Fixes#106893
There are two main changes:
- Before this PR, the function returned by once_differentiable was
included in skipfiles (because its .co_code is
torch/autograd/function.py). This PR adds a mechanism to tell Dynamo
to inline a function, no matter if it is included in skipfiles.
- A bugfix: when we are introspecting the backward, we need to turn the
grad mode off. This is to accurately model the eager-mode semantics:
In eager-mode PyTorch, if second-order gradients were not requested, then
the grad mode is off. torch.compile does not work with higher-order
gradients and just assumes we do first-order gradients, so this is OK.
Test Plan:
- new test
Differential Revision: [D49064185](https://our.internmc.facebook.com/intern/diff/D49064185)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108686
Approved by: https://github.com/voznesenskym
Summary:
Original commit changeset: 33650f7cb0fb
Original Phabricator Diff: D48833682
Test Plan: See T162942232 for how we figured out that this diff caused significant numeric difference.
Reviewed By: voznesenskym
Differential Revision: D49082219
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108823
Approved by: https://github.com/xw285cornell
This combines a bunch of python global state guards into a single C++ guard and switches to checking them 100% of the time. It also adds a few new guards for things that change inductor's behavior. Even though we are checking more things, I expect this to be much faster.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108624
Approved by: https://github.com/anijain2305
**Motivation:**
We try to make torch.cond use torch.compile automatically so that we could error out when there is side-effects in the branches and correctly handle the closures.
Before this PR, we have a warning if we don't turn on a config raise_on_backend_change (turning it on gives us an error) for the following code:
```python
def foo()
# Inside torch.cond, we'd like to do something like
torch.compile(foo, backend="eager", fullgraph=True)(...)
...
# Users may then call torch.compile somewhere else.
# Dynamo will use the cached code of foo for "eager" backend
# but we expect dynamo to recompile with "inductor" backend.
torch.compile(foo, backend="inductor")(...)
```
This PR adds a BACKEND_MATCH guard. Effectively, it implements a per-backend cache. In the above example, the cached code for "eager" won't work for "inductor" due to guard check failures and the second torch.compile will do a re-compilation. In the future, it might be useful to have something like a configuration guard that guards against dynamo configuration changes across different compiles (e.g. compile a function with fullgraph=False then compile it again with fullgraph=True).
**Implementation:**
1. We add a guarded_backend_cache and check the most_recent_backend against the backend associated with cached code. We also remove the raise_on_backend_change flag.
2. Then newly added context manager and guard adds more lines for debug log so we change the uppper limit from 50 to 55.
**Test Plan:**
Removed original tests that raise on different backend and add a new test to test whether the BACKEND_MATCH guard can guard against backend change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107337
Approved by: https://github.com/jansel
Before this PR, we use get_fake_value to get the fake_sub_args then call op(*fake_sub_args) to get the example value for out dtype.
This causes problem when the input proxy's op type is `get_attr`, get_fake_value for a `get_attr` node will actually look at the original param/buffer and **return a real tensor** instead of fake tensor. This is OK for export, since export's fake_mode allows non_fake_inputs see [here](https://github.com/pytorch/pytorch/blob/main/torch/_dynamo/output_graph.py#L278). But it causes problem when nesting cond with out_dtype where cond will use torch.compile(full_graph=True) to inspect out_dtype and find the inputs to op are mixed FakeTensor and real tensor.
This PR changes how we get the example values from proxies by directly looking at node.meta["example_value"]. This meta data is guaranteed to exist for all proxies during dynamo tracing so it's safe to use ( it's also used by get_fake_value to get fake tensors from args for general ops see [here](https://github.com/pytorch/pytorch/blob/main/torch/_dynamo/utils.py#L1318)).
Test Plan:
existing tests + remove expected failure for a test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108715
Approved by: https://github.com/zou3519
Summary: Currently node metadata "nn_module_stack" is only being used by export. For some export model, we still want to retain nn_module_stack for unspecialized module for various purposes. This diff add a path to also record nn_module_stack when unspecialized module has a source available.
Test Plan: test_export_nn_module_stack_patched_module
Differential Revision: D48841193
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108281
Approved by: https://github.com/yanboliang, https://github.com/tugsbayasgalan
**This PR is a 99% copy paste of Sam Gross** (@colesbury) work at https://github.com/pytorch/pytorch/pull/100642. Copied from there
--------
The NN_MODULE guard now subsumes guards on Module attributes. The check_fn will fail if the module attributes are changed (such as Module.training), parameters, submodules, and buffers are added or removed, and if fields are changed on the type itself.
This gives up specificity in the guard check -- if any field is changed the check_fn fails -- for faster overall checks.
-----
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108528
Approved by: https://github.com/ezyang
From talking to @wconstab, we agreed that because of the way DDPOptimizer is written, it is (sort of) incompatible with inductor's `keep_output_stride=False` optimizations (and will cause silent correctness problems if you use them ogether). Added an assertion.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108235
Approved by: https://github.com/wconstab
ghstack dependencies: #108081
Currently numel only supports static shapes, but this expands it to support
generating symbolic arithmetic into the graph. e.g.
```
# x.size().numel with x.size() = [s0, 1, s1]
size = l_x_.size()
getitem = size[0]
getitem_2 = size[2]; size = None
mul = getitem * getitem_2; getitem = getitem_2 = None
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108239
Approved by: https://github.com/ezyang
In https://github.com/pytorch/pytorch/pull/106673 , I created a private API `_debug_get_cache_entry_list` to help pull out cache entries from compiled functions.
Recently, I find that @anijain2305 commented in the code that this API should be revisited, and so I created this PR.
First, this API cannot be removed even if cache entry becomes a first-class python class`torch._C._dynamo.eval_frame._CacheEntry`. The facts that `extra_index` is static, and `get_extra_state` is inline static, make them not accessible elsewhere. This API `_debug_get_cache_entry_list` is the only way for users to get all the cache entries from code.
Second, since the`torch._C._dynamo.eval_frame._CacheEntry` class is a python class, I simplified the C-part code, and remove the necessity of creating a namedtuple for this in the python code.
Third, I also add a small improvement, that if the argument is a function, we can automatically pass its `__code__` to the API.
The above change will slightly change the output, from list of named tuple to list of `torch._C._dynamo.eval_frame._CacheEntry`. I will update the corresponding docs that use this API.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108335
Approved by: https://github.com/jansel, https://github.com/anijain2305
Summary:
During convert step observers are first replaced by Q-DQ pair. In some
scenarios like following output DQ has a fan out.
---> OP2 -> Q -> DQ
/
OP -> Q -> DQ -
\
---> OP3 -> Q -> DQ
If either op OP2 or OP3 are configured to be quantized, then the input
is expected to quantized. In this case quantized equivalent of some
pattern, that quantizer asked to be quantized, should look like:
[DQ -> {pattern} -> Q]. However, in scenario like above where DQ node
is shared between multiple "quantized" patterns, boundary of "quantized"
pattern is not clear because DQ now belongs to multiple quantized
patterns.
This poses challenge for:
- Porting metadata: which "quantized" partition this DQ node belongs
- Quantized representation, equivalently, needs to identify
self-contained quantized pattern that is replaced by its equivalent pattern
that captures compute in the quantized precision.
Test Plan:
test_duplicate_dq_pass
Reviewers:
Subscribers:
Tasks:
Tags:
Differential Revision: [D48663147](https://our.internmc.facebook.com/intern/diff/D48663147)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107900
Approved by: https://github.com/jerryzh168, https://github.com/andrewor14, https://github.com/leslie-fang-intel
ghstack dependencies: #107105, #107106, #107899
Fixes inference accuracy for `doctr_reco_predictor` and `pyhpc_turbulent_kinetic_energy`.
