Commit Graph

294 Commits

Author SHA1 Message Date
ydwu4
cc1de49340 [HigherOrderOp] fallthrough some keys by default. (#110478)
Fixes #109253

Test Plan:
Added a new test that shows default fallthrough keys can be overrided.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110478
Approved by: https://github.com/ezyang
2023-10-05 16:25:42 +00:00
Brian Hirsh
7a21e960c6 fix infinite loop with primtorch and .to(meta) (#109632)
Fixes https://github.com/pytorch/pytorch/issues/103532, which I needed in order to more easily/properly test that python functionalization is at parity with C++ functionalization for conj/neg.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109632
Approved by: https://github.com/ezyang
ghstack dependencies: #108654, #109662
2023-09-22 07:09:04 +00:00
Yanbo Liang
8a567bb59d [HigherOrderOp] Should automatically pop modes (#109157)
Fixes #108282

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109157
Approved by: https://github.com/zou3519
2023-09-18 20:54:09 +00:00
PyTorch MergeBot
07f2efa285 Revert "[HigherOrderOp] Should automatically pop modes (#109157)"
This reverts commit f03b8abd47.

Reverted https://github.com/pytorch/pytorch/pull/109157 on behalf of https://github.com/clee2000 due to broke internal builds D49346922 ([comment](https://github.com/pytorch/pytorch/pull/109157#issuecomment-1722571262))
2023-09-17 21:19:52 +00:00
Yanbo Liang
f03b8abd47 [HigherOrderOp] Should automatically pop modes (#109157)
Fixes #108282

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109157
Approved by: https://github.com/zou3519
2023-09-14 20:46:26 +00:00
Edward Z. Yang
5531a23b20 Don't set requires_grad inside meta function (#108988)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108988
Approved by: https://github.com/lezcano, https://github.com/bdhirsh
2023-09-12 12:24:13 +00:00
Ken Jin
c458fa0d35 Decompose/add reference for view_as_complex (#108005)
Aten source: d4a99631dd/aten/src/ATen/native/ComplexHelper.h (L78)

Documentation reference:
https://pytorch.org/docs/stable/generated/torch.view_as_complex.html

Note: this adds a new primitive `view_of_dtype`, which is trivially implemented, as its meta function is already implemented elsewhere.

Finally, this is not registered as a decomposition (yet), because TorchInductor does not yet support complex types. It should be added once we do.

Closes https://github.com/pytorch/pytorch/issues/108020 as well.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108005
Approved by: https://github.com/peterbell10, https://github.com/ezyang
2023-09-07 23:49:20 +00:00
Animesh Jain
78a053bad7 [activation checkpointing] Add default autocast keys to functional rng wrappers (#107934)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107934
Approved by: https://github.com/xw285cornell
2023-08-25 18:22:02 +00:00
Aaron Gokaslan
660e8060ad [BE]: Update ruff to 0.285 (#107519)
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.

I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
2023-08-22 23:16:38 +00:00
PyTorch MergeBot
d59a6864fb Revert "[BE]: Update ruff to 0.285 (#107519)"
This reverts commit 88ab3e4322.

Reverted https://github.com/pytorch/pytorch/pull/107519 on behalf of https://github.com/ZainRizvi due to Sorry, but this PR breaks internal tests. @ezyang, can you please hep them get unblocked? It seems like one of the strings was prob accidentally modified ([comment](https://github.com/pytorch/pytorch/pull/107519#issuecomment-1688833480))
2023-08-22 19:53:32 +00:00
Aaron Gokaslan
88ab3e4322 [BE]: Update ruff to 0.285 (#107519)
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.

I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
2023-08-20 01:36:18 +00:00
Nikita Karetnikov
e7a3fb13e7 [pt2] add Python metas for special ops (#106683)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106683
Approved by: https://github.com/ezyang
2023-08-13 14:12:21 +00:00
eellison
3495f0c999 Generate mypy hints for torch.Tag, add a couple of pointwise ops (#106910)
Replace https://github.com/pytorch/pytorch/pull/106739, since i had a bad CLA commit.

