Commit Graph

284 Commits

Author SHA1 Message Date
soulitzer
110382bacf Make NestedTensor compilable with eager backend (#109171)
In this PR:
- Adds support for strides for jagged tensor (design doc for this coming soon)
- NestedTensor skips automatic dynamic
- Make use of @bdhirsh's subclass fakification logic by adding the __tensor_{un,}flatten__ functions.
- Additional logic for fakification: since existing subclass fakification logic does not handle the case where the outer tensor has an additional dimension. We insert one-off logic to (1) insert an extra SingletonSymInt onto the fakified NestedTensor. (2) make sure we call track_symint on both the sizes on the inner and outer tensor during guard creation.

Remaining things that are weird:
- Still need to skip some logic in meta utils for some reason (I was going to write this up more, but decided not to since we're not able to do this anyway for a immediate reason: we cannot arbitrarily compare singleton ints. For now I'm just following Brian's advise from [here](https://github.com/pytorch/pytorch/pull/109171#discussion_r1328137070) )

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109171
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
2023-10-11 04:47:10 +00:00
Edward Z. Yang
24bf9aeb6b Fix arange with dynamic end argument. (#110979)
Fixes https://github.com/pytorch/pytorch/issues/93468

There's a few extra tests that are sort of unrelated, but I ended up writing them while working on the fix and decided to keep them. The big idea here is to split the `_check` so that `expect_true` works; I could have probably also improved the symbolic reasoning but I'm lazy. One small logging fix too.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110979
Approved by: https://github.com/Skylion007
2023-10-11 00:32:34 +00:00
soulitzer
bc49b1e50b [reland] Use is_symbolic instead of testing isinstance in some place (#110676)
reland of https://github.com/pytorch/pytorch/pull/110372

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110676
Approved by: https://github.com/ezyang
ghstack dependencies: #110673, #110674, #110675
2023-10-10 19:37:17 +00:00
PyTorch MergeBot
bcd44dac60 Revert "Use is_symbolic instead of testing isinstance in some place (#110372)"
This reverts commit 8672d64fed.

Reverted https://github.com/pytorch/pytorch/pull/110372 on behalf of https://github.com/PaliC due to bottom diff is causing a plethora of internal failures ([comment](https://github.com/pytorch/pytorch/pull/110372#issuecomment-1749795074))
2023-10-05 23:37:37 +00:00
soulitzer
8672d64fed Use is_symbolic instead of testing isinstance in some place (#110372)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110372
Approved by: https://github.com/ezyang
ghstack dependencies: #110044, #110369, #110370, #110371
2023-10-04 22:56:42 +00:00
Peter Bell
dc794ec32c [dynamo] Trace through builtin abs (#110398)
In python `abs(x)` does nothing but delegate to `x.__abs__()` so we should do
the same in dynamo. This also adds `SymNode.__abs__` so we can trace through
indexing expressions involving `abs`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110398
Approved by: https://github.com/jansel, https://github.com/lezcano
2023-10-03 19:25:37 +00:00
Edward Z. Yang
d1a13129bb Add support for item() and nonzero() codegen in Inductor (#109893)
This is another version of
https://github.com/pytorch/pytorch/pull/109262 that I think is more
harmonious with inductor design.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109893
Approved by: https://github.com/jansel
2023-09-28 23:37:31 +00:00
Avik Chaudhuri
5da5e068f3 deprecate constraints in favor of dynamic_shapes (#110143)
Recently we updated the `export` API to take an experimental `dynamic_shapes` argument that was meant to subsume the existing `constraints` argument.

This PR deprecates `constraints` (with a warning on its use, but without actually removing it). Simultaneously it replaces all uses of `constraints` in docs, examples, and tests with corresponding uses of `dynamic_shapes` (preserving behavior). This exercise fortunately revealed some minor bugs in the implementation which have also been fixed in this PR.

Some uses of `constraints` still remain, e.g., when `torch._dynamo.export` is called directly. (Meta-internal uses will be updated in a separate diff.)

