Summary: Implement an on-disk cache to save and reuse compiled FX Graphs. This implementation does not handle tensors with symbolic shapes. This needs to be done in a follow-up PR.
Test Plan:
* New unit tests exercising saving and load from the cache.
* New unit tests to exercise the cache key calculations.
* Ran several benchmarks to see cache hit and resulting compilation times.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103453
Approved by: https://github.com/eellison, https://github.com/Chillee
In this PR:
- Adds support for strides for jagged tensor (design doc for this coming soon)
- NestedTensor skips automatic dynamic
- Make use of @bdhirsh's subclass fakification logic by adding the __tensor_{un,}flatten__ functions.
- Additional logic for fakification: since existing subclass fakification logic does not handle the case where the outer tensor has an additional dimension. We insert one-off logic to (1) insert an extra SingletonSymInt onto the fakified NestedTensor. (2) make sure we call track_symint on both the sizes on the inner and outer tensor during guard creation.
Remaining things that are weird:
- Still need to skip some logic in meta utils for some reason (I was going to write this up more, but decided not to since we're not able to do this anyway for a immediate reason: we cannot arbitrarily compare singleton ints. For now I'm just following Brian's advise from [here](https://github.com/pytorch/pytorch/pull/109171#discussion_r1328137070) )
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109171
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
Fixes https://github.com/pytorch/pytorch/issues/93468
There's a few extra tests that are sort of unrelated, but I ended up writing them while working on the fix and decided to keep them. The big idea here is to split the `_check` so that `expect_true` works; I could have probably also improved the symbolic reasoning but I'm lazy. One small logging fix too.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110979
Approved by: https://github.com/Skylion007
Summary:
We want the matcher to return a name -> node in target graph
so that we can refer to the node by name, this is useful for downstream applications like
quantization.
and also we can use the torch API as source of truth instead of matching aten API directly.
Test Plan:
python test/fx/test_matcher_utils.py
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110743
Approved by: https://github.com/SherlockNoMad
Summary: Implement an on-disk cache to save and reuse compiled FX Graphs. This implementation does not handle tensors with symbolic shapes. This needs to be done in a follow-up PR.
Test Plan:
* New unit tests exercising saving and load from the cache.
* New unit tests to exercise the cache key calculations.
* Ran several benchmarks to see cache hit and resulting compilation times.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103453
Approved by: https://github.com/eellison
A resubmit of https://github.com/pytorch/pytorch/pull/108447. Copy over the descriptions:
This is a follow-up of the discussion in https://github.com/pytorch/pytorch/pull/108356, where we want to repalce source_fn with source_fn_stack
Before this PR, for the following example:
```python
backend = EagerAndRecordGraphs()
@torch.compile(backend=backend, fullgraph=True)
def cond_f(pred, pred2, x, y):
def true_fn(pred2, x, y):
return x + y
def false_fn(pred2, x, y):
def true_fn2(x, y):
return x.sin() - y.cos()
def false_fn2(x, y):
return x.cos() - y.sin()
return control_flow.cond(pred2, true_fn2, false_fn2, (x, y))
return control_flow.cond(pred, true_fn, false_fn, (pred2, x, y))
```
The graph captured is shown below:
```python
class GraphModule(torch.nn.Module):
def forward(self, L_pred_ : torch.Tensor, L_pred2_ : torch.Tensor, L_x_ : torch.Tensor, L_y_ : torch.Tensor):
