The startup process takes 0.03 seconds. Calls to `inspect` will be eliminated when we switch to using decorators for registration in #84448

![image](https://user-images.githubusercontent.com/11205048/188208910-250f0434-475d-4872-9abc-781535519305.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84382
Approved by: https://github.com/AllenTiTaiWang, https://github.com/BowenBao
2022-09-16 21:45:16 +00:00
Justin Chu
f5701a1f9a [ONNX] Remove unused patching methods (#83006)
### Description
<!-- What did you change and why was it needed? -->

Remove unused patching methods:

- `torch._C.Graph.constant`
- unpatch `torch._C.Node.__getitem__` and move the helper function to `symbolic_helper`

Add typing annotations

### Issue
<!-- Link to Issue ticket or RFP -->

#76254

### Testing
<!-- How did you test your change? -->

Unit tested
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83006
Approved by: https://github.com/BowenBao
2022-08-09 19:24:03 +00:00
Huy Do
6ea422dd0b Format torch/onnx with ufmt (#82137)
This is the last batch for the new ufmt (black + usort) linter. After this, black linter can finally be replaced. The previous PR to format ONNX tests was #81335
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82137
Approved by: https://github.com/kit1980, https://github.com/AllenTiTaiWang
2022-07-25 22:42:21 +00:00
Justin Chu
d3ef5c3fa3 [ONNX] Clean up __init__ in torch.onnx (#78446)
- Move definitions in `__init__` to internal classes and expose them by importing to init (prevent circular dependencies): https://github.com/pytorch/pytorch/wiki/torch.onnx-Namespacing
  - Context classes and enums are moved to `_exporter_states.py`
  - Exceptions are moved to `errors.py`
- Define `__all__` for torch.onnx. https://github.com/pytorch/pytorch/wiki/Public-API-definition-and-documentation
- Moved `utils.__IN_ONNX_EXPORT` to `GLOBALS.in_onnx_export`
- Deprecated `torch.onnx._export`

Precedes #78231

Using this as an aid for finding public functions:

```python
list(filter(lambda x: not x.startswith("_"), torch.onnx.utils.__dict__.keys()))
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78446
Approved by: https://github.com/BowenBao
2022-06-14 04:35:06 +00:00
Justin Chu
0d76299ff7 [ONNX] Clean up module imports (#77423)
Cleaning up onnx module imports to prepare for updating `__init__`.

- Simplify importing the `_C` and `_C._onnx` name spaces
- Remove alias of the symbolic_helper module in imports
- Remove any module level function imports. Import modules instead
    - Alias `symbilic_opsetx` as `opsetx`
- Fix some docstrings

Requires:
- https://github.com/pytorch/pytorch/pull/77448
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77423
Approved by: https://github.com/BowenBao
2022-05-20 01:56:24 +00:00
Justin Chu
5dd1c67776 [ONNX] Format ONNX python with black
Format all onnx python code with black and isort with