Differential Revision: D49676049

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110143
Approved by: https://github.com/tugsbayasgalan
2023-09-28 10:26:21 +00:00
Yukio Siraichi
51a8c166a6 Add test for ShapeEnv recording fallback. (#109944)
This PR adds a test for the previous PR in this stack: #109904. In summary, it calls
functions decorated with `@record_shapeenv_event`, that don't have an explicit `ShapeEnv`
parameter, with arguments that don't hold a `ShapeEnv` instance.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109944
Approved by: https://github.com/ezyang
2023-09-27 00:50:14 +00:00
Edward Z. Yang
3262c5358f Use _check_is_size for validate_dim_length (#109849)
_check_is_size has some extra juice for unbacked SymInts, use it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109849
Approved by: https://github.com/yanboliang
2023-09-26 23:33:31 +00:00
PyTorch MergeBot
812bf847b7 Revert "Add test for ShapeEnv recording fallback. (#109944)"
This reverts commit a4dec8d306.

Reverted https://github.com/pytorch/pytorch/pull/109944 on behalf of https://github.com/atalman due to New test failing internally ([comment](https://github.com/pytorch/pytorch/pull/109944#issuecomment-1735512734))
2023-09-26 13:11:22 +00:00
Yukio Siraichi
26e8cc0465 Add test for ShapeEnv state when not recording. (#109945)
This PR adds a test for checking `ShapeEnv` state when it's built with
`should_record_events=False`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109945
Approved by: https://github.com/ezyang
ghstack dependencies: #109904, #109944
2023-09-26 07:20:46 +00:00
Edward Z. Yang
5f6216b12c Add torch.fx.experimental.recording to uninteresting_files() (#109887)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109887
Approved by: https://github.com/Chillee
2023-09-25 23:22:29 +00:00
Yukio Siraichi
a4dec8d306 Add test for ShapeEnv recording fallback. (#109944)
This PR adds a test for the previous PR in this stack: #109904. In summary, it calls
functions decorated with `@record_shapeenv_event`, that don't have an explicit `ShapeEnv`
parameter, with arguments that don't hold a `ShapeEnv` instance.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109944
Approved by: https://github.com/ezyang
ghstack dependencies: #109904
2023-09-25 20:59:41 +00:00
Avik Chaudhuri
ebc7039bcb New export API with dynamic shape specifications instead of constraints (#108448)
Our experience using `constraints` / `dynamic_dim` with the existing export API has found it to be (subjectively) clunky and (objectively) verbose in common cases.

This PR implements a new design for the export API that replaces the use of `constraints` / `dynamic_dim` with a new way of specifying dynamic shapes, involving the following concepts:
* a constructor `Dim` for first-class named dynamic dimensions with ranges (similar to `functorch.dim`, and analogous to internal symbolic sizes)
* a mechanism that uses the above in `export` calls to associate inputs to their dynamic shape specifications (`dynamic_shapes`)

Design doc: https://docs.google.com/presentation/d/168U7XK72C_WSsZpGESP6Cho9udh193fi0gfjxCNcJ4E/edit#slide=id.p (Meta-only). Note that we only implement Option 1 in that doc. An older version of this PR also implemented Option 3, which is an alternative way of specifying dynamic shapes using tensor type annotations on the exported callable; but we have moved that to future work for now.

See docs for these new features in `torch.export`. The existing `torch.export.export` is modified to use the new API, `torch._export.export__RC__`, whenever `constraints=None`. We have not deprecated the existing API yet, but will do in a follow-up.

Constraint violation errors arising through use of the new API will now contain suggested fixes using the new API. No longer do we need to report all specializations for static dimensions and suggest all constraints over dynamic dimensions to fix such errors. Instead, due to the redesign, the suggested fixes are much more concise, only involving modifying the definitions of relevant `Dim`s.

Differential Revision: [D48919204](https://our.internmc.facebook.com/intern/diff/D48919204/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108448
Approved by: https://github.com/suo, https://github.com/gmagogsfm
2023-09-22 06:58:26 +00:00
Edward Z. Yang
09622d8d49 Allow inferring size-nature from sizes passed to empty constructor (#109720)
This removes the need for many constrain_as_size calls as we now
infer them from error checking for sizes.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109720
Approved by: https://github.com/aakhundov
2023-09-21 17:57:40 +00:00
soulitzer
8bc00dfffd Hashing for constant and singleton SymInt/SymBool (#109170)
Bugfix:
- previously, SymBool does not implement `__eq__`, Python falls back to default `__eq__ `and `__hash__`
- in this PR, we make SymBool implement `__eq__`
- symbolic SymBool now raises an error when hashed just like SymInt/SymFloat