- adds clone, and convert_element_dtype to pointwise
- adds codegen for mypy hints of torch.Tag and removes existing ignores for them

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106910
Approved by: https://github.com/mlazos
2023-08-10 05:12:27 +00:00
Ivan Yashchuk
c913f3857f Remove dynamo+nvfuser (#105789)
This PR removes unmaintained Dynamo+nvFuser.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105789
Approved by: https://github.com/jansel, https://github.com/jjsjann123, https://github.com/albanD
2023-08-08 22:29:32 +00:00
PyTorch MergeBot
891bb259f8 Revert "Remove dynamo+nvfuser (#105789)"
This reverts commit 6030151d37.

Reverted https://github.com/pytorch/pytorch/pull/105789 on behalf of https://github.com/DanilBaibak due to Break a lot of tests on main. ([comment](https://github.com/pytorch/pytorch/pull/105789#issuecomment-1669710571))
2023-08-08 14:20:32 +00:00
Ivan Yashchuk
6030151d37 Remove dynamo+nvfuser (#105789)
This PR removes unmaintained Dynamo+nvFuser.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105789
Approved by: https://github.com/jansel, https://github.com/jjsjann123, https://github.com/albanD
2023-08-08 13:29:31 +00:00
drisspg
788c825837 Higher order operator util for raising if inputs require grads (#106078)
<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at 08bd685</samp>

Added a utility function `autograd_not_implemented_check` to `torch._higher_order_ops.utils` and used it in `out_dtype_autograd` to simplify and standardize the error handling for higher order operators that do not support autograd.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106078
Approved by: https://github.com/zou3519
2023-08-01 00:13:13 +00:00
Justin Chu
4cc1745b13 [BE] f-stringify torch/ and scripts (#105538)
This PR is a follow up on the pyupgrade series to convert more strings to use f-strings using `flynt`.

- https://docs.python.org/3/reference/lexical_analysis.html#f-strings
- https://pypi.org/project/flynt/

Command used:

```
flynt torch/ -ll 120
flynt scripts/ -ll 120
flynt tools/ -ll 120
```

and excluded `collect_env.py`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105538
Approved by: https://github.com/ezyang, https://github.com/malfet
2023-07-21 19:35:24 +00:00
jjsjann123
218b5477ea switching NNC as default for TorchScript support (#105185)
Disable nvfuser by default in TorchScript
Add deprecation warning for nvfuser usage via TorchScript and PrimTorch

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105185
Approved by: https://github.com/malfet, https://github.com/davidberard98
2023-07-19 16:31:34 +00:00
Justin Chu
8a688277a2 [BE] Enable ruff's UP rules and autoformat dynamo / functorch and refs (#105432)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105432
Approved by: https://github.com/ezyang
2023-07-19 13:48:44 +00:00
Nikita Shulga
5837e95d30 [Reland] Update mypy to 1.4.1 (#105227)
This PR re-lands
- [Typing] Fix PEP 484 Violation (#105022)
- Update mypy to 1.4.1 (#91983)

That were reverted due to the conflict with internal source repo.

Mostly fixes for PEP-484 violation (i.e. when default arg is set to None, but type is not annotated as optional)
Plus few real fixes:
  - Add missing `_get_upgraders_entry_map` to `torch/_C/__init__.pyi`
  - Add missing return statement to `torch._export. deserialize_graph`
  - Fix error message in `torch.ao.ns.fx.weight_utils.get_lstm_mod_weights`
  - Add assert it `torch/optim/optimizer.py` that Optional list is not None
TODO (in followup PR):
  - Fix erroneous `isinstance` check in `torch/ao/quantization/_pt2e/qat_utils.py`

