This PR re-lands
- [Typing] Fix PEP 484 Violation (#105022)
- Update mypy to 1.4.1 (#91983)
That were reverted due to the conflict with internal source repo.
Mostly fixes for PEP-484 violation (i.e. when default arg is set to None, but type is not annotated as optional)
Plus few real fixes:
- Add missing `_get_upgraders_entry_map` to `torch/_C/__init__.pyi`
- Add missing return statement to `torch._export. deserialize_graph`
- Fix error message in `torch.ao.ns.fx.weight_utils.get_lstm_mod_weights`
- Add assert it `torch/optim/optimizer.py` that Optional list is not None
TODO (in followup PR):
- Fix erroneous `isinstance` check in `torch/ao/quantization/_pt2e/qat_utils.py`
Unrelated, to bypass CI failures due to the gcc9 dependency update in Ubuntu-18.04:
- Add hack to squash older libstdc++ from conda environment in favor one from OS to `.ci/docker/install_conda.sh`
- Update bazel cuda builds to focal, as with libstdc++-6.0.32 bazel builds loose the ability to catch exceptions (probably because they link with cupti statically, but I could not found where it is done)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105227
Approved by: https://github.com/atalman, https://github.com/albanD, https://github.com/Skylion007
This PR re-lands
- [Typing] Fix PEP 484 Violation (#105022)
- Update mypy to 1.4.1 (#91983)
That were reverted due to the conflict with internal source repo.
Mostly fixes for PEP-484 violation (i.e. when default arg is set to None, but type is not annotated as optional)
Plus few real fixes:
- Add missing `_get_upgraders_entry_map` to `torch/_C/__init__.pyi`
- Add missing return statement to `torch._export. deserialize_graph`
- Fix error message in `torch.ao.ns.fx.weight_utils.get_lstm_mod_weights`
- Add assert it `torch/optim/optimizer.py` that Optional list is not None
TODO (in followup PR):
- Fix erroneous `isinstance` check in `torch/ao/quantization/_pt2e/qat_utils.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105227
Approved by: https://github.com/atalman, https://github.com/albanD, https://github.com/Skylion007
Not sure, how it worked before, but if arguments must be annotated is optional if they are defaulted to None
Towards enabling mypy-1.4.1 in lintrunner
<!--
copilot:poem
-->
### <samp>🤖 Generated by Copilot at 5e1b9f4</samp>
> _We annotate the arguments of doom_
> _To show the `None` values of gloom_
> _We improve the type checking and readability_
> _With `Optional` annotations of metal-ity_
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105022
Approved by: https://github.com/izaitsevfb, https://github.com/huydhn, https://github.com/Skylion007
Applies the remaining flake8-comprehension fixes and checks. This changes replace all remaining unnecessary generator expressions with list/dict/set comprehensions which are more succinct, performant, and better supported by our torch.jit compiler. It also removes useless generators such as 'set(a for a in b)`, resolving it into just the set call.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94676
Approved by: https://github.com/ezyang
This makes the signature of `torch.masked.std` and `var` more consistent with the global namespace variant and also updates the sample inputs to repurpose the existing `sample_inputs_std_var` inputs which fully exercise the `correction` argument.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87118
Approved by: https://github.com/cpuhrsch
Sometimes you want to query the small element of a set of elements and use `sorted(elements)[0]` without a second thought. However, this is not optimal, since the entire list must be sorted first `O(n log n)`. It would be better to use the `min(elements)` method provided for this purpose `O(n)`.
Furthermore `sorted(elements)[::-1]` is not very efficient, because it would be better to use `sorted(elements, reverse=True)` to save the slice operation.
**TLDR: using `sorted(elements)[0]` is slow and can be replaced with `min(elements)`.**
I stumbled across these code snippets while playing around with CodeQL (see https://lgtm.com/query/4148064474379348546/).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86995
Approved by: https://github.com/jansel
Previously, our handling for contiguity was inconsistent in the following ways:
- is_strides_like 2d/3d and is_non_overlapping_and_dense always were computed
based on sizes_and_strides_, even if you had symbolic ints
- Furthermore, even if you set custom policy for strides, these quantities were
not overridable by subclasses
- Furthermore, we didn't even store these fields on ExtraMeta
- We duplicate implementations of compute_contiguous (plain, channels last,
channels last 3d)
- We inconsistently called refresh_numel()/refresh_contiguous(), versus
recomputing it ourselves
This factor makes a consistent strategy for all of the boolean fields, and
for numel computation. After this refactor:
- All layout boolean fields are interposable via strides policy
and can be overridden from Python; you will never access a garbage field
- All layout boolean fields are on ExtraMeta
- You can always call refresh_numel/contiguous, no matter if your Tensor is
contiguous or not
- The numel/layout boolean fields are always populated consistently with
the sizes strides fields (either on Tensor or ExtraMeta), even if you
have custom policy
- There is only one implementation of the actual computation logic
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: [D39907696](https://our.internmc.facebook.com/intern/diff/D39907696)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85858
Approved by: https://github.com/albanD