Fixes#102375
Sequence_nr increments in the forward pass and decrements in the backward pass. Backward ops with the same sequence_nr as a forward op represent the backward implementation for the op. The long term goal is to make this information available to the profiler so users can observe which ops are fused by the inductor openai triton kernels.
Added a test for this feature **test/dynamo/test_aot_autograd.py::AotAutogradFallbackTests::test_aot_sequence_nr**. The test case uses **aot_export_module()** to create a joint fwd/bwd fx graph. Then it walks all the nodes in fx graph using fx_graph.graph.nodes. The seq_nr of each node is recorded in node.meta. During the fwd pass the seq_nr increments and it decrements during the bwd pass. This allows the user to map forward ops to their corresponding bwd ops which is useful for performance analysis.
Expected output from the test case.
SeqNr|OrigAten|SrcFn
0|aten.convolution.default|l__self___conv1
0|aten.add.Tensor|l__self___bn1
1|aten._native_batch_norm_legit_functional.default|l__self___bn1
2|aten.relu.default|l__self___relu1
3|aten.add.Tensor|add
4|aten.view.default|flatten
5|aten.t.default|l__self___fc1
6|aten.unsqueeze.default|l__self___fc1
7|aten.mm.default|l__self___fc1
8|aten.squeeze.dim|l__self___fc1
9|aten.add.Tensor|l__self___fc1
10|aten.sub.Tensor|l__self___loss_fn
11|aten.abs.default|l__self___loss_fn
12|aten.mean.default|l__self___loss_fn
12|aten.ones_like.default|
12|aten.expand.default|
12|aten.div.Scalar|
11|aten.sgn.default|
11|aten.mul.Tensor|
8|aten.unsqueeze.default|
7|aten.t.default|
7|aten.mm.default|
7|aten.t.default|
7|aten.t.default|
7|aten.mm.default|
6|aten.squeeze.dim|
5|aten.t.default|
4|aten.view.default|
2|aten.threshold_backward.default|
1|aten.native_batch_norm_backward.default|
0|aten.convolution_backward.default|
0|aten.add.Tensor|
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103129
Approved by: https://github.com/soulitzer
Fixes#104985
Implemented `set_multithreading_enabled` C++ function to directly alter state rather than using `MultithreadingEnabled` class, which was automatically resetting the state when the object was destroyed. This behavior more closely aligns with set_grad_enabled which does work as expected. This allows us to change python class `set_multithreading_enabled` to act as both a function and context manager.
I also added a getter: `torch._C.is_multithreading_enabled`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105291
Approved by: https://github.com/albanD
Fixes#44189
Adds a new parameter, zero_grad_unused, to the torch.autograd.grad() function. This parameter allows for the gradient to be set to 0 instead of None when a variable is unused, which can be helpful for higher-order partial differentials.
Here is an example of using this new parameter to solve d^3y/dx^3 given y = a * x:
```python
x = torch.tensor(0.5, dtype=torch.float32, requires_grad=True)
a = torch.tensor(1, dtype=torch.float32, requires_grad=True)
y = x * a
dydx = torch.autograd.grad(y, x, create_graph=True, allow_unused=True)
d2ydx2 = torch.autograd.grad(dydx, x, allow_unused=True, zero_grad_unused=True)
try:
d3ydx3 = torch.autograd.grad(d2ydx2, x, allow_unused=True, zero_grad_unused=True)
except RuntimeError as e:
assert False, "Should not raise error"
```
With `zero_grad_unused`, d2ydx2 could be 0 instead of None, enabling d3ydx3 to be calculated as defined in math without throwing an error.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97015
Approved by: https://github.com/soulitzer
tldr; this should fix some minor perf regressions that were caused by adding more as_strided() calls in aot autograd.
This PR adds a new context manager, `torch.autograd._set_view_replay_enabled()`.
Context: AOT Autograd has special handling for "outputs that alias graph intermediates". E.g. given this function:
```
def f(x):
y = torch.mul(x, 2)
out = y.view(-1)
return out
```
AOT Autograd will do the following:
```
def fn_to_compile(x):
y = torch.mul(x, 2)
out = y.view(-1)
# return the graph intermediate
return y, out
compiled_fn = compile(fn_to_compile)
def wrapper(x):
y, out = compiled_fn(x)
# regenerate the alias of the graph intermediate
return out._view_func(y)
```
What's annoying is that `out._view_func()` will result in a `.as_strided` call, because `out` is an ordinary runtime tensor. This (likely?) caused a perf regression, because when running the backward, out `as_strided_backward()` is slower than our `view_backward()`.
