This is a new version of #15648 based on the latest master branch.
Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.
In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)
Fixes https://github.com/pytorch/pytorch/issues/71105
@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
Summary:
A number of derived distributions use base distributions in their
implementation.
We add what we hope is a comprehensive test whether all distributions
actually honor skipping validation of arguments in log_prob and then
fix the bugs we found. These bugs are particularly cumbersome in
PyTorch 1.8 and master when validate_args is turned on by default
In addition one might argue that validate_args is not performing
as well as it should when the default is not to validate but the
validation is turned on in instantiation.
Arguably, there is another set of bugs or at least inconsistencies
when validation of inputs does not prevent invalid indices in
sample validation (when with validation an IndexError is raised
in the test). We would encourage the implementors to be more
ambitious when validation is turned on and amend sample validation
to throw a ValueError for consistency.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53600
Reviewed By: mrshenli
Differential Revision: D26928088
Pulled By: neerajprad
fbshipit-source-id: 52784a754da2faee1a922976e2142957c6c02e28
Summary:
Context: https://github.com/pytorch/pytorch/pull/53299#discussion_r587882857
These are the only hand-written parts of this diff:
- the addition to `.github/workflows/lint.yml`
- the file endings changed in these four files (to appease FB-internal land-blocking lints):
- `GLOSSARY.md`
- `aten/src/ATen/core/op_registration/README.md`
- `scripts/README.md`
- `torch/csrc/jit/codegen/fuser/README.md`
The rest was generated by running this command (on macOS):
```
git grep -I -l ' $' -- . ':(exclude)**/contrib/**' ':(exclude)third_party' | xargs gsed -i 's/ *$//'
```
I looked over the auto-generated changes and didn't see anything that looked problematic.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53406
Test Plan:
This run (after adding the lint but before removing existing trailing spaces) failed:
- https://github.com/pytorch/pytorch/runs/2043032377
This run (on the tip of this PR) succeeded:
- https://github.com/pytorch/pytorch/runs/2043296348
Reviewed By: walterddr, seemethere
Differential Revision: D26856620
Pulled By: samestep
fbshipit-source-id: 3f0de7f7c2e4b0f1c089eac9b5085a58dd7e0d97
Summary:
The new added mixture_same_family should support cdf if the family has cdf implemented.
This is very useful for flow models where cdf of mixture of gassian/logistic is used to model flow
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33408
Differential Revision: D20191552
Pulled By: ezyang
fbshipit-source-id: 0bfd7973aa335c162919398a12ddec7425712297
Summary:
Addressing issue https://github.com/pytorch/pytorch/issues/18125
This implements a mixture distributions, where all components are from the same distribution family. Right now the implementation supports the ```mean, variance, sample, log_prob``` methods.
cc: fritzo and neerajprad
- [x] add import and `__all__` string in `torch/distributions/__init__.py`
- [x] register docs in docs/source/distributions.rst
### Tests
(all tests live in tests/distributions.py)
- [x] add an `Example(MixtureSameFamily, [...])` to the `EXAMPLES` list,
populating `[...]` with three examples:
one with `Normal`, one with `Categorical`, and one with `MultivariateNormal`
(to exercise, `FloatTensor`, `LongTensor`, and nontrivial `event_dim`)
- [x] add a `test_mixture_same_family_shape()` to `TestDistributions`. It would be good to test this with both `Normal` and `MultivariateNormal`
- [x] add a `test_mixture_same_family_log_prob()` to `TestDistributions`.
- [x] add a `test_mixture_same_family_sample()` to `TestDistributions`.
- [x] add a `test_mixture_same_family_shape()` to `TestDistributionShapes`
### Triaged for follup-up PR?
- support batch shape
- implement `.expand()`
- implement `kl_divergence()` in torch/distributions/kl.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22742
Differential Revision: D19899726
Pulled By: ezyang
fbshipit-source-id: 9c816e83a2ef104fe3ea3117c95680b51c7a2fa4