Unrelated, to bypass CI failures due to the gcc9 dependency update in Ubuntu-18.04:
- Add hack to squash older libstdc++ from conda environment in favor one from OS to `.ci/docker/install_conda.sh`
- Update bazel cuda builds to focal, as with libstdc++-6.0.32 bazel builds loose the ability to catch exceptions (probably because they link with cupti statically, but I could not found where it is done)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105227
Approved by: https://github.com/atalman, https://github.com/albanD, https://github.com/Skylion007
2023-07-15 20:30:20 +00:00
PyTorch MergeBot
15fd1ea118 Revert "[Reland] Update mypy to 1.4.1 (#105227)"
This reverts commit c9c4f8efc3.

Reverted https://github.com/pytorch/pytorch/pull/105227 on behalf of https://github.com/atalman due to trying to mitigate ci sev #105248 ([comment](https://github.com/pytorch/pytorch/pull/105227#issuecomment-1636510935))
2023-07-14 22:28:35 +00:00
Nikita Shulga
c9c4f8efc3 [Reland] Update mypy to 1.4.1 (#105227)
This PR re-lands
- [Typing] Fix PEP 484 Violation (#105022)
- Update mypy to 1.4.1 (#91983)

That were reverted due to the conflict with internal source repo.

Mostly fixes for PEP-484 violation (i.e. when default arg is set to None, but type is not annotated as optional)
Plus few real fixes:
  - Add missing `_get_upgraders_entry_map` to `torch/_C/__init__.pyi`
  - Add missing return statement to `torch._export. deserialize_graph`
  - Fix error message in `torch.ao.ns.fx.weight_utils.get_lstm_mod_weights`
  - Add assert it `torch/optim/optimizer.py` that Optional list is not None
TODO (in followup PR):
  - Fix erroneous `isinstance` check in `torch/ao/quantization/_pt2e/qat_utils.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105227
Approved by: https://github.com/atalman, https://github.com/albanD, https://github.com/Skylion007
2023-07-14 20:45:12 +00:00
PyTorch MergeBot
3c5a494d7a Revert "Update mypy to 1.4.1 (#91983)"
This reverts commit 634659e262.

Reverted https://github.com/pytorch/pytorch/pull/91983 on behalf of https://github.com/malfet due to It's dependent change was reverted, so reverting this one as well, to keep CI clean ([comment](https://github.com/pytorch/pytorch/pull/91983#issuecomment-1636059709))
2023-07-14 15:59:16 +00:00
PyTorch MergeBot
b4d91b1c5b Revert "[Typing] Fix PEP 484 Violation (#105022)"
This reverts commit 4148b7bada.

Reverted https://github.com/pytorch/pytorch/pull/105022 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/105022#issuecomment-1635967734))
2023-07-14 14:45:09 +00:00
Nikita Shulga
634659e262 Update mypy to 1.4.1 (#91983)
Mostly fixes for PEP-484 violation (i.e. when default arg is set to None, but type is not annotated as optional)
Plus few real fixes:
  - Add missing `_get_upgraders_entry_map` to `torch/_C/__init__.pyi`
  - Add missing return statement to `torch._export. deserialize_graph`
  - Fix error message in `torch.ao.ns.fx.weight_utils.get_lstm_mod_weights`
  -
TODO (in followup PR):
  - Fix erroneous `isinstance` check in `torch/ao/quantization/_pt2e/qat_utils.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91983
Approved by: https://github.com/kit1980, https://github.com/ZainRizvi, https://github.com/huydhn, https://github.com/thiagocrepaldi, https://github.com/aaronenyeshi
2023-07-13 16:30:36 +00:00
Nikita Shulga
4148b7bada [Typing] Fix PEP 484 Violation (#105022)
Not sure, how it worked before, but if arguments must be annotated is optional if they are defaulted to None