In this PR, I added some TLS for instructing autograd to do view replay instead of as_strided, even when given a normal tensor. I'm definitely interested in thoughts from autograd folks (cc @albanD @soulitzer). A few points that I want to bring up:
(1) One reason that this API seems generally useful to me is because of the case where you `torch.compile()` a function, and you pass in two inputs that alias each other, and mutate one of the inputs. Autograd is forced to add a bunch of as_strided() calls into the graph when this happens, but this would give users an escape hatch for better compiled perf in this situation
(2) To be fair, AOT Autograd probably won't need this TLS in the long term. There's a better (more complicated) solution, where AOT Autograd manually precomputes the view chain off of graph intermediates during tracing, and re-applies them at runtime. This is kind of complicated though and feels lower priority to implement immediately.
(3) Given all of that I made the API private, but lmk what you all think.
This is a followup of https://github.com/pytorch/pytorch/pull/92255.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92588
Approved by: https://github.com/ezyang, https://github.com/albanD
Monkeypatching is bad, we should never be doing it. This PR removes
functorch's monkeypatching on Tensor.backward() by adding it directly to
the implementation of Tensor.backward().
As an alternative, we could have done an `import functorch` and used
`functorch._C.are_transforms_active` directly in
`torch/autograd/__init__.py`. The problem with that is that it runs into a
bunch of circular imports.
NB: https://github.com/pytorch/pytorch/issues/72179 is still on my mind.
I didn't choose to do it right now because:
- This PR doesn't make the situation worse than it already is (no
monkeypatching is better than having the monkeypatch)
- We don't have a design for #72179 yet.
Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85152
Approved by: https://github.com/soulitzer
crossref is a new strategy for performing tests when you want
to run a normal PyTorch API call, separately run some variation of
the API call (e.g., same thing but all the arguments are meta tensors)
and then cross-reference the results to see that they are consistent.
Any logic you add to CrossRefMode will get run on *every* PyTorch API
call that is called in the course of PyTorch's test suite. This can
be a good choice for correctness testing if OpInfo testing is not
exhaustive enough.
For now, the crossref test doesn't do anything except verify that
we can validly push a mode onto the torch function mode stack for all
functions.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75988
Approved by: https://github.com/seemethere
I figured these out by unconditionally turning on a no-op torch function
mode on the test suite and then fixing errors as they showed up. Here's
what I found:
- _parse_to failed internal assert when __torch_function__'ed because it
claims its name is "to" to the argument parser; added a name override
so we know how to find the correct name
- Infix operator magic methods on Tensor did not uniformly handle
__torch_function__ and TypeError to NotImplemented. Now, we always
do the __torch_function__ handling in
_wrap_type_error_to_not_implemented and your implementation of
__torch_function__ gets its TypeErrors converted to NotImplemented
(for better or for worse; see
https://github.com/pytorch/pytorch/issues/75462 )
- A few cases where code was incorrectly testing if a Tensor was
Tensor-like in the wrong way, now use is_tensor_like (in grad
and in distributions). Also update docs for has_torch_function to
push people to use is_tensor_like.
- is_grads_batched was dropped from grad in handle_torch_function, now
fixed
- Report that you have a torch function even if torch function is
disabled if a mode is enabled. This makes it possible for a mode
to return NotImplemented, pass to a subclass which does some
processing and then pass back to the mode even after the subclass
disables __torch_function__ (so the tensors are treated "as if"
they are regular Tensors). This brings the C++ handling behavior
in line with the Python behavior.
- Make the Python implementation of overloaded types computation match
the C++ version: when torch function is disabled, there are no
overloaded types (because they all report they are not overloaded).
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75484
Approved by: https://github.com/zou3519
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72292
Integrates the libkineto step() method into pytorch profiler step() invocation.
This enables Kineto to track the iteration count and trigger trace collection on iteration boundaries from outside the process.
Test Plan:
## Test using pytorch profiler step() method
Modified the resnet integration test to use pytorch profiler.
Configure it to capture 3 iterations :
```
ACTIVITIES_COMPRESSION_ALGORITHM=GZIP
ACTIVITIES_MANIFOLD_PATH=gpu_traces/tree/traces/dynocli/0/1643063194/127.0.0.1/
PROFILE_START_ITERATION=200
ACTIVITIES_WARMUP_ITERATIONS=1
ACTIVITIES_ITERATIONS=3
```
Run
dyno gputrace -gpuconf /tmp/kineto_pytorch.conf
The output trace has iterations 202, 203, 204 :) One iteration is skipped due to warmup. (Also its one off due 0 vs 1 indexing)
[Trace link](https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree%2Ftraces%2Fdynocli%2F0%2F1643063194%2F127.0.0.1%2Flibkineto_activities_501743.json.gz&bucket=gpu_traces)
{F695716262}
Reviewed By: robieta
Differential Revision: D33825241
fbshipit-source-id: 70983420cf47ebbac7b44bfb6494d314506302c5
(cherry picked from commit 96c06ecc9a80512d85b8941f195360f41d74103f)
Summary:
When default hooks are set, they are pushed onto a stack.