l_pred_ = L_pred_
l_pred2_ = L_pred2_
l_x_ = L_x_
l_y_ = L_y_
cond_true_1 = self.cond_true_1
cond_false_1 = self.cond_false_1
cond = torch.ops.higher_order.cond(l_pred_, cond_true_1, cond_false_1, [l_pred2_, l_x_, l_y_]); l_pred_ = cond_true_1 = cond_false_1 = l_pred2_ = l_x_ = l_y_ = None
return (cond,)
class GraphModule(torch.nn.Module):
def forward(self, l_pred2_, l_x_, l_y_):
add = l_x_ + l_y_; l_x_ = l_y_ = None
return add
class GraphModule(torch.nn.Module):
def forward(self, l_pred2_, l_x_, l_y_):
cond_true_0 = self.cond_true_0
cond_false_0 = self.cond_false_0
cond = torch.ops.higher_order.cond(l_pred2_, cond_true_0, cond_false_0, [l_x_, l_y_]); l_pred2_ = cond_true_0 = cond_false_0 = l_x_ = l_y_ = None
return cond
class GraphModule(torch.nn.Module):
def forward(self, l_x_, l_y_):
sin = l_x_.sin(); l_x_ = None
cos = l_y_.cos(); l_y_ = None
sub = sin - cos; sin = cos = None
return sub
class GraphModule(torch.nn.Module):
def forward(self, l_x_, l_y_):
cos = l_x_.cos(); l_x_ = None
sin = l_y_.sin(); l_y_ = None
sub = cos - sin; cos = sin = None
return sub
```
the source_fn for inner cond, sin, cos will be a (name, target) tuple:
```
('cond', <torch._ops.HigherOrderOperator object at xxx>)
('sin', 'sin')
('cos', 'cos')
('sub'. <built-in function sub>)
```
After this pr, the source_fn_stack will be a list of (name, target) tuple. The bottom of stack is the end of the list.
```
[('cond', <torch._ops.HigherOrderOperator object at xxx>), ('cond', <torch._ops.HigherOrderOperator object at xxx>)],
[('cond', <torch._ops.HigherOrderOperator object at xxx>), ('cond', <torch._ops.HigherOrderOperator object at xxx>), ('sin', 'sin')],
[('cond', <torch._ops.HigherOrderOperator object at xxx>), ('cond', <torch._ops.HigherOrderOperator object at xxx>), ('cos', 'cos')]
[('cond', <torch._ops.HigherOrderOperator object at xxx>), ('cond', <torch._ops.HigherOrderOperator object at xxx>), ('sub', <built-in function sub>)]
```
Test Plan:
See added tests in test_higher_order_ops.py and modify existing test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108595
Approved by: https://github.com/angelayi, https://github.com/zou3519
Recently we updated the `export` API to take an experimental `dynamic_shapes` argument that was meant to subsume the existing `constraints` argument.
This PR deprecates `constraints` (with a warning on its use, but without actually removing it). Simultaneously it replaces all uses of `constraints` in docs, examples, and tests with corresponding uses of `dynamic_shapes` (preserving behavior). This exercise fortunately revealed some minor bugs in the implementation which have also been fixed in this PR.
Some uses of `constraints` still remain, e.g., when `torch._dynamo.export` is called directly. (Meta-internal uses will be updated in a separate diff.)
Differential Revision: D49676049
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110143
Approved by: https://github.com/tugsbayasgalan
This PR adds a test for the previous PR in this stack: #109904. In summary, it calls
functions decorated with `@record_shapeenv_event`, that don't have an explicit `ShapeEnv`
parameter, with arguments that don't hold a `ShapeEnv` instance.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109944
Approved by: https://github.com/ezyang
This PR adds a test for the previous PR in this stack: #109904. In summary, it calls
functions decorated with `@record_shapeenv_event`, that don't have an explicit `ShapeEnv`
parameter, with arguments that don't hold a `ShapeEnv` instance.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109944
Approved by: https://github.com/ezyang
ghstack dependencies: #109904
Our experience using `constraints` / `dynamic_dim` with the existing export API has found it to be (subjectively) clunky and (objectively) verbose in common cases.