Towards enabling mypy-1.4.1 in lintrunner

<!--
copilot:poem
-->
### <samp>🤖 Generated by Copilot at 5e1b9f4</samp>

> _We annotate the arguments of doom_
> _To show the `None` values of gloom_
> _We improve the type checking and readability_
> _With `Optional` annotations of metal-ity_

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105022
Approved by: https://github.com/izaitsevfb, https://github.com/huydhn, https://github.com/Skylion007
2023-07-12 10:20:48 +00:00
Zhengxu Chen
df281bf788 Refactor unwrap_proxy() for proxy tensor tracing. (#104667)
Test Plan: CI

Differential Revision: D47241815

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104667
Approved by: https://github.com/tugsbayasgalan
2023-07-06 03:03:13 +00:00
Richard Zou
280df5dc2e [HigherOrderOp] Remove _deprecated_global_ns from some ops (#104105)
The remaining ops after this PR are:
- cond
- map
- anything that is out of tree.

These are a bit more difficult to remove.

Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104105
Approved by: https://github.com/ydwu4
2023-06-28 00:03:29 +00:00
Kurt Mohler
ee83c646bb Replace _prims_common.check with torch._check* (#103240)
This relands most of the changes from #102219 which were backed out by #103128. However, instead of removing `_prims_common.check`, it adds a warning and a comment mentioning that it will be removed in the future and `torch._check*` should be used instead. As mentioned in https://github.com/pytorch/pytorch/pull/103128#pullrequestreview-1466414415, `_prims_common.check` cannot yet be removed because of some internal usage

Part of #72948

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103240
Approved by: https://github.com/albanD
2023-06-21 00:46:17 +00:00
rzou
036cda415f Change HigherOrderOperator default namespace from global to 'higher_order' (#103870)
This PR changes the default namespace for higher order operators from the
global namespace (e.g. torch.ops.cond) to `higher_order` (e.g.
torch.ops.higher_order.cond). We don't actually change the namespace
for existing HigherOrderOperators.

The motivation is to stem the bleeding; exposing operators into the global
namespace is a bad idea due to name collision with other user-defined
namespaces.

We will go in and fix the `_deprecated_global_ns` as necessary after this diff.

Differential Revision: [D46809738](https://our.internmc.facebook.com/intern/diff/D46809738/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103870
Approved by: https://github.com/ydwu4
2023-06-20 19:10:55 +00:00
Animesh Jain
58d2c66a70 [activation checkpointing] Higher order functional rng op wrappers (#102934)
Introduces two higher order operators
* run_and_save_rng_state - Saves the current rng state and then runs the op.
* run_with_rng_state - Runs the op with the rng state supplied as an input

Ideally, we would like to use torch.compile for these operators. But currently the plan is to introduce these operators at the partitioner level, obviating the need to support them fully through the torch.compile stack. To ensure that we have good enough debugging with minifiers, we have ensure that they work with make_fx. In future, we can move on torch.compile.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102934
Approved by: https://github.com/jansel, https://github.com/zou3519
2023-06-12 22:54:17 +00:00
Elias Ellison
d083d444ff Inductor Freezing (#100652)
Adds a freezing pass that will constant fold parameters in inductor `config.freezing`. This occurs post functionalization in aot autograd to capture both dispatching and allow passes to occur post functionalization. A few notes:

- There is an option to discard parameters `config.freezing_discard_parameters` which will take the current eager modules and wrap parameters to a Tensor subclass which will error if used.
- I needed to expose flat_params in aot_autograd in order to discard old references when we constant fold away parameters, like with amp. I also exposed `fw_metadata` to avoid constant folding mutated paraemters.
- Caching parameter transformations/constant folding across different inferences nyi
- Checking version_counter of constant folded params nyi

I'm not really sure what the actual naming should be. In jit there was both "freezing", which was platform agnostic, and "optimize for inference", which made device specific optimizations. We're doing the latter here but maybe freezing is a better name.