New feature:
- previously, SymInt and SymFloat are unhashable (even if you are singleton or constant)
- in this PR, SymInt and SymBool are hashable if singleton/constant

Stay the same:
- SymNode are hashable due to default Python behavior
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109170
Approved by: https://github.com/ezyang
ghstack dependencies: #109169
2023-09-20 20:37:15 +00:00
soulitzer
5252fcb133 Handle constant SymBool in unary and binary operations (#109169)
In this PR:
- When Constant SymNode are detected in unary/binary ops demote them to plain int/bool before proceeding. Sometimes this means doing a unary op with a Constant SymNode would result in a plain bool.
- Introduce an is_symbolic method, only available from Python. We need this because isinstance(x, SymInt) is no longer sufficient to check whether a given int/SymInt is symbolic or not. See later PR in the stack to see how this is used.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109169
Approved by: https://github.com/ezyang
2023-09-20 20:37:15 +00:00
Edward Z. Yang
b771c04d6e Handle unbacked symints in buffer reuse calculation (#109603)
This is rewritten from https://github.com/pytorch/pytorch/pull/106655 to land faster, with peterbell10's comments.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109603
Approved by: https://github.com/yf225
2023-09-20 16:54:57 +00:00
Yukio Siraichi
dfdc0b63c9 Bisect FX node asserts on ValidationException. (#107493)
This PR introduces binary search for finding smaller validation errors, when they occur.

We do that by bisecting the sequence of `torch._assert` FX nodes recorded as the source
expression of the translation validator (TV) by `ShapeEnv.evaluate_expr` calls. Then, we
raise the error caused by the earliest node.

In summary, the changes are:
- Call `bisect` on `ValidationError` @ _torch/_dynamo/convert_frame.py_
- Implement the binary search @ _torch/fx/experimental/symbolic_shapes.py_

Edit: moved `ShapeEnv` replay-recording to #107989

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107493
Approved by: https://github.com/ezyang
ghstack dependencies: #107989
2023-09-15 15:18:12 +00:00
ydwu4
6140facf00 Support SymBool input to torch.compile (#107850)
We could have SymBool inputs for torch.compile, e.g. in the following situation:
```
def f(x:torch.Tensor):
  pred = x.size(0) == 3
  torch.compile(f)(pred, x)

make_fx(f, tracing_mode="symbolic")(x)
```

The idea of this PR (credit to @ezyang) is to support SymBool by re-using the infra we've already had for SymInt so that we don't need to replicate a lot of stuff.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107850
Approved by: https://github.com/ezyang
ghstack dependencies: #107662
2023-09-14 21:34:31 +00:00
PyTorch MergeBot
47f79e9a2b Revert "Support SymBool input to torch.compile (#107850)"
This reverts commit 9f6d70b2fd.

Reverted https://github.com/pytorch/pytorch/pull/107850 on behalf of https://github.com/huydhn due to Sorry for reverting this, but test_export_with_symbool_inputs is failing in trunk a08e1370ef ([comment](https://github.com/pytorch/pytorch/pull/107850#issuecomment-1718675877))
2023-09-14 02:53:36 +00:00
ydwu4
9f6d70b2fd Support SymBool input to torch.compile (#107850)
We could have SymBool inputs for torch.compile, e.g. in the following situation:
```
def f(x:torch.Tensor):
  pred = x.size(0) == 3
  torch.compile(f)(pred, x)

make_fx(f, tracing_mode="symbolic")(x)
```

The idea of this PR (credit to @ezyang) is to support SymBool by re-using the infra we've already had for SymInt so that we don't need to replicate a lot of stuff.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107850
Approved by: https://github.com/ezyang
ghstack dependencies: #107662
2023-09-14 01:16:29 +00:00
Yukio Siraichi
12e8530b35 Record and replay for ShapeEnv. (#107989)
This PR introduces record and replay functionality for `ShapeEnv` instances. In short,
throughout the execution of a program, we record events (e.g. function calls that modify
its state) so that, in the future, we are able to reproduce any intermediary state of the
instance.