This PR implements a new design for the export API that replaces the use of `constraints` / `dynamic_dim` with a new way of specifying dynamic shapes, involving the following concepts:
* a constructor `Dim` for first-class named dynamic dimensions with ranges (similar to `functorch.dim`, and analogous to internal symbolic sizes)
* a mechanism that uses the above in `export` calls to associate inputs to their dynamic shape specifications (`dynamic_shapes`)
Design doc: https://docs.google.com/presentation/d/168U7XK72C_WSsZpGESP6Cho9udh193fi0gfjxCNcJ4E/edit#slide=id.p (Meta-only). Note that we only implement Option 1 in that doc. An older version of this PR also implemented Option 3, which is an alternative way of specifying dynamic shapes using tensor type annotations on the exported callable; but we have moved that to future work for now.
See docs for these new features in `torch.export`. The existing `torch.export.export` is modified to use the new API, `torch._export.export__RC__`, whenever `constraints=None`. We have not deprecated the existing API yet, but will do in a follow-up.
Constraint violation errors arising through use of the new API will now contain suggested fixes using the new API. No longer do we need to report all specializations for static dimensions and suggest all constraints over dynamic dimensions to fix such errors. Instead, due to the redesign, the suggested fixes are much more concise, only involving modifying the definitions of relevant `Dim`s.
Differential Revision: [D48919204](https://our.internmc.facebook.com/intern/diff/D48919204/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108448
Approved by: https://github.com/suo, https://github.com/gmagogsfm
example usage
* `TORCH_COMPILE_DEBUG=1 INDUCTOR_ORIG_FX_SVG=1 INDUCTOR_POST_FUSION_SVG=1 python trig.py`: show original fx node name, file, and code. see snapshot 2 where we have origin_0, 1, 2
* trig.py can be found in P816304818
Implementation
* keep original fx graph in GraphLowering, ```self.orig_gm: torch.fx.GraphModule = gm.__copy__()```
* draw original fx graph with origins ir_post_fusion ```V.debug.draw_orig_fx_graph(self.orig_gm, self.scheduler.nodes)```. node.meta["buff_meta"] tracks buf_name
<img width="350" alt="Screenshot 2023-08-29 at 12 40 24 PM" src="https://github.com/pytorch/pytorch/assets/134637289/c4e197cb-ab3b-4a09-a584-c1356376accb">
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107752
Approved by: https://github.com/mlazos
Bugfix:
- previously, SymBool does not implement `__eq__`, Python falls back to default `__eq__ `and `__hash__`
- in this PR, we make SymBool implement `__eq__`
- symbolic SymBool now raises an error when hashed just like SymInt/SymFloat
New feature:
- previously, SymInt and SymFloat are unhashable (even if you are singleton or constant)
- in this PR, SymInt and SymBool are hashable if singleton/constant
Stay the same:
- SymNode are hashable due to default Python behavior
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109170
Approved by: https://github.com/ezyang
ghstack dependencies: #109169
In this PR:
- When Constant SymNode are detected in unary/binary ops demote them to plain int/bool before proceeding. Sometimes this means doing a unary op with a Constant SymNode would result in a plain bool.
- Introduce an is_symbolic method, only available from Python. We need this because isinstance(x, SymInt) is no longer sufficient to check whether a given int/SymInt is symbolic or not. See later PR in the stack to see how this is used.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109169
Approved by: https://github.com/ezyang
Requested from @tugsbayasgalan: we want dynamo to preserve some FX node metadata when we trace `GraphModule`s (`nn_module_stack`, `source_fn`, `stack_trace`). This is helpful for the case when we export an aten-level `GraphModule`, add some (possibly non-torch or non-aten) ops, and we want to transform the graph back into an aten-level graph. Without preserving metadata, future passes that look at metadata (e.g. quantization passes) won't work.
This feature also has the additional benefit of being able to preserve origin line of code when `print_readable`'ing a `GraphModule`. This is helpful when debugging graphs that have passed through dynamo several times.
The added unit test demonstrates the added functionality of this PR.
~This PR is currently a proof-of-concept implementation that shows that preserving node metadata across dynamo is possible.~ This PR preserves node metadata across dynamo by doing the following:
- ~inject a counter variable into the `GraphModule` source code, which is incremented every time a node is run~
- Construct a line number -> node index map in `GraphModule` as the source code is being generated.