For the `same(float, float)` comparison we weren't going through the more rigorous tensor comparison path which takes into account the fp64 base results.
Also return True when fp64 base result are not well formed (nan).
I debugged these models and the source of divergence were innocuous:
`doctr_reco_predictor` - can be fixed by turning off layout optimization, decomp for batch norm
`pyhpc_turbulent_kinetic_energy` - divergence caused because fused kernel keeps precision in fp32 instead of casting back and forth from/to fp32/bf16. Fused kernel is better precision, anyway.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108202
Approved by: https://github.com/jansel
Summary:
Enables dynamo eager mode tracing for the following situation:
1. we have a torch.autograd.Function
2. the input to that function is a tensor subclass which is an intermediary
This is useful for float8 training UX.
Test Plan:
```
python test/dynamo/test_autograd_function.py -k intermediary_input
```
Reviewers:
Subscribers:
Tasks:
Tags:
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108093
Approved by: https://github.com/bdhirsh, https://github.com/wanchaol
Marks all params/optimizer state as static addresses and a finalizer which cleans up the graph attributes when the optimizer goes out of scope.
**Note: this does not mark grads as static because this will increase memory usage significantly
There are two cases:
1. The upstream graph is cudagraphed - this case will work fine OOTB
2. The upstream graph is not cudagraphed - in this case, there will be a lot of copies introduced from the upstream (to copy the grads) into cudagraphed-owned memory, unless the user explicitly marks the grads as static. If the user does this, this will also require not deallocating the grads in zero_grad() (either the mod or optimizer version) by setting them to zero vs None. There is a PR (https://github.com/pytorch/pytorch/pull/107853) in flight to throw an error if zero_grad attempts to set static grads to None.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107504
Approved by: https://github.com/eellison
Before `test_op_has_batch_rule_cholesky_solve_cpu_float32` failed:
```
PYTORCH_TEST_WITH_DYNAMO=1 pytest test/functorch/test_vmap.py -k test_op_has_batch_rule_cholesky_solve_cpu_float32
test/functorch/test_vmap.py terminate called after throwing an instance of 'pybind11::error_already_set'
what(): RuntimeError: /home/kshiteej/Pytorch/pytorch_functorch/build/aten/src/ATen/RegisterCompositeExplicitAutograd.cpp:2214: SymIntArrayRef expected to contain only concrete integers
```
After this PR the test cases
NOTE: We can't be 100% of tests on CI till we figure out https://github.com/pytorch/pytorch/issues/107444
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107947
Approved by: https://github.com/zou3519
There is already some support for plumbing `__torch_dispatch__` tensor subclasses through dynamo, but this PR beefs it up a bit and adds a test. In particular:
(1) Fakeifying tensor subclasses didn't properly set autograd metadata (requires_grad, is_leaf) on the newly fakeified wrapper subclass. I don't actually have a test for this in this PR, but it's tested pretty heavily later in my aot autograd tests
(2) Fakeifying tensor subclasses didn't properly track source information for dynamic shapes on the inner tensors. I added a new `WrapperSubclassFieldSource` subclass, that represents a source coming from a tensor field on a wrapper subclass, which I use in the fakeifying logic, and again in symbolic_shapes.py to generate proper guards.
(3) `_make_wrapper_subclass()` marginally updated this code to work better with dynamic shapes. One thing that's a bit weird about `_make_wrapper_subclass`: it has two overloads, and the first explicitly does not support dynamic shapes (and the second.. does not support kwargs). I think that later we probably want to consolidate / at least make the first overload work with dynamic shapes, but I didn't want to handle that in this PR (so these smaller changes seemed like a strict improvement).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107415
Approved by: https://github.com/ezyang
Summary:
Add check for `guard.stack` which was causing exceptions like:
```
toch._dynamo.exc.InternalTorchDynamoError: 'NoneType' object has no attribute 'format'
```
Test Plan: contbuild & OSS CI
Differential Revision: D48709458
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108012
Approved by: https://github.com/anijain2305
We want cond to always throw errors despite user's torch.compile mode.
The current implementation is to
1. catch the UserError.GRAPH_BREAK_IN_CONTROL_FLOW and once saw it, we directly raise: once in [break_graph_if_unsupported](bad3f2db40/torch/_dynamo/symbolic_convert.py (L1250)), which catches and raises for call_function (entry point of higher order operator) and a few others.
2. The raised exception is caught and raised again in [step](bad3f2db40/torch/_dynamo/symbolic_convert.py (L691)), where all instructions' exceptions are handled.
3. At the top-level, we treat it like an hard error and not supressing the errors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108027
Approved by: https://github.com/zou3519
ghstack dependencies: #108025, #108026
Fixes https://github.com/pytorch/pytorch/pull/102577#issuecomment-1650905536
Serializing to json is more stable, and renamed the API:
```
# Takes in a treespec and returns the serialized treespec as a string. Also optionally takes in a protocol version number.
def treespec_dumps(treespec: TreeSpec, protocol: Optional[int] = None) -> str:
# Takes in a serialized treespec and outputs a TreeSpec
def treespec_loads(data: str) -> TreeSpec:
```
If users want to register their own serialization format for a given pytree, they can go through the `_register_treespec_serializer` API which optionally takes in a `getstate` and `setstate` function.
```
_register_treespec_serializer(type_, *, getstate, setstate)
# Takes in the context, and outputs a json-dumpable context
def getstate(context: Context) -> DumpableContext:
# Takes in a json-dumpable context, and reconstructs the original context
def setstate(dumpable_context: DumpableContext) -> Context:
```
We will serialize to the following dataclass, and then json.dump this it to string.
```
class TreeSpec
type: Optional[str] # a string name of the type. null for the case of a LeafSpec
context: Optional[Any] # optional, a json dumpable format of the context
children_specs: List[TreeSpec],
}
```
If no getstate/setstate function is registered, we will by default serialize the context using `json.dumps/loads`. We will also serialize the type through `f"{typ.__module__}.{typ.__name__}"`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106116
Approved by: https://github.com/zou3519
This reworks the DORT backend factory function to support the options kwarg of torch.compile, and defines a concrete OrtBackendOptions type that can be used to influence the backend.
Caching is also implemented in order to reuse backends with equal options.
Wrapping the backend in auto_autograd also becomes an option, which allows `OrtBackend` to always be returned as the callable for torch.compile; wrapping happens internally if opted into (True by default).
Lastly, expose options for configuring preferred execution providers (will be attempted first), whether or not to attempt to infer an ORT EP from a torch found device in the graph or inputs, and finally the default/fallback EPs.
### Demo
The following demo runs `Gelu` through `torch.compile(backend="onnxrt")` using various backend options through a dictionary form and a strongly typed form. It additionally exports the model through both the ONNX TorchScript exporter and the new TorchDynamo exporter.
```python
import math
import onnx.inliner
import onnxruntime
import torch
import torch.onnx
torch.manual_seed(0)
class Gelu(torch.nn.Module):
def forward(self, x):
return x * (0.5 * torch.erf(math.sqrt(0.5) * x) + 1.0)
@torch.compile(
backend="onnxrt",
options={
"preferred_execution_providers": [
"NotARealEP",
"CPUExecutionProvider",
],
"export_options": torch.onnx.ExportOptions(dynamic_shapes=True),
},
)
def dort_gelu(x):
return Gelu()(x)
ort_session_options = onnxruntime.SessionOptions()
ort_session_options.log_severity_level = 0
dort_gelu2 = torch.compile(
Gelu(),
backend="onnxrt",
options=torch.onnx._OrtBackendOptions(
preferred_execution_providers=[
"NotARealEP",
"CPUExecutionProvider",
],
export_options=torch.onnx.ExportOptions(dynamic_shapes=True),
ort_session_options=ort_session_options,
),
)
x = torch.randn(10)
torch.onnx.export(Gelu(), (x,), "gelu_ts.onnx")
export_output = torch.onnx.dynamo_export(Gelu(), x)
export_output.save("gelu_dynamo.onnx")
inlined_model = onnx.inliner.inline_local_functions(export_output.model_proto)
onnx.save_model(inlined_model, "gelu_dynamo_inlined.onnx")
print("Torch Eager:")
print(Gelu()(x))
print("DORT:")
print(dort_gelu(x))
print(dort_gelu2(x))
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107973
Approved by: https://github.com/BowenBao
Instead of hardcoding a new callback creation using 'convert_frame',
add an attribute to both callbacks that implement 'self cloning with new
backend', so DDPOptimizer can invoke this in a consistent way.