When nesting context-manager, only the inner-most hooks will
be applied.
There is special care needed to update the TLS code. See also https://github.com/pytorch/pytorch/issues/70940 (i.e. do we need to be storing the enabled flag as well?)
Fixes https://github.com/pytorch/pytorch/issues/70134
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70932
Reviewed By: mruberry
Differential Revision: D33530370
Pulled By: albanD
fbshipit-source-id: 3197d585d77563f36c175d3949115a0776b309f4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65736
We ran into some limitations to extract PyTorch operator parameters through hooks or the execution graph. Some of these limitations are not due to the operator not exposing them, rather the inputs for these operators are already fused/processed in some cases (like embedding table). We want to be able to attach some metadata to the user scope record functions allowing the profilers to later extract these information.
The record function C++ API already supports taking inputs and outputs information. The corresponding Python interface does not support them and only allows a string name as record function parameter.
This diff adds support for user to optionally to add additional arguments to the record function in two ways.
1. to remain backward compatible with `record_function_op`, we have added an optional string arg to the interface: `with record_function(name, arg_str)`.
2. to support data dependency graph, we also have the new `torch.autograd._record_function_with_args_enter` and `torch.autograd._record_function_with_args_exit` functions to provide an interface where we can give additional tensor arguments. For now we imagine this can be used for debugging or analysis purpose. In this form, we currently support some basic data types as inputs: scalars, string, list, and tensor.
Example usage:
```
# record_function operator with a name and optionally, a string for arguments.
with record_function("## TEST 1 ##", "[1, 2, 3]"):
<actual module or operator>
# more general form of record_function
a = _record_function_with_args_enter("## TEST 2 ##", 1, False, 2.5, [u, u], "hello", u)
<actual module or operator>
_record_function_with_args_exit(a)
```
Corresponding outputs in execution graph:
```
{
"name": "## TEST 2 ##", "id": 7, "parent": 3, "fw_parent": 0, "scope": 5, "tid": 1, "fw_tid": 0,
"inputs": [1,false,2.5,[6,6],"hello",6], "input_shapes": [[],[],[],[[3,4,5],[3,4,5]],[],[3,4,5]], "input_types": ["Int","Bool","Double","GenericList[Tensor(float),Tensor(float)]","String","Tensor(float)"],
"outputs": [], "output_shapes": [], "output_types": []
},
{
"name": "## TEST 1 ##", "id": 3, "parent": 2, "fw_parent": 0, "scope": 5, "tid": 1, "fw_tid": 0,
"inputs": ["1, 2, 3"], "input_shapes": [[]], "input_types": ["String"],
"outputs": [], "output_shapes": [], "output_types": []
},
```
Test Plan:
```
=> buck build caffe2/test:profiler --show-output
=> buck-out/gen/caffe2/test/profiler#binary.par test_profiler.TestRecordFunction
test_record_function (test_profiler.TestRecordFunction) ... Log file: /tmp/libkineto_activities_1651304.json
Net filter:
Target net for iteration count:
Net Iterations: 3
INFO:2021-09-27 01:10:15 1651304:1651304 Config.cpp:424] Trace start time: 2021-09-27 01:10:30
Trace duration: 500ms
Warmup duration: 5s
Net size threshold: 0
GPU op count threshold: 0
Max GPU buffer size: 128MB
Enabled activities: cpu_op,user_annotation,external_correlation,cuda_runtime,cpu_instant_event
Manifold bucket: gpu_traces
Manifold object: tree/traces/clientAPI/0/1632730215/devvm2060.ftw0/libkineto_activities_1651304.json
Trace compression enabled: 1
INFO:2021-09-27 01:10:15 1651304:1651304 ActivityProfiler.cpp:536] Tracing starting in 14s
INFO:2021-09-27 01:10:15 1651304:1651304 ActivityProfiler.cpp:48] Target net for iterations not specified - picking first encountered that passes net filter
INFO:2021-09-27 01:10:15 1651304:1651304 ActivityProfiler.cpp:57] Tracking net PyTorch Profiler for 3 iterations
INFO:2021-09-27 01:10:15 1651304:1651304 ActivityProfiler.cpp:126] Processing 1 CPU buffers
INFO:2021-09-27 01:10:15 1651304:1651304 ActivityProfiler.cpp:686] Recorded nets:
INFO:2021-09-27 01:10:15 1651304:1651304 ActivityProfiler.cpp:689] PyTorch Profiler: 1 iterations
ok
----------------------------------------------------------------------
Ran 1 test in 0.021s
OK
```
Reviewed By: gdankel
Differential Revision: D31165259
fbshipit-source-id: 15920aaef7138c666e5eca2a71c3bf33073eadc4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65564
- wrap the call into engine with vmap if `batched_grad` is `True`
- improves the comment on the call to engine (somewhat addressing https://github.com/pytorch/pytorch/issues/41659)
- borrows the message from functional.jacobian's vectorized argument concerning usage of the vmap feature
- adds basic test (further testing is done when we replace the usage in vectorized jacobian computation)
TODO:
- create an issue tracking this
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D31236259
Pulled By: soulitzer
fbshipit-source-id: b33e6b26ea98fa9f70c44da08458fc54ba4df0f7
Summary:
When using saved tensors hooks (especially default hooks),
if the user defines a `pack_hook` that modifies its input,
it can cause some surprising behavior.