In summary, this PR introduces the following changes (they mostly belong to
_symbolic_shapes.py_ unless otherwise stated):

- Create `ShapeEnvEvent` class for recording function calls + arguments
- Create `record_shapeenv_event` decorator and decorate every function that changes the
  state of a `ShapeEnv`: it creates an appropriate event and add it to the available
  ShapeEnv instance (sometimes it has to extract from `SymTypes`).
- Create `SymNode.with_shape_env` convenient function for replacing `ShapeEnv` references
- Wraps `ShapeEnv` initialization method: so that we also save the exact way a `ShapeEnv`
  was constructed, i.e. arguments
- Introduces a way to compare two `ShapeEnv` instances, defining a concept of state for
  that class. In short, the state of `ShapeEnv` is every variable that may change the
  execution flow
- Create `check_shape_env_recorded_events` dynamo configuration for enabling the check for
  equality the state of `ShapeEnv` with another one that was constructed by replaying all
  the recorded events. This check takes place inside `produce_guards`
- Create `replay_shape_env_events` function for replaying given events. It assumes the
  first event is `ShapeEnv` initialization function

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107989
Approved by: https://github.com/ezyang
2023-09-13 00:22:38 +00:00
Avik Chaudhuri
c55cb29bb2 enforce equalities (#108429)
Sometimes one might want to impose equalities that are not required by guards, e.g. say that you only want square images when rectangular images would suffice.

Curiously we never checked that the concrete values passed in example shapes actually satisfy such equality constraints. So, e.g., you could multiply two tensors of shapes MxK and KxN, specify that M and N must be equal, and then pass examples where they are not equal.

Relatedly, the symbolic shape dimensions for inputs in the exported graph were not forced to be equal.

However, runtime assertions still fire because they take into account all equality constraints. This would result in the strange situation where export would succeed but the exported program with the same example inputs would fail.

This PR fixes these issues.

Differential Revision: [D48910918](https://our.internmc.facebook.com/intern/diff/D48910918/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108429
Approved by: https://github.com/zhxchen17
2023-09-07 23:21:35 +00:00
Edward Z. Yang
9f37aec964 Add torch._check_is_size (#108685)
Check comments for what it does.  The key distinction is that if
you feed it an unbacked SymInt, we will also apply >= 2 assumption
at compile time.

This will get exercised when I reland
https://github.com/pytorch/pytorch/pull/107788

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108685
Approved by: https://github.com/albanD, https://github.com/Skylion007
2023-09-07 12:48:39 +00:00
Huy Do
5a4fe05a15 Revert "Force synced KJT to trace unbacked SymInt (#107788)" (#108684)
This reverts commit 3b92ef814d.  So let's manually revert it instead.

(Not sure why the bot doesn't work on https://github.com/pytorch/pytorch/pull/107788)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108684
Approved by: https://github.com/ezyang
2023-09-06 19:15:45 +00:00
Edward Z. Yang
3b92ef814d Force synced KJT to trace unbacked SymInt (#107788)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107788
Approved by: https://github.com/voznesenskym
2023-09-06 03:18:26 +00:00
Yukio Siraichi
cadd97feef Remove case for RecursionError on try_solve. (#108144)
This PR removes an `except` clause for `RecursionError`. It used to be there because
`sympy.solve` was being used at the time. Since we are using the simpler `try_solve`, it's
not needed anymore.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108144
Approved by: https://github.com/Skylion007
2023-08-29 19:22:20 +00:00
Brian Hirsh
5efd63b1b8 better support for fakeifying and dynamoing through torch_dispatch subclasses (with dynamic shapes) (#107415)
There is already some support for plumbing `__torch_dispatch__` tensor subclasses through dynamo, but this PR beefs it up a bit and adds a test. In particular:

(1) Fakeifying tensor subclasses didn't properly set autograd metadata (requires_grad, is_leaf) on the newly fakeified wrapper subclass. I don't actually have a test for this in this PR, but it's tested pretty heavily later in my aot autograd tests

(2) Fakeifying tensor subclasses didn't properly track source information for dynamic shapes on the inner tensors. I added a new `WrapperSubclassFieldSource` subclass, that represents a source coming from a tensor field on a wrapper subclass, which I use in the fakeifying logic, and again in symbolic_shapes.py to generate proper guards.