Fixes#107686
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107834
Approved by: https://github.com/ezyang
Previously when we found some input or output mismatch between original args / traced result vs. graph-captured input / output, we would have a pretty sparse error message. (This might be partly due to the urge to reuse the same code for matching both inputs and outputs.)
With this PR we now point out which input or output is problematic, what its type is, and also present the expected types along with descriptions of what they mean. We don't suggest any fixes, but the idea is that it should be evident what went wrong looking at the error message.
Differential Revision: [D48668059](https://our.internmc.facebook.com/intern/diff/D48668059/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107907
Approved by: https://github.com/gmagogsfm
Moves the logic to casting state to match parameters into a hook so that users can choose to enable their hooks before or after the casting has happened.
With this, there is a little bit of redundancy of the id_map building and the check that the param groups are still aligned in length.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106725
Approved by: https://github.com/albanD
This PR stops `SymNode` from mutating (i.e. simplifying) its expression. Instead, the
simplification (without mutation) is deferred to the `SymNode.maybe_as_int` method.
```python
- FakeTensor(size=(s0,), ...)
- FakeTensor(size=(s1, s2, s3), ...)
- Eq(s0, s1 + s2 + s3)
- FakeTensor(size=(s0,), ...)
- FakeTensor(size=(s1, s2, s3), ...)
```
In summary, this PR:
- Replaces `SymNode._expr` by `SymNode.expr`, removing the old property function
- This makes it so `SymNode` instances never update their expression
- Creates `SymNode.simplified_expr()` method for actually calling `ShapeEnv.replace` on
its expression. Note that this doesn't updates `SymNode.expr`
- Changes how `tensor.size()` gets converted to its Python `torch.Size` type
- Instead of calling `SymInt::maybe_as_int()` method, we create a new
`SymInt::is_symbolic()` method for checking whether it is actually a symbolic value
- This is needed so that when we call `tensor.size()` in the Python side, the returned
sequence is faithful to the actual data, instead of possibly simplifying it and
returning an integer
- 2 files needs this modification:
- _torch/csrc/Size.cpp_: for handling `torch.Tensor.size` Python calls
- _torch/csrc/utils/pybind.cpp_: for handling `symint.cast()` C++ calls
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107492
Approved by: https://github.com/ezyang
ghstack dependencies: #107523
Dynamo currently runs the real graph module with real inputs as a way to match the return result of graph module with the eager return type. This is unsafe when graph module is side effectful. In the long term, we will get rid of this step. But in the short term, we just fakify the graph module again and run it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107271
Approved by: https://github.com/ezyang
This PR makes CacheEntry a PyObject. This is prep PR for cache size changes. As CacheEntry is a py object, we can now traverse the linked list in Python and write cache size policies. It was possible to do in C, but Python is just easier to iterate upon. We call convert_frame only when we (re)compile, so a small bump in latency going from C to Python is acceptable here.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107405
Approved by: https://github.com/ezyang
ghstack dependencies: #106917, #107117
If map or autograd.Function have an input that returns a non-Tensor,
then the code just errors out. Instead of erroring out we should graph
break by raising Unsupported so users aren't confused. The better thing
to do is actually support non-Tensor returns but that requires more
work.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107461
Approved by: https://github.com/ydwu4
ghstack dependencies: #107459
Sometimes the Unsupported error messages can be pretty opaque (see
https://github.com/pytorch/pytorch/issues/106390 for an example). This
PR ensures the error message says something sane by raising a new
Unsupported exception (that includes the older one in the stack trace)
with a description of what's going on.
Test Plan:
- new test utility to check that a dictionary matches a regex so we
don't need to write out this super long error message every time.
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107459
Approved by: https://github.com/ydwu4, https://github.com/kshitij12345
Instead of (poorly) reconstructing the guard list from the guards on OutputGraph, we log them at the horses mouth: when we actually codegen the guard. This only requires very modest refactoring: as we translate guards into code parts, we also have to pass the source guard along so we can use it to give stack information.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107532
Approved by: https://github.com/anijain2305
ghstack dependencies: #107505, #107516, #107530
All log messages that occur while running Dynamo compilation now have `[X/Y]` added to the beginning of their message. X represents the frame being compiled, while Y says which compilation of the frame. For example, if you are debugging a frame that is repeatedly recompiling, you can look for N/0, N/1, N/2, etc. for the same N. Here is what the logs look like as you transition from one frame to another:
<img width="1372" alt="image" src="https://github.com/pytorch/pytorch/assets/13564/4897e368-1e50-4807-b342-54e911bcf087">
To accurately get this prefix added to all messages, I had to expand the scope of the `tracing` context manager. Its scope now coincides with `log_compilation_event`. To do this, I had to populate fake mode lazily in the TracingContext, since it isn't created until later, inside the OutputGraph.
This subsumes the previous X.Y logging that was solely for dynamic shapes.
Unfortunately I had to reindent some stuff. Review the diff with whitespace off.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107530
Approved by: https://github.com/anijain2305
ghstack dependencies: #107505, #107516
The new guard printout looks like this:
```
[DEBUG] GUARDS:
[DEBUG] ___check_type_id(L['name'], 7605632) # if name == "special_attr": # test/dynamo/test_misc.py:1155 in __getattribute__
[DEBUG] L['name'] == '_backward_pre_hooks' # if name == "special_attr": # test/dynamo/test_misc.py:1155 in __getattribute__
[DEBUG] ___check_obj_id(L['self'], 139746432564960) # return super().__getattribute__(name) # test/dynamo/test_misc.py:1157 in __getattribute__
[DEBUG] ___check_obj_id(L['__class__'], 1451499216) # return super().__getattribute__(name) # test/dynamo/test_misc.py:1157 in __getattribute__
[DEBUG] ___is_grad_enabled() # _dynamo/output_graph.py:346 in init_ambient_guards
[DEBUG] not ___are_deterministic_algorithms_enabled() # _dynamo/output_graph.py:342 in init_ambient_guards
[DEBUG] ___is_torch_function_enabled() # _dynamo/output_graph.py:350 in init_ambient_guards
[DEBUG] utils_device.CURRENT_DEVICE == None # _dynamo/output_graph.py:348 in init_ambient_guards
```
Along with the guards, we also print what line of user code caused the guard to be added, or what line of Dynamo internal code added the guard (if there is no user stack trace, which is typically the case for ambient guards.)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107505
Approved by: https://github.com/mlazos, https://github.com/voznesenskym, https://github.com/anijain2305
This PR allows dynamo to fakify FunctionalTensorWrapper by unwrapping, replacing and wrapping again for FunctionalTensorWrapper so that FunctionalTensorWrapper can be passed in as input for dynamo.optimize and we can support something like this
```python
ff = torch.func.functionalize(f)
torch.compile(ff)(x)
```
This PR didn't follow the \_\_tensor_flatten\_\_ and \_\_tensor_unflatten\_\_ protocol right now because we're not sure the plan of doing that for FunctionalTensorWrapper (it's implemented in C++).