- pass a list of node metadata and the line number map to dynamo's bytecode analyzer
- ~dynamo traces the counter as a `ConstantVariable`, so when we create a new proxy, we can determine which original node index this proxy corresponds by looking at the value of the traced counter~
- When we create a new proxy, get the current instruction's line number, and get the node index using the line number map
- index into the original node metadata ~using the counter variable's tracked value.~
~Some things that should be addressed off the top of my head:~
- ~Is this feature even desirable? (Do we really want Dynamo to have special behavior for `GraphModules`? Should we expect users to re-export `GraphModules`?)~
- ~Is there a better approach than to use a counter? We considered using node names, line numbers, and assuming that proxies are created in the same order as the nodes, but each of these 3 have shortcomings. For node names, we only have access to new node names, not the old ones. Using line number is fragile. The third is problematic since not all created nodes go through `create_proxy` (e.g. inputs). We currently generate a line number to node index map when the `GraphModule`'s code is generated.~
- ~What's the best way to send data across the "CPython gap"? That is, it is not obvious how to cleanly pass data from dynamo's `eval_frame.py:_TorchDynamoContext.__call__` to `symbolic_convert.py:InstructionTranslatorBase.__init__`. In this PR, we use a global.~
Differential Revision: [D49257108](https://our.internmc.facebook.com/intern/diff/D49257108)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107067
Approved by: https://github.com/jansel
This PR introduces binary search for finding smaller validation errors, when they occur.
We do that by bisecting the sequence of `torch._assert` FX nodes recorded as the source
expression of the translation validator (TV) by `ShapeEnv.evaluate_expr` calls. Then, we
raise the error caused by the earliest node.
In summary, the changes are:
- Call `bisect` on `ValidationError` @ _torch/_dynamo/convert_frame.py_
- Implement the binary search @ _torch/fx/experimental/symbolic_shapes.py_
Edit: moved `ShapeEnv` replay-recording to #107989
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107493
Approved by: https://github.com/ezyang
ghstack dependencies: #107989
We could have SymBool inputs for torch.compile, e.g. in the following situation:
```
def f(x:torch.Tensor):
pred = x.size(0) == 3
torch.compile(f)(pred, x)
make_fx(f, tracing_mode="symbolic")(x)
```
The idea of this PR (credit to @ezyang) is to support SymBool by re-using the infra we've already had for SymInt so that we don't need to replicate a lot of stuff.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107850
Approved by: https://github.com/ezyang
ghstack dependencies: #107662
We could have SymBool inputs for torch.compile, e.g. in the following situation:
```
def f(x:torch.Tensor):
pred = x.size(0) == 3
torch.compile(f)(pred, x)
make_fx(f, tracing_mode="symbolic")(x)
```
The idea of this PR (credit to @ezyang) is to support SymBool by re-using the infra we've already had for SymInt so that we don't need to replicate a lot of stuff.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107850
Approved by: https://github.com/ezyang
ghstack dependencies: #107662
- Update cross-ref FakeMode test to use ShapeEnv. Dynamic ops can now
return an unbacked SymInt. We always accept this as equal to whatever
the real value was.
- Relax test so it works on all classes, not just unittest.TestCase
- Properly wrap the original method, so things like
pytree.mark.parametrize are carried over
- Support dynamic shapes by default for make_fx `tracing_mode="fake"` without symbolifying everything else
Fixes https://github.com/pytorch/pytorch/issues/108927
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108929
Approved by: https://github.com/zou3519
This PR introduces record and replay functionality for `ShapeEnv` instances. In short,
throughout the execution of a program, we record events (e.g. function calls that modify
its state) so that, in the future, we are able to reproduce any intermediary state of the
instance.