(3) `_make_wrapper_subclass()` marginally updated this code to work better with dynamic shapes. One thing that's a bit weird about `_make_wrapper_subclass`: it has two overloads, and the first explicitly does not support dynamic shapes (and the second.. does not support kwargs). I think that later we probably want to consolidate / at least make the first overload work with dynamic shapes, but I didn't want to handle that in this PR (so these smaller changes seemed like a strict improvement).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107415
Approved by: https://github.com/ezyang
2023-08-29 02:36:48 +00:00
Avik Chaudhuri
cf76938f70 remove redundant dynamic_dim (#107815)
Differential Revision: D48618472

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107815
Approved by: https://github.com/tugsbayasgalan, https://github.com/gmagogsfm
2023-08-24 10:46:24 +00:00
Avik Chaudhuri
444875cd25 constraint violation error messages (#107790)
Currently there are 4 cases where contraint violation errors are raised, but the error messages are (a) inconsistent in their information content (b) worded in ways that are difficult to understand for the end user.

This diff cuts one of the cases that can never be reached, and makes the other 3
(a) consistent, e.g. they all point out that some values in the given range may not work, citing a reason and asking the user to run with logs to follow up
(b) user-friendly, e.g., compiler-internal info is cut out or replaced with user-facing syntax.

Differential Revision: D48576608

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107790
Approved by: https://github.com/tugsbayasgalan, https://github.com/angelayi
2023-08-24 06:58:25 +00:00
ydwu4
31b0445702 Fix torch.compile with FakeTensor that has SymInt sizes (#107662)
**Motivation:**
When input FakeTensor to torch.compile has SymInt sizes (e.g. make_fx(opt_f, tracing_mode="symbolic"):
1. We cannot create a FakeTensor from that input in dynamo due to the SymInts.
2. We cannot check input tensors in guard check function and will abort due to tensor check calls sizes/strides.

For 1, we specialize the FakeTensor's SymInts using their hints. This is mostly safe since inputs mostly have concrete shapes and not computed from some DynamicOutputShape ops. We'll throw a data dependent error if the symint is unbacked.

For 2, we replace size/stride calls with the sym_* variants in TENSOR_CHECK guards' check function.

**Test Plan:**
See added tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107662
Approved by: https://github.com/ezyang
2023-08-23 05:27:57 +00:00
Yukio Siraichi
bcede143bd Do not mutate SymNode expression. (#107492)
This PR stops `SymNode` from mutating (i.e. simplifying) its expression. Instead, the
simplification (without mutation) is deferred to the `SymNode.maybe_as_int` method.

```python
- FakeTensor(size=(s0,), ...)
- FakeTensor(size=(s1, s2, s3), ...)

- Eq(s0, s1 + s2 + s3)

- FakeTensor(size=(s0,), ...)
- FakeTensor(size=(s1, s2, s3), ...)
```

In summary, this PR:
- Replaces `SymNode._expr` by `SymNode.expr`, removing the old property function
    - This makes it so `SymNode` instances never update their expression
- Creates `SymNode.simplified_expr()` method for actually calling `ShapeEnv.replace` on
  its expression. Note that this doesn't updates `SymNode.expr`
- Changes how `tensor.size()` gets converted to its Python `torch.Size` type
    - Instead of calling `SymInt::maybe_as_int()` method, we create a new
      `SymInt::is_symbolic()` method for checking whether it is actually a symbolic value
    - This is needed so that when we call `tensor.size()` in the Python side, the returned
      sequence is faithful to the actual data, instead of possibly simplifying it and
      returning an integer
    - 2 files needs this modification:
        - _torch/csrc/Size.cpp_: for handling `torch.Tensor.size` Python calls
        - _torch/csrc/utils/pybind.cpp_: for handling `symint.cast()` C++ calls

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107492
Approved by: https://github.com/ezyang
ghstack dependencies: #107523
2023-08-22 12:38:05 +00:00
Yukio Siraichi
d2215f14ba Fix: transactional translation validation insertion. (#107523)
This PR fixes transactional behavior of translation validation insertion.

Previously, this transactional behavior was implemented by removing the FX node if any
issues occurred until the end of `evaluate_expr`. However, since we cache FX nodes, we
might end up removing something that wasn't inserted in the same function call.