**Test Plan:**
Add a new test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107062
Approved by: https://github.com/zou3519
ghstack dependencies: #107042
```python
def wrapper_fn(x):
with torch.autograd.graph.disable_saved_tensors_hooks("ERROR"):
y = x + 1
print("HI")
return y + 2
x = torch.randn(())
a = wrapper_fn(x)
opt = torch.compile(wrapper_fn, backend='eager', fullgraph=False)
e = opt(x)
```
Without the fix fails with,
```
Traceback (most recent call last):
File "/home/kshiteej/Pytorch/pytorch_functorch/test/test_trace_grad.py", line 182, in <module>
e = opt(x)
File "/home/kshiteej/Pytorch/pytorch_functorch/torch/_dynamo/eval_frame.py", line 333, in _fn
return fn(*args, **kwargs)
File "/home/kshiteej/Pytorch/pytorch_functorch/test/test_trace_grad.py", line 165, in wrapper_fn
def wrapper_fn(x):
AttributeError: module 'torch.autograd.graph' has no attribute 'disable_saved_tensors_hook'
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106875
Approved by: https://github.com/zou3519
It looks like this:
```
[DEBUG] GUARD: ___check_type_id(L['z'][L["MyEnum"].BAR], 7640416) and L['z'][L["MyEnum"].BAR] == 10
[DEBUG] Stack:
[DEBUG] File "/data/users/ezyang/b/pytorch/test/dynamo/test_misc.py", line 6657, in <module>
[DEBUG] run_tests()
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/test_case.py", line 38, in run_tests
[DEBUG] run_tests()
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/testing/_internal/common_utils.py", line 985, in run_tests
[DEBUG] unittest.main(argv=argv)
[DEBUG] File "/home/ezyang/local/b/pytorch-env/lib/python3.10/unittest/main.py", line 101, in __init__
[DEBUG] self.runTests()
[DEBUG] File "/home/ezyang/local/b/pytorch-env/lib/python3.10/unittest/main.py", line 271, in runTests
[DEBUG] self.result = testRunner.run(self.test)
[DEBUG] File "/home/ezyang/local/b/pytorch-env/lib/python3.10/unittest/runner.py", line 184, in run
[DEBUG] test(result)
[DEBUG] File "/home/ezyang/local/b/pytorch-env/lib/python3.10/unittest/suite.py", line 84, in __call__
[DEBUG] return self.run(*args, **kwds)
[DEBUG] File "/home/ezyang/local/b/pytorch-env/lib/python3.10/unittest/suite.py", line 122, in run
[DEBUG] test(result)
[DEBUG] File "/home/ezyang/local/b/pytorch-env/lib/python3.10/unittest/suite.py", line 84, in __call__
[DEBUG] return self.run(*args, **kwds)
[DEBUG] File "/home/ezyang/local/b/pytorch-env/lib/python3.10/unittest/suite.py", line 122, in run
[DEBUG] test(result)
[DEBUG] File "/home/ezyang/local/b/pytorch-env/lib/python3.10/unittest/case.py", line 650, in __call__
[DEBUG] return self.run(*args, **kwds)
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/testing/_internal/common_utils.py", line 2521, in run
[DEBUG] self._run_with_retry(
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/testing/_internal/common_utils.py", line 2450, in _run_with_retry
[DEBUG] super_run(result=result)
[DEBUG] File "/home/ezyang/local/b/pytorch-env/lib/python3.10/unittest/case.py", line 591, in run
[DEBUG] self._callTestMethod(testMethod)
[DEBUG] File "/home/ezyang/local/b/pytorch-env/lib/python3.10/unittest/case.py", line 549, in _callTestMethod
[DEBUG] method()
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/testing/_internal/common_utils.py", line 2377, in wrapper
[DEBUG] method(*args, **kwargs)
[DEBUG] File "/data/users/ezyang/b/pytorch/test/dynamo/test_misc.py", line 2529, in test_enum_as_dict_key_with_overloaded_str
[DEBUG] res = opt_fn(x)
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/eval_frame.py", line 333, in _fn
[DEBUG] return fn(*args, **kwargs)
[DEBUG] File "/data/users/ezyang/b/pytorch/test/dynamo/test_misc.py", line 2519, in fn
[DEBUG] torch._dynamo.graph_break()
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/eval_frame.py", line 493, in catch_errors
[DEBUG] return callback(frame, cache_size, hooks, frame_state)
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/convert_frame.py", line 637, in _convert_frame
[DEBUG] result = inner_convert(frame, cache_size, hooks, frame_state)
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/convert_frame.py", line 133, in _fn
[DEBUG] return fn(*args, **kwargs)
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/convert_frame.py", line 371, in _convert_frame_assert
[DEBUG] return _compile(
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/convert_frame.py", line 567, in _compile
[DEBUG] guarded_code = compile_inner(code, one_graph, hooks, transform)
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/utils.py", line 181, in time_wrapper
[DEBUG] r = func(*args, **kwargs)
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/convert_frame.py", line 466, in compile_inner
[DEBUG] out_code = transform_code_object(code, transform)
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object
[DEBUG] transformations(instructions, code_options)
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/convert_frame.py", line 416, in transform
[DEBUG] tracer = InstructionTranslator(
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/symbolic_convert.py", line 2018, in __init__
[DEBUG] self.symbolic_locals = collections.OrderedDict(
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/symbolic_convert.py", line 2021, in <genexpr>
[DEBUG] VariableBuilder(
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/variables/builder.py", line 211, in __call__
[DEBUG] vt = self._wrap(value).clone(**self.options())
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/variables/builder.py", line 404, in _wrap
[DEBUG] result = {
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/variables/builder.py", line 405, in <dictcomp>
[DEBUG] k: VariableBuilder(
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/variables/builder.py", line 211, in __call__
[DEBUG] vt = self._wrap(value).clone(**self.options())
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/variables/builder.py", line 354, in _wrap
[DEBUG] return type_dispatch(self, value)
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/variables/builder.py", line 837, in wrap_literal
[DEBUG] return self.wrap_unspecialized_primitive(value)
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/variables/builder.py", line 1073, in wrap_unspecialized_primitive
[DEBUG] guards=self.make_guards(GuardBuilder.CONSTANT_MATCH),
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/variables/builder.py", line 269, in make_guards
[DEBUG] return {source.make_guard(guard) for guard in guards}
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_dynamo/variables/builder.py", line 269, in <setcomp>
[DEBUG] return {source.make_guard(guard) for guard in guards}
[DEBUG] File "/data/users/ezyang/b/pytorch/torch/_guards.py", line 641, in make_guard
[DEBUG] return Guard(self.name(), self.guard_sou
```
One downside is I can't report *why* the guard was added. I'm not entirely sure how to do this; the problem is guards will propagate to a bunch of variables before finally getting included as part of the final set. Maybe a very very verbose version could report stack traces at every handoff point.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107388
Approved by: https://github.com/mlazos
ghstack dependencies: #107438, #107358
This adds some utilities for conveniently working with fast combined CapturedTraceback from Python. The main goal of these utilities is to make it easier for people to use CapturedTraceback as a drop-in replacement for `traceback.extract_stack`, which is 20x slower than CapturedTraceback.
I port symbolic shapes to use the new CapturedTraceback code, to validate that the APIs work and are useful.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107358
Approved by: https://github.com/zdevito, https://github.com/albanD
ghstack dependencies: #107438
This PR allows dynamo to fakify FunctionalTensorWrapper by unwrapping, replacing and wrapping again for FunctionalTensorWrapper so that FunctionalTensorWrapper can be passed in as input for dynamo.optimize and we can support something like this
```python
ff = torch.func.functionalize(f)
torch.compile(ff)(x)
```
This PR didn't follow the \_\_tensor_flatten\_\_ and \_\_tensor_unflatten\_\_ protocol right now because we're not sure the plan of doing that for FunctionalTensorWrapper (it's implemented in C++).