The goal of this PR is to prevent future user headache by catching
inplace modifications of the input of `pack_hook` and raising an error if
applicable.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62717
Reviewed By: albanD
Differential Revision: D30255243
Pulled By: Varal7
fbshipit-source-id: 8d73f1e1b50b697a59a2849b5e21cf0aa7493b76
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61931
This PR consolidates the profiling code around a new C++ implementation
(profiler_kineto.h/cpp) and uses it unconditionally from
torch.autograd.profiler/torch.profiler:
1. Always use profiler_kineto.h/cpp as the C++ implementation
2. Simplify profiler.py to remove unneeded parts depending on legacy
impl
3. Move some of the legacy logic into profiler_legacy.py (to be fully
deleted later)
Test Plan:
USE_KINETO=1 USE_CUDA=1 USE_MKLDNN=1 BLAS=MKL BUILD_BINARY=1 python setup.py develop install --cmake
python test/test_profiler.py -v
USE_KINETO=0 USE_CUDA=1 USE_MKLDNN=1 BLAS=MKL BUILD_BINARY=1 python setup.py develop install --cmake
python test/test_profiler.py -v
Imported from OSS
Reviewed By: gdankel
Differential Revision: D29801599
fbshipit-source-id: 9794d29f2af38dddbcd90dbce4481fc8575fa29e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62563
Expose a pair of functions to Python users: torch.autograd.graph.set_saved_tensors_default_hooks(pack, unpack) and torch.autograd.graph.reset_saved_tensors_default_hooks().
These functions control the hooks applied to saved tensors: all tensors saved in that context will be packed using the pack function, then unpacked accordingly when needed.
Currently, this works by simply calling register_hooks (cf #60975) directly at the end of the constructor of a SavedVariable. This could be optimized further by not performing the copy before registering default hooks, but this would require a small refactor. Edit: the refactor is done in #61927.
A current limitation is that if users create tensors in this context, they will not be able to register additional hooks on the saved tensor.
For instance, to perform something like #28997, one could define a pack function that saves to disk whenever the tensor size is too big and returns a filename, then unpack simply reads the content of the file and outputs a tensor, e.g.:
```
def pack(x):
name = os.path.join(tmp_dir, str(uuid.uuid4()))
torch.save(x, name)
return name
def unpack(name):
return torch.load(name)
```
Relanding previous PR: https://github.com/pytorch/pytorch/pull/61834
Original PR led to timeout error in: https://www.internalfb.com/mast/job/yuguo-release_canary_offline_training-inlinecvrp_a-canary_offline_train_28a7ecfc
Now passing: https://www.internalfb.com/mast/job/quach-release_canary_offline_training-inlinecvrp_a-canary_offline_train_9bb57e98
The difference with the new version is we don't need to acquire the GIL when calling `PyDefaultSavedVariableHooks::get_hooks`.
Test Plan: Imported from OSS
Reviewed By: iramazanli
Differential Revision: D30045405
Pulled By: Varal7
fbshipit-source-id: 7f6c07af3a56fe8835d5edcc815c15ea4fb4e332
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61834
Expose a pair of functions to Python users: torch.autograd.graph.set_saved_tensors_default_hooks(pack, unpack) and torch.autograd.graph.reset_saved_tensors_default_hooks().
