Commit Graph

31 Commits

Author SHA1 Message Date
a-r-r-o-w
e08577aec5 Spelling fix (#108490)
Fixes spelling mistake: non-deterinistic -> non-deterministic
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108490
Approved by: https://github.com/ezyang
2023-09-04 16:59:35 +00:00
Edward Z. Yang
3bf922a6ce Apply UFMT to low traffic torch modules (#106249)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106249
Approved by: https://github.com/Skylion007
2023-07-29 23:37:30 +00:00
Kale Kundert
e75f7994e1 Fix Dirichlet.log_prob() when x=0 and alpha=1 (#103605)
`Dirichlet.log_prob()` incorrectly returns NaN in the case where $x_i=0$ and $\alpha_i=1$.  The Dirichlet PDF is given by:
$$\frac{1}{B(\alpha)} \prod_{i=1}^{K} x_i^{\alpha_i - 1}$$
So this corresponds to the case where one of the terms has the form $0^0=1$. The logarithm of such a term should be 0, but you get NaN if you try to calculate it as `0 * log(0)`.

This PR implements the same algorithm that `scipy.stats.dirichlet` uses to avoid this behavior, namely `xlogy(alpha - 1, x)` instead of `(alpha - 1) * log(x)`.  It also adds a test case comparing the pytorch and scipy implementations for this specific case.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103605
Approved by: https://github.com/albanD
2023-06-15 16:16:50 +00:00
Xuehai Pan
5b1cedacde [BE] [2/3] Rewrite super() calls in functorch and torch (#94588)
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94588
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-02-10 21:16:33 +00:00
joncrall
4618371da5 Integrate xdoctest - Rebased (#82797)
This is a new version of #15648 based on the latest master branch.

Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.

In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)

Fixes https://github.com/pytorch/pytorch/issues/71105

@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
2022-08-12 02:08:01 +00:00
Feynman Liang
40feeea500 Fix typo in dirichlet.py example (#82062)
### Description
<!-- What did you change and why was it needed? -->

### Issue
<!-- Link to Issue ticket or RFP -->

### Testing
<!-- How did you test your change? -->

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82062
Approved by: https://github.com/kit1980
2022-07-23 22:30:12 +00:00
anjali411
3bcc19b29a Add __all__ to various submodules in torch.fx, distributions, distributed, package (#80367)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80367
Approved by: https://github.com/albanD
2022-06-27 21:27:30 +00:00
Till Hoffmann
40576bceaf Add mode property to distributions. (#76690)
This PR fixes #69466 and introduces some other minor changes. Tests are somewhat more involved because a reference implementation in `scipy` is not available; tests proceed differently for discrete and continuous distributions.

For continuous distributions, we evaluate the gradient of the `log_prob` at the mode. Tests pass if the gradient is zero OR (the mode is at the boundary of the support of the distribution AND the `log_prob` decreases as we move away from the boundary to the interior of the support).

For discrete distributions, the notion of a gradient is not well defined. We thus "look" ahead and behind one step (e.g. if the mode of a Poisson distribution is 9, we consider 8 and 10). If the step ahead/behind is still within the support of the distribution, we assert that the `log_prob` is smaller than at the mode.

For one-hot encoded distributions (currently just `OneHotCategorical`), we evaluate the underlying mode (i.e. encoded as an integral tensor), "advance" by one label to get another sample that should have lower probability using `other = (mode + 1) % event_size` and re-encode as one-hot. The resultant `other` sample should have lower probability than the mode.