**Test Plan:**
Add a new test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107062
Approved by: https://github.com/zou3519
ghstack dependencies: #107042
Adds API to mark tensor as a static input -
To make this trigger recompiles properly, I'll need to update tensor match checks to also check for this new attribute
Additional concern is memory - the tensors will be kept alive, but this is the current behavior for nn modules and parameters.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107154
Approved by: https://github.com/eellison
Some notable changes:
1. `constrain_as_size` allows min value to be less than 2 as it will unconditionally assume min >= 2 for compiler purposes. Instead, we add additional check to make sure max value is always greater than 2.
2. Previously, we used to runtime assert on the unbacked symint's val range which would be always between [2, max]. I modified this logic to assert on [0, max] unless user explicitly specifies the min range.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106591
Approved by: https://github.com/gmagogsfm, https://github.com/ezyang
This PR wraps `InstructionTranslator` run with a try-catch block so as to run the
translation validation (TV) if it ends up raising an error.
In this context, we run TV so as to catch simplification errors. These may turn
`ShapeEnv.divisible` and `ShapeEnv.replacements` incorrect.
For example: #101173 describes a SymPy simplification bug that doesn't reach TV, since
it's run only in the end of the tracing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106645
Approved by: https://github.com/ezyang
Some notable changes:
1. `constrain_as_size` allows min value to be less than 2 as it will unconditionally assume min >= 2 for compiler purposes. Instead, we add additional check to make sure max value is always greater than 2.
2. Previously, we used to runtime assert on the unbacked symint's val range which would be always between [2, max]. I modified this logic to assert on [0, max] unless user explicitly specifies the min range.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106591
Approved by: https://github.com/gmagogsfm, https://github.com/ezyang
RFC: https://github.com/pytorch/rfcs/pull/54
First commit is the contents of https://github.com/Quansight-Labs/numpy_pytorch_interop/
We have already been using this in core for the last few months as a external dependency. This PR pulls all these into core.
In the next commits, I do a number of things in this order
- Fix a few small issues
- Make the tests that this PR adds pass
- Bend backwards until lintrunner passes
- Remove the optional dependency on `torch_np` and simply rely on the upstreamed code
- Fix a number dynamo tests that were passing before (they were not tasting anything I think) and are not passing now.
Missing from this PR (but not blocking):
- Have a flag that deactivates tracing NumPy functions and simply breaks. There used to be one but after the merge stopped working and I removed it. @lezcano to investigate.
- https://github.com/pytorch/pytorch/pull/106431#issuecomment-1667079543. @voznesenskym to submit a fix after we merge.
All the tests in `tests/torch_np` take about 75s to run.
This was a work by @ev-br, @rgommers @honno and I. I did not create this PR via ghstack (which would have been convenient) as this is a collaboration, and ghstack doesn't allow for shared contributions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106211
Approved by: https://github.com/ezyang
This PR adds a **same_signature** flag to dynamo.export.
**Motivation:**
In https://github.com/pytorch/pytorch/pull/105679, we experimented on **using dynamo to inspect the UDFs** for cond in eager mode (without torch.compile). This helps us to normalize the inputs (e.g. lifting closure to inputs) and makes higher order operator more robust (e.g. forbid python side effects) and less error-prone in general.
We decided to use dynamo.export (instead of torch.compile) to do the inspection (pointed out by @voznesenskym @zou3519):
- We'd like a **whole-graph capture** for the UDF.
- We'd like the dynamo inspection to be **stateless**. Using torch.compile would require resetting dynamo context before and after the inspection because the compile flags may be different from users' torch.compile. This will clear all dynamo cache.
- We can still implement some **caching** based on the guards.
However, this requires export to be able to handle the case where it cannot always rewrite signature: e.g. closure lifted as input.
This PR makes the rewrite optional.
**Implementation:**
We just put all the code that are related to signature rewriting into a function called rewrite_signature and use a same_signature flag to optionally to the transformation.
**Test Plan:**
existing tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106569
Approved by: https://github.com/ezyang
This PR adds a new configuration that enables shapes of torch.nn.Parameter to be treated as dynamic in order to avoid extensive recompilation when Paramters are used instead of Tensor.
This features addresses part of issue #105279
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105855
Approved by: https://github.com/ezyang
Fixes#106555
There was bug where the multithreading check would fire because of the
`compiled_autograd.disable()` calls in AotAutograd, even though compiled
autograd was already disabled, so that call was doing nothing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106621
Approved by: https://github.com/yanboliang
D47969512 was the original diff to revert this, but the diff train doesn't work well, so I have to split it into two part: this OSS PR and another separate diff to revert the fbcode change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106562
Approved by: https://github.com/angelayi
When inlining a function which loads a closure, its direct parent may not load that closure. So we cannot find the closure name in parent's symbolic locals. In this PR, we fix it by recursively searching the parent instruction translator stack to resolve the closure.
**Background**
When developing https://github.com/pytorch/pytorch/pull/105679, this corner case is triggered. A small repro is added in the test of this pr, where outer is loaded by deep2 but not by deep.
```python
def test_inline_closure_not_loaded_by_parent(self):
def outer(a):
return a + 1
def indirect(x):
return direct(x)
def direct(x):
def deep2(c):
return outer(c)
def deep(c):
return deep2(c)
return deep(x)
x = torch.randn(3)
eager = indirect(x)
counter = CompileCounter()
compiled = torch._dynamo.optimize(counter)(indirect)(x)
```
Running the test, we have the following error before the PR:
```
Traceback (most recent call last):
File "/home/yidi/local/pytorch/test/dynamo/test_misc.py", line 6584, in test_inline_closure_not_loaded_by_parent
compiled = torch._dynamo.optimize(counter)(indirect)(x)
File "/home/yidi/local/pytorch/torch/_dynamo/eval_frame.py", line 321, in _fn
return fn(*args, **kwargs)
File "/home/yidi/local/pytorch/torch/_dynamo/eval_frame.py", line 481, in catch_errors
return callback(frame, cache_size, hooks, frame_state)
File "/home/yidi/local/pytorch/torch/_dynamo/convert_frame.py", line 543, in _convert_frame
result = inner_convert(frame, cache_size, hooks, frame_state)
File "/home/yidi/local/pytorch/torch/_dynamo/convert_frame.py", line 130, in _fn
return fn(*args, **kwargs)
File "/home/yidi/local/pytorch/torch/_dynamo/convert_frame.py", line 362, in _convert_frame_assert
return _compile(
File "/home/yidi/local/pytorch/torch/_dynamo/utils.py", line 194, in time_wrapper
r = func(*args, **kwargs)
File "/home/yidi/local/pytorch/torch/_dynamo/convert_frame.py", line 531, in _compile
raise InternalTorchDynamoError(str(e)).with_traceback(e.__traceback__) from None
File "/home/yidi/local/pytorch/torch/_dynamo/convert_frame.py", line 432, in _compile
out_code = transform_code_object(code, transform)
File "/home/yidi/local/pytorch/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object
transformations(instructions, code_options)
File "/home/yidi/local/pytorch/torch/_dynamo/convert_frame.py", line 417, in transform
tracer.run()
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 2067, in run
super().run()
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run
and self.step()
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step
getattr(self, inst.opname)(inst)