Differential Revision: [D46244033](https://our.internmc.facebook.com/intern/diff/D46244033)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100652
Approved by: https://github.com/jansel
2023-06-12 20:56:03 +00:00
Ivan Zaitsev
821493715c Back out "Remove check from _prims_common, replace with torch._check* (#102219)", Back out "Forwatd fix for D46427687" (#103128)
Test Plan: revertitparrot

Reviewed By: malfet

Differential Revision: D46506433

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103128
Approved by: https://github.com/malfet
2023-06-07 01:41:41 +00:00
Kurt Mohler
a84bb2709a Remove check from _prims_common, replace with torch._check* (#102219)
Part of #72948

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102219
Approved by: https://github.com/lezcano, https://github.com/albanD
2023-06-03 02:23:21 +00:00
PyTorch MergeBot
a7efa0ce35 Revert "Remove check from _prims_common, replace with torch._check* (#102219)"
This reverts commit fb79d43649.

Reverted https://github.com/pytorch/pytorch/pull/102219 on behalf of https://github.com/malfet due to Broke lint, see https://github.com/pytorch/pytorch/actions/runs/5158949959/jobs/9293466925 ([comment](https://github.com/pytorch/pytorch/pull/102219#issuecomment-1574245414))
2023-06-02 20:00:48 +00:00
Kurt Mohler
fb79d43649 Remove check from _prims_common, replace with torch._check* (#102219)
Part of #72948

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102219
Approved by: https://github.com/lezcano, https://github.com/albanD
2023-06-02 19:13:45 +00:00
Andres Lugo-Reyes
eaffd98880 Enable hipSOLVER in ROCm builds (#97370)
Enables the hipSolver backend for ROCm builds
--------------------------------------------------------------------------

- Minimum ROCm version requirement - 5.3
- Introduces new macro USE_LINALG_SOLVER the controls enablement of both cuSOLVER and hipSOLVER
- Adds hipSOLVER API to hipification process
- combines hipSOLVER and hipSPARSE mappings into single SPECIAL map that takes priority among normal mappings
- Torch api to be moved to hipsolver backend (as opposed to magma) include: torch.svd(), torch.geqrf(), torch.orgqr(), torch.ormqr()
- Will enable 100+ linalg unit tests for ROCm

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97370
Approved by: https://github.com/malfet
2023-05-31 16:53:23 +00:00
Matthew Hoffman
29da75cc55 Enable mypy allow redefinition (#102046)
Related #101528

I tried to enable this in another PR but it uncovered a bunch of type errors: https://github.com/pytorch/pytorch/actions/runs/4999748262/jobs/8956555243?pr=101528#step:10:1305

The goal of this PR is to fix these errors.

---

This PR enables [allow_redefinition = True](https://mypy.readthedocs.io/en/stable/config_file.html#confval-allow_redefinition) in `mypy.ini`, which allows for a common pattern:

> Allows variables to be redefined with an arbitrary type, as long as the redefinition is in the same block and nesting level as the original definition.

`allow_redefinition` allows mypy to be more flexible by allowing reassignment to an existing variable with a different type... for instance (from the linked PR):

4a1e9230ba/torch/nn/parallel/data_parallel.py (L213)

A `Sequence[Union[int, torch.device]]` is narrowed to `Sequence[int]` thru reassignment to the same variable.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102046
Approved by: https://github.com/ezyang
2023-05-24 07:05:30 +00:00
Richard Zou
8487105fae [custom_op] Create a new torch._custom_op namespace (#101823)
torch/custom_op.py is getting long, and the autograd pieces are going to
make it even longer. I'm planning on just organizing the files under
a torch/_custom_op folder.