Furthermore, Gamma, half Cauchy, and half normal distributions have their support changed from positive to nonnegative. This change is necessary because the mode of the "half" distributions is zero, and the mode of the gamma distribution is zero for `concentration <= 1`.

cc @fritzo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76690
Approved by: https://github.com/neerajprad
2022-05-11 18:26:56 +00:00
Fritz Obermeyer
6465793011 Fix Dirichlet.arg_constraints event_dim (#51369)
Summary:
This fix ensures
```py
Dirichlet.arg_constraints["concentration"].event_dim == 1
```
which was missed in https://github.com/pytorch/pytorch/issues/50547

## Tested
- [x] added a regression test, covering all distributions

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51369

Reviewed By: H-Huang

Differential Revision: D26160644

Pulled By: neerajprad

fbshipit-source-id: 1bb44c79480a1f0052b0ef9d4605e750ab07bea1
2021-02-02 10:26:45 -08:00
Neeraj Pradhan
9a153412fd Fix underflow issue with dirichlet sample (#17488)
Summary:
Addresses #15738, using fritzo's suggestion. This adds a `torch._sample_dirichlet` method in `Distributions.cpp` and `Distributions.cu`.
 - For CPU, this leads to no perf hit since all we do is to promote the `alpha` to double when getting the gamma samples (the gamma sampler anyways uses `accscalar_t`(double for CPU)) and cast it back to float32 on return.
 - I have added an analogous method for CUDA as well, but the default sampler for CUDA uses scalar_t for efficiency, so I have kept it as that. With this, I do not see the bias towards 1 as reported in #15738 with `float32`, but there is a spurious mode at 0.5, as would be expected. Users would need to explicitly use `float64` for GPU to not see the spurious mode at 0.5. (EDIT: see note below, it appears that the bias issue is still there for certain builds).

Added some tests and checked that there is no perf regression. My experience with C++ is very limited, so apologies in advance if I missed something basic. cc. ailzhang, fritzo, fmassa
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17488

Differential Revision: D14410301

Pulled By: ezyang

fbshipit-source-id: 62b2f694b4642685eab06db96d74ce28e05c3992
2019-03-19 10:34:13 -07:00
vishwakftw
6911ce19d7 Remove _finfo; replace _finfo usage with torch.finfo (#15165)
Summary:
This PR removes the usage of _finfo defined in torch.distributions.utils and changes the call sites
to use torch.finfo instead

Differential Revision: D13451936

Pulled By: soumith

fbshipit-source-id: 6dbda3a6179d9407bc3396bf1a2baf3e85bc4cf2
2018-12-13 14:30:27 -08:00
Neeraj Pradhan
cda71e2600 Disallow scalar parameters in Dirichlet and Categorical (#11589)
Summary:
This adds a small check in `Dirichlet` and `Categorical` `__init__` methods to ensure that scalar parameters are not admissible.

**Motivation**
Currently, `Dirichlet` throws no error when provided with a scalar parameter, but if we `expand` a scalar instance, it inherits the empty event shape from the original instance and gives unexpected results.

The alternative to this check is to promote `event_shape` to be `torch.Size((1,))` if the original instance was a scalar, but that seems to add a bit more complexity (and changes the behavior of `expand` in that it would affect the `event_shape` as well as the `batch_shape` now). Does this seem reasonable? cc. alicanb, fritzo.

```python
In [4]: d = dist.Dirichlet(torch.tensor(1.))

In [5]: d.sample()
Out[5]: tensor(1.0000)

In [6]: d.log_prob(d.sample())
Out[6]: tensor(0.)

In [7]: e = d.expand([3])

In [8]: e.sample()
Out[8]: tensor([0.3953, 0.1797, 0.4250])  # interpreted as events

In [9]: e.log_prob(e.sample())
Out[9]: tensor(0.6931)  # wrongly summed out

In [10]: e.batch_shape
Out[10]: torch.Size([3])

In [11]: e.event_shape
Out[11]: torch.Size([])  # cannot be empty
```

Additionally, based on review comments, this removes `real_vector` constraint. This was only being used in `MultivariateNormal`, but I am happy to revert this if we want to keep it around for backwards compatibility.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11589

Differential Revision: D9818271

Pulled By: soumith

fbshipit-source-id: f9bbba90ed6f04e0b5bdfa169e70ca20b280fc74
2018-09-14 07:55:35 -07:00
Neeraj Pradhan
80fa8e1007 Add .expand() method to distribution classes (#11341)
Summary:
This adds a `.expand` method for distributions that is akin to the `torch.Tensor.expand` method for tensors. It returns a new distribution instance with batch dimensions expanded to the desired `batch_shape`. Since this calls `torch.Tensor.expand` on the distribution's parameters, it does not allocate new memory for the expanded distribution instance's parameters.