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper
return inner_fn(self, inst)
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 1116, in CALL_FUNCTION
self.call_function(fn, args, {})
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function
self.push(fn.call_function(self, args, kwargs))
File "/home/yidi/local/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function
return super().call_function(tx, args, kwargs)
File "/home/yidi/local/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function
return tx.inline_user_function_return(
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return
result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs)
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 2172, in inline_call
return cls.inline_call_(parent, func, args, kwargs)
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 2279, in inline_call_
tracer.run()
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run
and self.step()
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step
getattr(self, inst.opname)(inst)
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper
return inner_fn(self, inst)
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 1116, in CALL_FUNCTION
self.call_function(fn, args, {})
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function
self.push(fn.call_function(self, args, kwargs))
File "/home/yidi/local/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function
return tx.inline_user_function_return(
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return
result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs)
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 2172, in inline_call
return cls.inline_call_(parent, func, args, kwargs)
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 2279, in inline_call_
tracer.run()
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run
and self.step()
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step
getattr(self, inst.opname)(inst)
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper
return inner_fn(self, inst)
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 1116, in CALL_FUNCTION
self.call_function(fn, args, {})
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function
self.push(fn.call_function(self, args, kwargs))
File "/home/yidi/local/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function
return tx.inline_user_function_return(
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return
result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs)
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 2172, in inline_call
return cls.inline_call_(parent, func, args, kwargs)
File "/home/yidi/local/pytorch/torch/_dynamo/symbolic_convert.py", line 2227, in inline_call_
sub_locals, closure_cells = func.bind_args(parent, args, kwargs)
File "/home/yidi/local/pytorch/torch/_dynamo/variables/functions.py", line 471, in bind_args
result[name] = parent.symbolic_locals[name]
torch._dynamo.exc.InternalTorchDynamoError: outer
from user code:
File "/home/yidi/local/pytorch/test/dynamo/test_misc.py", line 6570, in indirect
return direct(x)
File "/home/yidi/local/pytorch/test/dynamo/test_misc.py", line 6579, in direct
return deep(x)
File "/home/yidi/local/pytorch/test/dynamo/test_misc.py", line 6577, in deep
return deep2(c)
Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information
You can suppress this exception and fall back to eager by setting:
import torch._dynamo
torch._dynamo.config.suppress_errors = True
To execute this test, run the following from the base repo dir:
python test/dynamo/test_misc.py -k test_inline_closure_not_loaded_by_parent
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
---------------------------------------------------------------------------------------------------------------------------- Captured stdout call -----------------------------------------------------------------------------------------------------------------------------
frames [('total', 1)]
inline_call []
---------------------------------------------------------------------------------------------------------------------------- Captured stderr call -----------------------------------------------------------------------------------------------------------------------------
[2023-08-02 15:48:36,560] torch._dynamo.eval_frame: [DEBUG] skipping __init__ /home/yidi/local/miniconda3/envs/pytorch-3.10/lib/python3.10/contextlib.py
[2023-08-02 15:48:36,560] torch._dynamo.eval_frame: [DEBUG] skipping __enter__ /home/yidi/local/miniconda3/envs/pytorch-3.10/lib/python3.10/contextlib.py
[2023-08-02 15:48:36,560] torch._dynamo.eval_frame: [DEBUG] skipping helper /home/yidi/local/miniconda3/envs/pytorch-3.10/lib/python3.10/contextlib.py
[2023-08-02 15:48:36,560] torch._dynamo.eval_frame: [DEBUG] skipping __init__ /home/yidi/local/miniconda3/envs/pytorch-3.10/lib/python3.10/contextlib.py
[2023-08-02 15:48:36,560] torch._dynamo.eval_frame: [DEBUG] skipping __enter__ /home/yidi/local/miniconda3/envs/pytorch-3.10/lib/python3.10/contextlib.py
[2023-08-02 15:48:36,560] torch._dynamo.eval_frame: [DEBUG] skipping enable_dynamic /home/yidi/local/pytorch/torch/_dynamo/eval_frame.py
[2023-08-02 15:48:36,561] torch._dynamo.symbolic_convert: [INFO] Step 1: torchdynamo start tracing indirect /home/yidi/local/pytorch/test/dynamo/test_misc.py:6569
TRACE starts_line indirect /home/yidi/local/pytorch/test/dynamo/test_misc.py:6569
def indirect(x):
[2023-08-02 15:48:36,591] torch._dynamo.variables.builder: [DEBUG] wrap_to_fake L['x'] (3,) [<DimDynamic.STATIC: 2>] [None]
TRACE starts_line indirect /home/yidi/local/pytorch/test/dynamo/test_misc.py:6570
return direct(x)
[2023-08-02 15:48:36,594] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_DEREF direct []
[2023-08-02 15:48:36,594] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_FAST x [UserFunctionVariable()]
[2023-08-02 15:48:36,594] torch._dynamo.symbolic_convert: [DEBUG] TRACE CALL_FUNCTION 1 [UserFunctionVariable(), TensorVariable()]
[2023-08-02 15:48:36,595] torch._dynamo.symbolic_convert: [DEBUG] INLINING <code object direct at 0x7fbe4d366810, file "/home/yidi/local/pytorch/test/dynamo/test_misc.py", line 6572>
TRACE starts_line direct /home/yidi/local/pytorch/test/dynamo/test_misc.py:6572 (inline depth: 1)
def direct(x):
TRACE starts_line direct /home/yidi/local/pytorch/test/dynamo/test_misc.py:6573 (inline depth: 1)
def deep2(c):
[2023-08-02 15:48:36,595] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_CLOSURE outer []
[2023-08-02 15:48:36,595] torch._dynamo.symbolic_convert: [DEBUG] TRACE BUILD_TUPLE 1 [InlinedClosureVariable()]
[2023-08-02 15:48:36,595] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_CONST <code object deep2 at 0x7fbe4d3666b0, file "/home/yidi/local/pytorch/test/dynamo/test_misc.py", line 6573> [TupleVariable()]
[2023-08-02 15:48:36,595] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_CONST MiscTests.test_inline_closure_not_loaded_by_parent.<locals>.direct.<locals>.deep2 [TupleVariable(), ConstantVariable(code)]
[2023-08-02 15:48:36,595] torch._dynamo.symbolic_convert: [DEBUG] TRACE MAKE_FUNCTION 8 [TupleVariable(), ConstantVariable(code), ConstantVariable(str)]
[2023-08-02 15:48:36,597] torch._dynamo.symbolic_convert: [DEBUG] TRACE STORE_DEREF deep2 [NestedUserFunctionVariable()]
TRACE starts_line direct /home/yidi/local/pytorch/test/dynamo/test_misc.py:6576 (inline depth: 1)
def deep(c):
[2023-08-02 15:48:36,597] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_CLOSURE deep2 []
[2023-08-02 15:48:36,597] torch._dynamo.symbolic_convert: [DEBUG] TRACE BUILD_TUPLE 1 [NewCellVariable()]
[2023-08-02 15:48:36,597] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_CONST <code object deep at 0x7fbe4d366760, file "/home/yidi/local/pytorch/test/dynamo/test_misc.py", line 6576> [TupleVariable()]
[2023-08-02 15:48:36,597] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_CONST MiscTests.test_inline_closure_not_loaded_by_parent.<locals>.direct.<locals>.deep [TupleVariable(), ConstantVariable(code)]
[2023-08-02 15:48:36,597] torch._dynamo.symbolic_convert: [DEBUG] TRACE MAKE_FUNCTION 8 [TupleVariable(), ConstantVariable(code), ConstantVariable(str)]
[2023-08-02 15:48:36,598] torch._dynamo.symbolic_convert: [DEBUG] TRACE STORE_FAST deep [NestedUserFunctionVariable()]
TRACE starts_line direct /home/yidi/local/pytorch/test/dynamo/test_misc.py:6579 (inline depth: 1)
return deep(x)