In summary, this PR introduces the following changes (they mostly belong to
_symbolic_shapes.py_ unless otherwise stated):
- Create `ShapeEnvEvent` class for recording function calls + arguments
- Create `record_shapeenv_event` decorator and decorate every function that changes the
state of a `ShapeEnv`: it creates an appropriate event and add it to the available
ShapeEnv instance (sometimes it has to extract from `SymTypes`).
- Create `SymNode.with_shape_env` convenient function for replacing `ShapeEnv` references
- Wraps `ShapeEnv` initialization method: so that we also save the exact way a `ShapeEnv`
was constructed, i.e. arguments
- Introduces a way to compare two `ShapeEnv` instances, defining a concept of state for
that class. In short, the state of `ShapeEnv` is every variable that may change the
execution flow
- Create `check_shape_env_recorded_events` dynamo configuration for enabling the check for
equality the state of `ShapeEnv` with another one that was constructed by replaying all
the recorded events. This check takes place inside `produce_guards`
- Create `replay_shape_env_events` function for replaying given events. It assumes the
first event is `ShapeEnv` initialization function
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107989
Approved by: https://github.com/ezyang
Requested from @tugsbayasgalan: we want dynamo to preserve some FX node metadata when we trace `GraphModule`s (`nn_module_stack`, `source_fn`, `stack_trace`). This is helpful for the case when we export an aten-level `GraphModule`, add some (possibly non-torch or non-aten) ops, and we want to transform the graph back into an aten-level graph. Without preserving metadata, future passes that look at metadata (e.g. quantization passes) won't work.
This feature also has the additional benefit of being able to preserve origin line of code when `print_readable`'ing a `GraphModule`. This is helpful when debugging graphs that have passed through dynamo several times.
The added unit test demonstrates the added functionality of this PR.
~This PR is currently a proof-of-concept implementation that shows that preserving node metadata across dynamo is possible.~ This PR preserves node metadata across dynamo by doing the following:
- ~inject a counter variable into the `GraphModule` source code, which is incremented every time a node is run~
- Construct a line number -> node index map in `GraphModule` as the source code is being generated.
- pass a list of node metadata and the line number map to dynamo's bytecode analyzer
- ~dynamo traces the counter as a `ConstantVariable`, so when we create a new proxy, we can determine which original node index this proxy corresponds by looking at the value of the traced counter~
- When we create a new proxy, get the current instruction's line number, and get the node index using the line number map
- index into the original node metadata ~using the counter variable's tracked value.~
~Some things that should be addressed off the top of my head:~
- ~Is this feature even desirable? (Do we really want Dynamo to have special behavior for `GraphModules`? Should we expect users to re-export `GraphModules`?)~
- ~Is there a better approach than to use a counter? We considered using node names, line numbers, and assuming that proxies are created in the same order as the nodes, but each of these 3 have shortcomings. For node names, we only have access to new node names, not the old ones. Using line number is fragile. The third is problematic since not all created nodes go through `create_proxy` (e.g. inputs). We currently generate a line number to node index map when the `GraphModule`'s code is generated.~
- ~What's the best way to send data across the "CPython gap"? That is, it is not obvious how to cleanly pass data from dynamo's `eval_frame.py:_TorchDynamoContext.__call__` to `symbolic_convert.py:InstructionTranslatorBase.__init__`. In this PR, we use a global.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107067
Approved by: https://github.com/jansel
Sometimes one might want to impose equalities that are not required by guards, e.g. say that you only want square images when rectangular images would suffice.
Curiously we never checked that the concrete values passed in example shapes actually satisfy such equality constraints. So, e.g., you could multiply two tensors of shapes MxK and KxN, specify that M and N must be equal, and then pass examples where they are not equal.
Relatedly, the symbolic shape dimensions for inputs in the exported graph were not forced to be equal.
However, runtime assertions still fire because they take into account all equality constraints. This would result in the strange situation where export would succeed but the exported program with the same example inputs would fail.
This PR fixes these issues.
Differential Revision: [D48910918](https://our.internmc.facebook.com/intern/diff/D48910918/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108429
Approved by: https://github.com/zhxchen17