e.g.
```python
>>> d = dist.Normal(torch.zeros(100, 1), torch.ones(100, 1))
>>> d.sample().shape
  torch.Size([100, 1])
>>> d.expand([100, 10]).sample().shape
  torch.Size([100, 10])
```

We have already been using the `.expand` method in Pyro in our [patch](https://github.com/uber/pyro/blob/dev/pyro/distributions/torch.py#L10) of `torch.distributions`. We use this in our models to enable dynamic broadcasting. This has also been requested by a few users on the distributions slack, and we believe will be useful to the larger community.

Note that currently, there is no convenient and efficient way to expand distribution instances:
 - Many distributions use `TransformedDistribution` (or wrap over another distribution instance. e.g. `OneHotCategorical` uses a `Categorical` instance) under the hood, or have lazy parameters. This makes it difficult to collect all the relevant parameters, broadcast them and construct new instances.
 - In the few cases where this is even possible, the resulting implementation would be inefficient since we will go through a lot of broadcasting and args validation logic in `__init__.py` that can be avoided.

The `.expand` method allows for a safe and efficient way to expand distribution instances. Additionally, this bypasses `__init__.py` (using `__new__` and populating relevant attributes) since we do not need to do any broadcasting or args validation (which was already done when the instance was first created). This can result in significant savings as compared to constructing new instances via `__init__` (that said, the `sample` and `log_prob` methods will probably be the rate determining steps in many applications).

e.g.
```python
>>> a = dist.Bernoulli(torch.ones([10000, 1]), validate_args=True)

>>> %timeit a.expand([10000, 100])
15.2 µs ± 224 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

>>> %timeit dist.Bernoulli(torch.ones([10000, 100]), validate_args=True)
11.8 ms ± 153 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
```

cc. fritzo, apaszke, vishwakftw, alicanb
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11341

Differential Revision: D9728485

Pulled By: soumith

fbshipit-source-id: 3b94c23bc6a43ee704389e6287aa83d1e278d52f
2018-09-11 06:56:18 -07:00
vishwakftw
f940af6293 Bag of Distributions doc fixes (#10894)
Summary:
- Added `__repr__` for Constraints and Transforms.
- Arguments passed to the constructor are now rendered with :attr:

Closes https://github.com/pytorch/pytorch/issues/10884
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10894

Differential Revision: D9514161

Pulled By: apaszke

fbshipit-source-id: 4abf60335d876449f2b6477eb9655afed9d5b80b
2018-08-27 09:55:27 -07:00
Vishwak Srinivasan
3cbaa6b785 [ready] Clean up torch.distributions (#8046) 2018-06-02 16:54:53 +02:00
li-roy
d564ecb4a5 Update docs with new tensor repr (#6454)
* Update docs with new tensor repr

* remove cuda in dtype

* remove changes to gloo submodule

* [docs] document tensor.new_* ctor

* [docs] Add docs for tensor.to(), tensor.float(), etc

* [docs] Moar examples for docs.

* [docs] Warning for tensor ctor copy behavior

* Quick fix

* [docs] Document requires_grad_()

* [docs] Add example for requires_grad_()

* update slogdet and *fft

* update tensor rst

* small fixes

* update some docs

* additional doc changes

* update torch and tensor docs

* finish changing tensor docs

* fix flake8

* slogdet with negative det

* Update functional.py tensor ctors

* Fix nll_loss docs

* reorder to move device up

* torch.LongTensor -> torch.tensor or torch.empty in docs

* update tensor constructors in docs

* change tensor constructors

* change constructors

* change more Tensor() to tensor()

* Show requires_grads_ docs

* Fix set_default_dtype docs

* Update docs with new tensor repr

* remove cuda in dtype

* remove changes to gloo submodule

* [docs] document tensor.new_* ctor

* [docs] Add docs for tensor.to(), tensor.float(), etc

* [docs] Moar examples for docs.