[2023-08-02 15:48:36,598] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_FAST deep []
[2023-08-02 15:48:36,598] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_FAST x [NestedUserFunctionVariable()]
[2023-08-02 15:48:36,598] torch._dynamo.symbolic_convert: [DEBUG] TRACE CALL_FUNCTION 1 [NestedUserFunctionVariable(), TensorVariable()]
[2023-08-02 15:48:36,598] torch._dynamo.symbolic_convert: [DEBUG] INLINING <code object deep at 0x7fbe4d366760, file "/home/yidi/local/pytorch/test/dynamo/test_misc.py", line 6576>
TRACE starts_line deep /home/yidi/local/pytorch/test/dynamo/test_misc.py:6576 (inline depth: 2)
def deep(c):
TRACE starts_line deep /home/yidi/local/pytorch/test/dynamo/test_misc.py:6577 (inline depth: 2)
return deep2(c)
[2023-08-02 15:48:36,599] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_DEREF deep2 []
[2023-08-02 15:48:36,599] torch._dynamo.symbolic_convert: [DEBUG] TRACE LOAD_FAST c [NestedUserFunctionVariable()]
[2023-08-02 15:48:36,599] torch._dynamo.symbolic_convert: [DEBUG] TRACE CALL_FUNCTION 1 [NestedUserFunctionVariable(), TensorVariable()]
[2023-08-02 15:48:36,599] torch._dynamo.output_graph: [DEBUG] restore_graphstate: removed 0 nodes
[2023-08-02 15:48:36,599] torch._dynamo.symbolic_convert: [DEBUG] FAILED INLINING <code object deep at 0x7fbe4d366760, file "/home/yidi/local/pytorch/test/dynamo/test_misc.py", line 6576>
[2023-08-02 15:48:36,599] torch._dynamo.output_graph: [DEBUG] restore_graphstate: removed 0 nodes
[2023-08-02 15:48:36,599] torch._dynamo.symbolic_convert: [DEBUG] FAILED INLINING <code object direct at 0x7fbe4d366810, file "/home/yidi/local/pytorch/test/dynamo/test_misc.py", line 6572>
[2023-08-02 15:48:36,599] torch._dynamo.output_graph: [DEBUG] restore_graphstate: removed 0 nodes
```
Test Plan:
add new test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106491
Approved by: https://github.com/williamwen42, https://github.com/jansel, https://github.com/zou3519
Previously, you would get an error like
```
Dynamo input and output is a strict subset of traced input/output
```
now you get
```
Cannot export model which references tensors that are neither
buffers/parameters/constants nor are direct inputs. For each tensor, if you'd
like this tensor to be an explicit input, add it as a dummy argument
to the top-level model definition you are exporting; if you would
like its value to be embedded as an exported constant, wrap its access
in a function marked with @assume_constant_result.
G['bulbous_bouffant'], accessed at:
File "test_export.py", line N, in f
return bulbous_bouffant + y
```
This doesn't handle outputs, I'm going to hit that next.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106403
Approved by: https://github.com/tugsbayasgalan
Previously, we assume the argnums is a **ConstantVariable**. However I accidentally triggered an error on CI where argnums could be a **TupleVariable**. In that case, we have an attribute error when access the .value of argnums.
This PR adds support for the TupleVariable. It allows the unit test to pass without falling back to eager
"PYTORCH_TEST_WITH_DYNAMO=1 python test/functorch/test_eager_transforms.py -k test_argnums_cpu"
Test Plan:
see modified test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106425
Approved by: https://github.com/yanboliang, https://github.com/anijain2305, https://github.com/kshitij12345
`TensorMeta.from_irnodes` handles either a single `IRNode` or a tuple or list of them. I tried to express this with overloading, but because this file is in MYPYNOFOLLOW, the `IRNode` subclasses become `Any`, which causes the overloads to be overlapping.
This changes the type of the argument to `benchmark_in_sub_process` to the more specific `TritonTemplateCaller`, since that one has the `bmreq` member and existing docstrings indicate that only the triton template benchmark is handled.
The `rand_strided` call caused a mypy error because the default value for device was a string. This is fixed by adding type hints to `rand_strided` in `torch/_dynamo/testing.py`. Likewise, the return value of `PyCodeCache.load_by_key_path` can be inferred from the type hint on `PyCodeCache.cache`.
Fixes one part of #105230
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105791
Approved by: https://github.com/jansel, https://github.com/Skylion007
Fix: #105074
This PR makes dynamo handle Numpy global variables the same way as PyTorch tensor global
variables by tracking them as side-effect.
In summary, we add `NumpyNdarrayVariable` to the
`VariableBuilder._can_lift_attrs_to_inputs` function.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105959
Approved by: https://github.com/ezyang
Summary: moving quantizer to torch.ao.quantization to make it a public api, since pt2e is a folder for implementations
Test Plan:
CIs
sanity check: "buck test //executorch/backends/xnnpack/test:test_xnnpack_quantized_models -- test_resnet18"
Differential Revision: D47727838
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105885
Approved by: https://github.com/andrewor14
This branch:
1) converts the autograd tape into an FX graph
2) caches that conversion using a "shadow" graph
3) compiles and runs the generated FX graph instead of the normal autograd
What works currently:
1) Caching, capture, and initial integration
2) Backwards hooks
3) Inlining AotAutograd generated subgraphs
4) torch.compiling the generated FX graph
5) Auto-detecting dynamic shapes based on changes
Future work
1) Larger scale testing
1) Boxed calling convention, so memory can be freed incrementally
1) Support hooks on SavedTensor
1) Additional testing by running eager autograd tests under compiled_autograd.enable()
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103822
Approved by: https://github.com/ezyang, https://github.com/albanD
Previously during torch.export(), when an exception is raised during tracing, Dynamo displays this error:
“You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True”
This is not viable in torch.export(), thus this diff suppresses this suggestion during export.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105767
Approved by: https://github.com/anijain2305
Currently, exporting a model to ONNX with fake tensor mode requires the
user to load data and model within `torch.onnx.enable_fake_mode` context,
but the actual call to `torch.onnx.dynamo_export` is done outside such
context.
With this PR, we enable `torch.onnx.dynamo_export` to be called either
within `torch.onnx.enable_fake_mode` or outside of it. This feature
required changes to the core PyTorch Dynamo, which were greatly
supported by @ezyang
In future steps we will determine which scenario we are going to
support, but for now we can use either to explore different options and
scenarios and asses their pros and cons.
This PR also creates a separate suite of tests for fake mode specific
scenarios (`TestFxToOnnxFakeTensorWithOnnxRuntime`).
It was done separately to decrease the test time, but we
could merge it with the default `TestFxToOnnxWithOnnxRuntime`. The
additional parameters are `load_checkpoint_during_init` and
`export_within_fake_mode`
With the newly added supported of nested export within fake mode, the
following scenarios are now supported:
```python
import torch
with torch.onnx.enable_fake_mode() as fake_context:
fake_args = create_args()
fake_kwargs = create_kwargs()
fake_model = create_model()
fake_model.load_state_dict(torch.load(tmp_checkpoint_file.name))
export_options = torch.onnx.ExportOptions(fake_context=fake_context)
# `torch.onnx.dynamo_export` called WITHIN `torch.onnx.enable_fake_mode`
export_output = torch.onnx.dynamo_export(
fake_model,
*fake_args,
**fake_kwargs,
export_options=export_options,
)
export_output.save("/path/to/model.onnx", model_state_dict=create_model())
```
If we decide to only support scenarios in which `torch._dynamo.export` is called within `FakeTensorMode`, then we can remove `fake_mode` argument from `torch._dynamo.export` as a follow-up task
ps: This PR is mostly Edward's https://github.com/pytorch/pytorch/pull/105468 + unit tests after an offline discussion
ps: https://github.com/pytorch/pytorch/issues/105464 tracks pending tasks/limitations from this PR
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105477
Approved by: https://github.com/ezyang, https://github.com/BowenBao
Summary:
We are working toward full model compilation, where when compilation error happens, we just fall back to eager mode rather than error out.