Note that the imports now look a bit crazy (from torch._custom_op.impl
import...) but they will look more OK when we figure out the plan to
make custom_op public (coming later).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101823
Approved by: https://github.com/ezyang, https://github.com/albanD, https://github.com/bdhirsh
2023-05-23 18:31:29 +00:00
Richard Zou
c8be493dac [reland][custom_op] Change the python type that maps to ListType in schema (#101451)
Reland of #101190. Original stack was reverted due to internal test
flakiness.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101451
Approved by: https://github.com/soulitzer
2023-05-16 13:33:31 +00:00
PyTorch MergeBot
b50595702b Revert "[custom_op] Change the python type that maps to ListType in schema (#101190)"
This reverts commit de6470e28e.

Reverted https://github.com/pytorch/pytorch/pull/101190 on behalf of https://github.com/jeanschmidt due to preventing the revert of #100980 ([comment](https://github.com/pytorch/pytorch/pull/101190#issuecomment-1548332644))
2023-05-15 18:15:08 +00:00
Richard Zou
de6470e28e [custom_op] Change the python type that maps to ListType in schema (#101190)
Previously, to specify e.g. int[], a user needed to do Tuple[int, ...].
This PR changes it to Sequence[int].

Bikeshedding: we could totally just use List[int] instead. The types
that the user gives us that we use to infer a schema is not entirely
faithful: for example, we convert `int` to SymInt.

I didn't feel strongly between Sequence[int] and List[int] so I went
with the more faithful one, plus Python recommends that you use Sequence
for input arguments (over list or tuple), though we don't subscribe to
that philosophy in general.

Test Plan:
- new test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101190
Approved by: https://github.com/bdhirsh
2023-05-12 13:49:20 +00:00
Nikita Karetnikov
37f1be041a [pt2] enable svd in fake_tensor (#100130)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100130
Approved by: https://github.com/ezyang, https://github.com/lezcano
2023-05-05 06:27:59 +00:00
Edward Z. Yang
ce1ad1c143 Add load_storage (#100519)
This adds a new operator debugprims::load_storage which does the unusual thing of loading a tensor from disk (via ContentStoreReader). This will be used in a later PR to implement delta debugging in the minifier, even when the repro is too big to fit into memory. The way it works is that you specify a name of the tensor you want to load, as well as enough metadata to reconstruct the tensor, if the store isn't available. If there is an active content store, we read and return the tensor from that store; otherwise we use `rand_strided` to create it.

I needed some infra improvements to do this:

* `custom_op` now supports factory functions. Factory functions have to be registered specially via `impl_factory`
* I modified `clone_input` to also support dtype conversion, which I use to change the dtype of a loaded tensor if necessary.
* ContentStore needs to work with a device argument, so we torch.load directly to the correct device. This is for fake tensor support.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100519
Approved by: https://github.com/zou3519, https://github.com/anijain2305
2023-05-05 05:25:03 +00:00
Edward Z. Yang
3a5427baf4 Add torch.utils._content_store (#99809)
Implements a simple content-addressable store for storages (with tensors implemented as cheap references on top), enabling incremental serialization of tensors to disk, which I intend to use in the accuracy repro extractor.  Check the comment at the top of torch/utils/_content_store.py for more details on the intended use case.

One major piece of this PR is implementing the content hash for tensors.  For our prospective use case, we may need to repeatedly hash up to 80 GB of tensor data every time we snapshot (and we may snapshot multiple times).  Using a conventional cryptographic hash and hashing each snapshot would likely take on order of minutes, which seemed too slow to me.  So instead, I implemented a crappy hash function that can be run on GPU.  It is at least somewhat theoretically grounded: using random parameters generated by Philox, we use the standard shift-multiply and xor sum universal hash family.  The hash function is a bit dorky though; instead of properly doing 160-bit math, it just runs 32-bit hash five times and cats them together.  By the way, this sets the first precedent for kernel in PyTorch library which MUST be torch.compile'd to be run (in fact, this kernel does not run in eager mode because of the use of xor_sum, which doesn't actually exist in ATen.)