These functions control the hooks applied to saved tensors: all tensors saved in that context will be packed using the pack function, then unpacked accordingly when needed.
Currently, this works by simply calling register_hooks (cf #60975) directly at the end of the constructor of a SavedVariable. This could be optimized further by not performing the copy before registering default hooks, but this would require a small refactor. Edit: the refactor is done in #61927.
A current limitation is that if users create tensors in this context, they will not be able to register additional hooks on the saved tensor.
For instance, to perform something like #28997, one could define a pack function that saves to disk whenever the tensor size is too big and returns a filename, then unpack simply reads the content of the file and outputs a tensor, e.g.:
```
def pack(x):
name = os.path.join(tmp_dir, str(uuid.uuid4()))
torch.save(x, name)
return name
def unpack(name):
return torch.load(name)
```
Test Plan: Imported from OSS
Reviewed By: zou3519
Differential Revision: D29792193
Pulled By: Varal7
fbshipit-source-id: 33e931230ef59faa3ec8b5d11ef7c05539bce77c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59027
Add underscores to some of the internal names
Test Plan:
python test/test_profiler.py -v
Imported from OSS
Reviewed By: mrshenli
Differential Revision: D28724294
fbshipit-source-id: 1f6252e4befdf1928ac103d0042cbbf40616f74a
Summary:
Fixes https://github.com/pytorch/pytorch/issues/56608
- Adds binding to the `c10::InferenceMode` RAII class in `torch._C._autograd.InferenceMode` through pybind. Also binds the `torch.is_inference_mode` function.
- Adds context manager `torch.inference_mode` to manage an instance of `c10::InferenceMode` (global). Implemented in `torch.autograd.grad_mode.py` to reuse the `_DecoratorContextManager` class.
- Adds some tests based on those linked in the issue + several more for just the context manager
Issues/todos (not necessarily for this PR):
- Improve short inference mode description
- Small example
- Improved testing since there is no direct way of checking TLS/dispatch keys
-
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58045
Reviewed By: agolynski
Differential Revision: D28390595
Pulled By: soulitzer
fbshipit-source-id: ae98fa036c6a2cf7f56e0fd4c352ff804904752c
Summary:
Related to https://github.com/pytorch/pytorch/issues/52256
Use autosummary instead of autofunction to create subpages for autograd functions. I left the autoclass parts intact but manually laid out their members.
Also the Latex formatting of the spcecial page emitted a warning (solved by adding `\begin{align}...\end{align}`) and fixed alignment of equations (by using `&=` instead of `=`).
zou3519
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55672
Reviewed By: jbschlosser
Differential Revision: D27736855
Pulled By: zou3519
fbshipit-source-id: addb56f4f81c82d8537884e0ff243c1e34969a6e
Summary:
Also updates the doc such that the language matches the type. For example, previously the `tensors` argument is specified as `(sequence of tensor)`, but has type annotation of `_TensorOrTensors`. Now its correctly updated to be `Sequence[Tensor] or Tensor`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53827
Reviewed By: albanD
Differential Revision: D26997541
Pulled By: soulitzer
fbshipit-source-id: e1e609a4e9525139d0fe96f6157175481c90d6f8
Summary:
Fixes https://github.com/pytorch/pytorch/issues/47441
To give user more information about python level functions in profiler traces, we propose to instrument on the following functions:
```
_BaseDataLoaderIter.__next__
Optimizer.step
Optimizer.zero_grad
```
Because the record_function already uses if (!active) to check whether the profiler is enabled, so we don't explicitly call torch.autograd._profiler_enabled() before each instrument.
Acknowledgement: nbcsm, guotuofeng, gunandrose4u , guyang3532 , mszhanyi
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47655
Reviewed By: smessmer
Differential Revision: D24960386
Pulled By: ilia-cher
fbshipit-source-id: 2eb655789e2e2f506e1b8f95ad3d470c83281102
Summary:
Fixes https://github.com/pytorch/pytorch/issues/46373
As noted in https://github.com/pytorch/pytorch/issues/46373, there needs to be a flag passed into the engine that indicates whether it was executed through the backward api or grad api. Tentatively named the flag `accumulate_grad` since functionally, backward api accumulates grad into .grad while grad api captures the grad and returns it.
Moving changes not necessary to the python api (cpp, torchscript) to a new PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46855
Reviewed By: ngimel
Differential Revision: D24649054
Pulled By: soulitzer
fbshipit-source-id: 6925d5a67d583eeb781fc7cfaec807c410e1fc65