**Solution:** when creating an FX node for `call_function`, we also return whether this is
a fresh FX node or not. Then, we can appropriately handle each case.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107523
Approved by: https://github.com/ezyang
2023-08-22 12:38:05 +00:00
Edward Z. Yang
8292b03c47 Use fast traceback for symbolic shapes (#107439)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107439
Approved by: https://github.com/voznesenskym
ghstack dependencies: #107505, #107516, #107530, #107532, #107562, #107471
2023-08-22 01:03:13 +00:00
Edward Z. Yang
8316affc45 Add frame/recompile counter to all log messages in tracing context (#107530)
All log messages that occur while running Dynamo compilation now have `[X/Y]` added to the beginning of their message. X represents the frame being compiled, while Y says which compilation of the frame. For example, if you are debugging a frame that is repeatedly recompiling, you can look for N/0, N/1, N/2, etc. for the same N.  Here is what the logs look like as you transition from one frame to another:

<img width="1372" alt="image" src="https://github.com/pytorch/pytorch/assets/13564/4897e368-1e50-4807-b342-54e911bcf087">

To accurately get this prefix added to all messages, I had to expand the scope of the `tracing` context manager. Its scope now coincides with `log_compilation_event`. To do this, I had to populate fake mode lazily in the TracingContext, since it isn't created until later, inside the OutputGraph.

This subsumes the previous X.Y logging that was solely for dynamic shapes.

Unfortunately I had to reindent some stuff. Review the diff with whitespace off.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107530
Approved by: https://github.com/anijain2305
ghstack dependencies: #107505, #107516
2023-08-21 13:02:12 +00:00
Avik Chaudhuri
2c3d2fa2d2 do not raise constraint violation on trivial guards (#107470)
Differential Revision: D48475543

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107470
Approved by: https://github.com/tugsbayasgalan
2023-08-20 03:35:27 +00:00
Edward Z. Yang
24f0b552e1 [EASY] Use runtime_var_to_range for guards (#107329)
We sometimes allow compile-time reasoning to diverge from runtime
reasoning.  When we check guards, we are testing for *runtime*
properties.  Thus we should use those ranges, not the compile time
ones.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107329
Approved by: https://github.com/tugsbayasgalan
2023-08-20 02:16:56 +00:00
Edward Z. Yang
e1ee10e6f5 Add expect_true for irrefutable guards (#106720)
Here's what it does from the comments:

```
Assume that a boolean is true for the purposes of subsequent symbolic
reasoning.  This will keep track of corresponding runtime checks to verify
that the result is upheld: either as a regular guard, or as a special set
of asserts which are triggered when an unbacked SymInt is allocated.

DO NOT use this function for these cases:

 - This is inappropriate for "branching" conditions (where both
   true and false result in valid programs).  We will always assume
   the condition evaluates true, and so it will never be possible
   to trace the false condition when you use it.  For true branching
   on unbacked SymInts, you must use torch.cond.

 - This is inappropriate for situations where you know some other system
   invariant guarantees that this property holds, since you don't
   really need to insert a runtime check in that case.  Use something
   like constrain_range in that case.

This API has a hitch.  To avoid having to reimplement error reporting
capabilities, this function CAN return False.  The invariant is that
the surrounding code must raise an error when this function returns
False.  This is quite low level, so we recommend using other functions
like check() which enforce this in a more intuitive way.

By the way, this name is a nod to the __builtin_expect likely macro,
which is used similarly (but unlike __builtin_expect, you MUST fail
in the unlikely branch.)
```

We don't do anything with this right now, except use it to discharge regular guards.  Follow up PRs to (1) use it at important error checking sites, (2) actually ensure the runtime asserts make there way into the exported IR / inductor generated code.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106720
Approved by: https://github.com/ysiraichi, https://github.com/voznesenskym
2023-08-15 18:42:22 +00:00
Tugsbayasgalan Manlaibaatar
20c5add133 [export] Refactor constrain_as_value and constrain_as_size (#106591)
Some notable changes:
1. `constrain_as_size` allows min value to be less than 2 as it will unconditionally assume min >= 2 for compiler purposes. Instead, we add additional check to make sure max value is always greater than 2.
2. Previously, we used to runtime assert on the unbacked symint's val range which would be always between [2, max]. I modified this logic to assert on [0, max] unless user explicitly specifies the min range.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106591
Approved by: https://github.com/gmagogsfm, https://github.com/ezyang
2023-08-15 05:41:43 +00:00
Yukio Siraichi
d8ad74857c Run translation validation on tracing error. (#106645)
This PR wraps `InstructionTranslator` run with a try-catch block so as to run the
translation validation (TV) if it ends up raising an error.