I had to add a few more primitives to inductor, namely randint (over the entire int range) and xor_sum.  Fortunately, these primitives are natively supported by Triton/C++, and so they were very easy to plumb through.  xor_sum is exposed as a prim, while randint special cases on when low/high span the entire 32-bit signed integer range.

Thanks to Jeff Johnson for letting me bounce ideas of him on a Saturday morning lol.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99809
Approved by: https://github.com/voznesenskym
2023-04-26 18:02:59 +00:00
Animesh Jain
6bc4651193 [philox_rand] Dynamic shape support (#99290)
Extends the functionalization of rng work to Dynamic shapes. An example of the generated graph looks like this

~~~

[2023-04-24 21:41:37,446] torch._functorch.aot_autograd.__aot_graphs: [INFO] TRACED GRAPH
 ===== Forward graph 1 =====
 <eval_with_key>.7 class <lambda>(torch.nn.Module):
    def forward(self, arg0_1: i64[], arg1_1: i64[], arg2_1: Sym(s0), arg3_1: Sym(s1), arg4_1: f32[s0, s1]):
        # File: /scratch/anijain/work/pytorch/test/test_functionalization_of_rng_ops.py:46, code: a = torch.rand_like(x) * x
        add: i64[] = torch.ops.aten.add.Tensor(arg1_1, 0)
        philox_rand = torch.ops.rngprims.philox_rand.default([arg2_1, arg3_1], arg0_1, add, None, device(type='cuda', index=0), torch.float32);  add = None
        getitem: f32[s0, s1] = philox_rand[0]
        getitem_1: i64[] = philox_rand[1];  philox_rand = None
        add_1: i64[] = torch.ops.aten.add.Tensor(getitem_1, 0);  getitem_1 = None
        mul: f32[s0, s1] = torch.ops.aten.mul.Tensor(getitem, arg4_1);  getitem = arg4_1 = None

        # File: /scratch/anijain/work/pytorch/test/test_functionalization_of_rng_ops.py:47, code: a = torch.rand_like(x) * a
        add_2: i64[] = torch.ops.aten.add.Tensor(arg1_1, add_1)
        philox_rand_1 = torch.ops.rngprims.philox_rand.default([arg2_1, arg3_1], arg0_1, add_2, None, device(type='cuda', index=0), torch.float32);  arg2_1 = arg3_1 = arg0_1 = add_2 = None
        getitem_2: f32[s0, s1] = philox_rand_1[0]
        getitem_3: i64[] = philox_rand_1[1];  philox_rand_1 = None
        add_3: i64[] = torch.ops.aten.add.Tensor(add_1, getitem_3);  add_1 = getitem_3 = None
        mul_1: f32[s0, s1] = torch.ops.aten.mul.Tensor(getitem_2, mul);  getitem_2 = mul = None

        # No stacktrace found for following nodes
        add_4: i64[] = torch.ops.aten.add.Tensor(arg1_1, add_3);  arg1_1 = add_3 = None
        return (mul_1, add_4)

 ~~~

Each rand op is accompanied by its offset calculation op.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99290
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
2023-04-25 22:40:28 +00:00
Edward Z. Yang
bb830224e3 Remove extra space (#99750)
Fixes https://github.com/pytorch/pytorch/issues/99714

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99750
Approved by: https://github.com/lezcano, https://github.com/albanD
2023-04-21 23:18:52 +00:00
Elias Ellison
638feec4e3 Turn on meta converter for complex (#98869)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98869
Approved by: https://github.com/ngimel
2023-04-20 16:42:38 +00:00
PyTorch MergeBot
bce21ee06a Revert "Fix bug in check required output size in _as_strided_scatter_meta (#98483)"
This reverts commit 5b692fd819.

Reverted https://github.com/pytorch/pytorch/pull/98483 on behalf of https://github.com/malfet due to Broke inductor, see https://hud.pytorch.org/hud/pytorch/pytorch/main/1?per_page=50&name_filter=inductor%2C%201%2C%201
2023-04-18 18:59:47 +00:00