```sh
isort torch/onnx/ test/onnx
black torch/onnx/ test/onnx
```

Updated lintrunner config to include these paths.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76754
Approved by: https://github.com/suo, https://github.com/BowenBao
2022-05-05 00:19:22 +00:00
BowenBao
0a6828a306 [ONNX] use consistent quoting for string literals (#57757) (#58695)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58695

As PEP8 says: "Pick a rule and stick to it." [1]

[1] https://www.python.org/dev/peps/pep-0008/#string-quotes

Test Plan: Imported from OSS

Reviewed By: driazati

Differential Revision: D28714811

Pulled By: SplitInfinity

fbshipit-source-id: c95103aceb1725c17c034dc6fc8216627f189548

Co-authored-by: Gary Miguel <garymiguel@microsoft.com>
2021-05-27 12:06:42 -07:00
Supriya Rao
8a395882ce [quant][onnx] Support conversion of quantized sigmoid operator from pytorch to caffe2 (#34629)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34629

Add support for sigmoid in the conversion flow through onnx

Test Plan:
python test/onnx/test_pytorch_onnx_caffe2_quantized.py TestQuantizedOps.test_quantized_sigmoid
python test/onnx/test_pytorch_onnx_caffe2_quantized.py TestQuantizedOps.test_small_model

Imported from OSS

Differential Revision: D20433680

fbshipit-source-id: 95943e14637d294122e4d102c5c19c06d27064c6
2020-03-13 22:42:06 -07:00
Supriya Rao
af28915164 [quant][onnx] Add support to convert max_pool2d quantized pytorch op to C2 (#33945)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33945

Add mapping for this operator in symbolics

Test Plan:
python test/onnx/test_pytorch_onnx_caffe2_quantized.py TestQuantizedOps.test_max_pool2d

Imported from OSS

Differential Revision: D20433681

fbshipit-source-id: 88f02ade698262a6f8824671830bc1f7d40bbfa6
2020-03-13 22:40:49 -07:00
BowenBao
c4f10e0fe7 Renaming scales parameter for interpolate (#31526)
Summary:
PR separated from https://github.com/pytorch/pytorch/pull/31274.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31526

Reviewed By: zou3519

Differential Revision: D19221931

Pulled By: gchanan

fbshipit-source-id: 81958a9910867ac9d62f2b47abc49384526c4e51
2020-01-02 08:19:30 -08:00
Lara
97c1e90f46 ONNX Interpolate Add Scales Params (#28324)
Summary:
Fix for : https://github.com/pytorch/pytorch/issues/27176
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28324

Reviewed By: hl475

Differential Revision: D18309133

Pulled By: houseroad

fbshipit-source-id: 348bb41393442c6b107d88fc2cd3224e0afa3ccf
2019-12-11 20:09:15 -08:00
Supriya Rao
e42af97349 Add quantized concat conversion (#30887)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30887

Support to convert quantized concat from pytorch to caffe2

Test Plan:
python test/onnx/test_pytorch_onnx_caffe2_quantized.py TestQuantizedOps.test_cat

Imported from OSS

Differential Revision: D18855676

fbshipit-source-id: 5d0cf3f03c61819e168b080afa368b1255d0419c
2019-12-10 15:46:16 -08:00
Michael Suo
62b10721fb Actually make flake8 do something (#30892)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30892

Fixes all outstanding lints and actually installs a properly configured
flake8

Test Plan: Imported from OSS

Differential Revision: D18862825

Pulled By: suo

fbshipit-source-id: 08e9083338a7309272e17bb803feaa42e348aa85
2019-12-06 17:50:50 -08:00
Supriya Rao
980aead1f8 Add support for quantized slice conversion (#30498)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30498

Updated Int8SliceOp to accept dim, start and end index similar to Pytorch.

Test Plan:
python test/onnx/test_pytorch_onnx_caffe2_quantized.py TestQuantizedOps.test_slice

Imported from OSS

Differential Revision: D18740519

fbshipit-source-id: 2313f37a4936edb150ce04911b241e591e191801
2019-12-03 14:37:59 -08:00
Supriya Rao
968c0d4a46 Add support for converting quantized AvgPool2d and Reshape operations (#30490)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30490

Add symbolic mapping to Int8AvgPool2d and Int8Reshape op in C2

Test Plan:
python test/onnx/test_pytorch_onnx_caffe2_quantized.py TestQuantizedOps

Imported from OSS

Differential Revision: D18740520

fbshipit-source-id: 1606125500c4b549fbc984e7929b7fd5204396a0
2019-12-02 18:15:01 -08:00
Supriya Rao
2599b9b551 Add output_size argument to caffe2 Int8ResizeNearest (#30202)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30202

Pytorch Upsample operator has output_size as an argument.
For quantized tensor inputs we cannot get the input_size to calculate the width and height scale factor.
Instead we pass the output_size directly to caffe2 to calculate the scale factors.

Test Plan:
python test/onnx/test_pytorch_onnx_caffe2_quantized.py TestQuantizedOps.test_upsample

Imported from OSS

Differential Revision: D18631478

fbshipit-source-id: 38a39129bc863f4ecf2293acc068e40ab7edc825
2019-11-26 06:54:02 -08:00
Supriya Rao
91c6d2e51c Add support for quantized operator conversion from PT to C2 via ONNX (#29694)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29694

This PR adds preliminary support required to be able to run quantized pytorch models on a C2 backend.
For quantized ops we use a custom domain name 'caffe2' to register the ops if they are in the "quantized" namespace.
The change also adds JIT pass to unpack the quantized weights and insert the unpacked values into the graph.
The actual tensor values are looked up from the params dict.

Test Plan:
python test/onnx/test_pytorch_onnx_caffe2.py TestQuantizedOps

Imported from OSS

Reviewed By: houseroad

Differential Revision: D18467130

fbshipit-source-id: 53ebd8c43935f7d7e74305dad6c231a2247df176
2019-11-18 12:12:40 -08:00