* [docs] Warning for tensor ctor copy behavior

* Quick fix

* [docs] Document requires_grad_()

* [docs] Add example for requires_grad_()

* update slogdet and *fft

* update tensor rst

* small fixes

* update some docs

* additional doc changes

* update torch and tensor docs

* finish changing tensor docs

* fix flake8

* slogdet with negative det

* Update functional.py tensor ctors

* Fix nll_loss docs

* reorder to move device up

* torch.LongTensor -> torch.tensor or torch.empty in docs

* update tensor constructors in docs

* change tensor constructors

* change constructors

* change more Tensor() to tensor()

* Show requires_grads_ docs

* Fix set_default_dtype docs

* Link to torch.no_grad, etc, from torch doc

* Add dtype aliases to table

* regen docs again

* Tensor attributes stub page

* link to inplace sampling

* Link torch.dtype, device, and layout

* fix dots after nonfinite floats

* better layout docs
2018-04-21 07:35:37 -04:00
Fritz Obermeyer
1d51dd8665 [distributions] Fix Independent.rsample() and add more tests (#6806) 2018-04-20 21:55:39 +02:00
Tongzhou Wang
1c01eabd3c
Codemod to update our codebase to 0.4 standard (#6641)
* Codemod to update our codebase to 0.4 standard

* Update some of the test scri[ts

* remove Variable in test_clip_grad_value

* fix _symbolic_override_wrapper_maker
2018-04-17 22:06:54 -04:00
Fritz Obermeyer
b2da9fd220 [distributions] Rename .params to .arg_constraints, fix logic (#5989) 2018-03-25 15:24:32 +02:00
lazypanda1
7f864bbe52 Fixed distribution constraints and added some test cases for distributions parameter check (#5358) 2018-03-15 23:11:20 +01:00
Sam Gross
54b4cdeffa
Replace all uses of 'Tensor or Variable' with 'Tensor' (#5508)
Replace all uses of 'Tensor or Variable'  and 'Variable or Tensor' with 'Tensor'
2018-03-02 14:26:11 -05:00
Sam Gross
48a3349c29
Delete dead Tensor code paths (#5417)
This deletes most of the dead Tensor code paths, including the TensorMethods cwrap and generic/Tensor.cpp.

This also moves the THNN.cwrap/.cpp generation to generate_code which can use ninja if installed.
2018-02-27 17:58:09 -05:00
Vishwak Srinivasan
85a7e0fc41 Addition of ExponentialFamily (#4876) 2018-02-04 12:18:28 +01:00
Alican Bozkurt
20fbdb9a8b Adding mean, variance, stddev to distributions (#4923) 2018-01-31 00:26:32 +01:00
Alican Bozkurt
8c2d35c754 Refactor distributions (#4688) 2018-01-17 11:58:08 +01:00
Fritz Obermeyer
71b1120ba8 Fix bug in Dirichlet.rsample(); add tests (#4602)
* Fix bug in Dirichlet.rsample(); add tests

* Address review comments
2018-01-11 12:29:10 -05:00
Fritz Obermeyer
8cff8e93d2 Add torch.distributions.utils._finfo for numerical stability (#4572)
* Add torch.distributions.utils.finfo

* Make _finfo private

* Address review comments

* Simplify _finfo() to key on Storage type
2018-01-10 21:42:47 -05:00
Fritz Obermeyer
a3e91515de Declare constraints for distribution parameters and support (#4450) 2018-01-04 23:58:26 +01:00
Fritz Obermeyer
35abc4efa2 Add low-precision digamma() and polygamma() functions (#4399) 2018-01-02 11:53:23 +01:00
Fritz Obermeyer
0bc1505f34 Implement .entropy() methods for all distributions (#4268) 2017-12-20 14:06:01 +01:00
Fritz Obermeyer
ee98e7a82e Implement Dirichlet and Beta distributions (#4117) 2017-12-18 19:11:37 +01:00