In this context, we run TV so as to catch simplification errors. These may turn
`ShapeEnv.divisible` and `ShapeEnv.replacements` incorrect.

For example: #101173 describes a SymPy simplification bug that doesn't reach TV, since
it's run only in the end of the tracing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106645
Approved by: https://github.com/ezyang
2023-08-14 13:43:34 +00:00
PyTorch MergeBot
745d29b0cc Revert "[export] Refactor constrain_as_value and constrain_as_size (#106591)"
This reverts commit 18989890bf.

Reverted https://github.com/pytorch/pytorch/pull/106591 on behalf of https://github.com/izaitsevfb due to Breaks inductor test on trunk ([comment](https://github.com/pytorch/pytorch/pull/106591#issuecomment-1675069091))
2023-08-11 16:37:47 +00:00
Tugsbayasgalan Manlaibaatar
18989890bf [export] Refactor constrain_as_value and constrain_as_size (#106591)
Some notable changes:
1. `constrain_as_size` allows min value to be less than 2 as it will unconditionally assume min >= 2 for compiler purposes. Instead, we add additional check to make sure max value is always greater than 2.
2. Previously, we used to runtime assert on the unbacked symint's val range which would be always between [2, max]. I modified this logic to assert on [0, max] unless user explicitly specifies the min range.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106591
Approved by: https://github.com/gmagogsfm, https://github.com/ezyang
2023-08-11 05:29:22 +00:00
angelayi
7f9d1cacca [export] Minor fixes to contrain_as_size (#106737)
Fixed some minor issues with constraint APIs while I was helping enable some other model

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106737
Approved by: https://github.com/tugsbayasgalan
2023-08-10 00:13:08 +00:00
Edward Z. Yang
8ea13a955a Avoid subtracting by sys.maxsize when something is bounded below by -sys.maxsize - 1 (#106716)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106716
Approved by: https://github.com/albanD
2023-08-09 19:34:03 +00:00
Yukio Siraichi
070eb88a96 Handle Rational divisors in FloorDiv. (#106644)
Follow-up: #101173

This PR fixes the bug presented in #101173 by creating a special case for `sympy.Rational`
divisors, inside `FloorDiv` evaluation. In summary:

```python
FloorDiv(a, Rational(1, b))
a * b
```

Besides that, this PR also does 2 other things:

- Replaces the use of the old `sympy.Mod` by the internal `Mod` (there were a few places
that were still looking for the SymPy one)

- Introduces debugging logs to the translation validator. These can be seen by setting the
environment variable: `TORCH_LOGS=+torch.fx.experimental.validator`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106644
Approved by: https://github.com/ezyang
ghstack dependencies: #106643
2023-08-07 16:52:22 +00:00
Yukio Siraichi
33e70e34a3 More readable Z3 expressions printer. (#106643)
This PR makes Z3 expressions easier to read and understand by creating a custom printer
for them.

Z3 expressions can be printed in 2 forms:

1. Using the builtin `str(e)` function
2. Using the `e.sexpr()` method

Problem is that (1) is a bit hard to read because its line breaks are not so
intuitive. (2) is a bit nicer, but the `to_int` and `to_real` functions clutter things up.

The custom printer is an improved `sexpr()` function:

- Leaves everything in one line
- Gets rid of `to_int` and `to_real` functions
- Reconstruct the floor division operations
- Merge commutative operation chains

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106643
Approved by: https://github.com/ezyang
2023-08-07 16:52:22 +00:00
Yukio Siraichi
bd84651e19 Replace sympy.solve with a new simplified one. (#105877)
This PR implements `try_solve`: a function that tries to move terms of a relational
expression around, so as to isolate a given variable on the left-hand side.

For example:

```python
>>> try_solve(Eq(a + 5, 3), a)
Eq(a, -2)
>>> try_solve(Gt(Mod(a, 3), 0), a) # returns None
>>> try_solve(Gt(Mod(a, 3), 0), Mod(a, 3))
Gt(Mod(a, 3), 0), Mod(a, 3)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105877
Approved by: https://github.com/ezyang
2023-08-02 17:53:29 +00:00
Edward Z. Yang
716f37cef8 If we can't statically prove 32-bit indexing OK, only add guard if hint exists (#106004)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106004
Approved by: https://github.com/lezcano, https://github.com/albanD
2023-07-26 16:36:29 +00:00