But at the same time, we should fix these issues if they are bugs. We will:
* 1/ log warnings in OSS;
* 2/ log warnings and write them into Scuba in fbcode;
to prevent us from ignoring these issues.
Test Plan: Manual test
Differential Revision: D47506314
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105307
Approved by: https://github.com/jansel
Since Python 3.11 bytecode contains endline and column information, for each bytecode, we attribute the source code corresponding to the bytecode in a more accurate way. For example, we can highlight a function call in a series of nested function calls, or highlight a function call spanning multiple lines.
Sample:
```python
import torch
import torch._dynamo
from functorch.experimental.control_flow import cond
def h(x):
return x * 5
def true_fn(x):
return x * 2
def false_fn(x):
return x * 3
def f(pred, x):
x = h(
h(h(x))
)
x = x[1:][:2]
torch._dynamo.graph_break()
x = cond(pred, true_fn, false_fn, [x])
opt_f = torch.compile(f, backend="eager")
opt_f(torch.tensor(True), torch.randn(3, 3, 3, 3))
```
Output:
```
$ TORCH_LOGS="trace_call" python playground9.py
TRACE inlined call h from f /scratch/williamwen/work/pytorch/playground9.py:16
h(h(x))
~^^^
TRACE FX call mul from h /scratch/williamwen/work/pytorch/playground9.py:6 (inline depth: 1)
return x * 5
~~^~~
TRACE inlined call h from f /scratch/williamwen/work/pytorch/playground9.py:16
h(h(x))
~^^^^^^
TRACE FX call mul_1 from h /scratch/williamwen/work/pytorch/playground9.py:6 (inline depth: 1)
return x * 5
~~^~~
TRACE inlined call h from f /scratch/williamwen/work/pytorch/playground9.py:15
x = h(
~^
h(h(x))
^^^^^^^
)
^
TRACE FX call mul_2 from h /scratch/williamwen/work/pytorch/playground9.py:6 (inline depth: 1)
return x * 5
~~^~~
TRACE FX call getitem from f /scratch/williamwen/work/pytorch/playground9.py:18
x = x[1:][:2]
~^^^^
TRACE FX call getitem_1 from f /scratch/williamwen/work/pytorch/playground9.py:18
x = x[1:][:2]
~~~~~^^^^
TRACE inlined call true_fn from <resume in f> /scratch/williamwen/work/pytorch/playground9.py:20
x = cond(pred, true_fn, false_fn, [x])
~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TRACE FX call mul from true_fn /scratch/williamwen/work/pytorch/playground9.py:9 (inline depth: 1)
return x * 2
~~^~~
TRACE inlined call false_fn from <resume in f> /scratch/williamwen/work/pytorch/playground9.py:20
x = cond(pred, true_fn, false_fn, [x])
~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TRACE FX call mul from false_fn /scratch/williamwen/work/pytorch/playground9.py:12 (inline depth: 1)
return x * 3
~~^~~
TRACE FX call cond from <resume in f> /scratch/williamwen/work/pytorch/playground9.py:20
x = cond(pred, true_fn, false_fn, [x])
~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104676
Approved by: https://github.com/ezyang
This PR adds initial dynamo support for DTensor, in particular, it:
- allows DTensor be passed into a compiled function, and allow fakify
DTensor during dynamo tracing by turning the inner local tensor to meta
tensor.
- We use `allow_in_graph` to include `DTensor` and `DTensor.from_local` to be represented as `TorchVariable`
- The dtensor created becomes a normal `TensorVariable` and it would insert any tensor operations to the output graph just like torch.Tensor
- note that dtensor have a new instance method `redistribute` compare to plain tensor, and we currently special handle it in `TensorVariable`
`from_local` and `redistribute` both accepts some non-trival metadata as arguments (i.e. DeviceMesh, Placement) which fx.Graph does not support. In order to let these two APIs appear in the dynamo captured graph, we encoded the metadata into a new_function (like `functools.partial`) and the new function only accepts prim args (i.e. tensor), then we put `call_function` with this new_function to the graph. This is suggested by @ezyang. The underlying rationale here is that the metadata will not change across the graph invocations so it's safe to encode them.
Captured graph:
```
def forward(self, L_x_ : torch.Tensor):
l_x_ = L_x_
# File: /scratch/wanchaol/work/pytorch/test/distributed/_tensor/test_dtensor.py:685, code: dt = DTensor.from_local(x, mesh, [Shard(0)], run_check=False)
prim_from_local = torch__dynamo_variables_torch_prim_from_local(l_x_, run_check = False); l_x_ = None
# File: /scratch/wanchaol/work/pytorch/test/distributed/_tensor/test_dtensor.py:686, code: return dt.redistribute(mesh, [Replicate()]).to_local() + 2
prim_redistribute = torch__dynamo_variables_tensor_prim_redistribute(prim_from_local); prim_from_local = None
to_local = prim_redistribute.to_local(); prim_redistribute = None
add = to_local + 2; to_local = None
return (add,)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103146
Approved by: https://github.com/voznesenskym
Fixes: #105143
In summary, the changes are:
- Check if Z3 is installed when the module is loaded
- Naming consistently as "translation validation" (not "validator")
- Skipping tests if Z3 is not installed
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105168
Approved by: https://github.com/ezyang
This PR adds necessary plumbing through torchdynamo to allow tensor
subclasses with certain contract (i.e. with `__tensor_flatten__` and
`__tensor_unflatten__`) to goes through the dynamo fakification pass by
fakifying the tensor subclass internal components.
Some of the tensor subclass contract logic mostly borrowed from
https://github.com/pytorch/pytorch/pull/97540
Added some tests to verify simply passing through a tensor subclass
(i.e. DTensor) through dynamo eager works as expected.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105308
Approved by: https://github.com/ezyang
issues resolved: https://github.com/pytorch/pytorch/issues/101832
**context**: get torch.compile config for further usage. E.g, the training platform wants to get if model is compiled with cudagraph enabled and trigger further action
**how it is implemented**
* the core logic is backend.get_compiler_config() in torch/_dynamo/eval_frame.py
* for backend='inductor' / _TorchCompileInductorWrapper, we have inductor-specific implementation in get_compiler_config in torch/_inductor/compile_fx.py and torch/__init__.py
**how to use it**: Below is an example.
```
model = DummyModule()
optimized_module = torch.compile(
model, options={"triton.cudagraphs": True}
)
compiler_config = optimized_module.get_compiler_config()
if compiler_config["triton.cudagraphs"]:
pass
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105026
Approved by: https://github.com/yanboliang, https://github.com/jansel
torch.profiler.record_function and torch.profiler.profile are ignored by dynamo. In the common case, users have `record_function` in the middle of their program in order to annotate a section of the profile.
The previous error message was `Profiler will be ignored`. Users would think that profiling would be completely ignored.
Now the message will look like `Profiler function <class 'torch.autograd.profiler.record_function'> will be ignored`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105362
Approved by: https://github.com/yanboliang, https://github.com/aaronenyeshi
Add similar semantics for creating a buffer object similar to creating a parameter. This is done by introducing a new `Buffer` class that can be used for type disambiguation. The underlying functionality of registering a buffer remains the same as the `register_buffer` method has not been changed. The `persistent` parameter in the `Buffer` type is to indicate whether a buffer object should be persistent or not. Other non-test changes have to do with getting the new `Buffer` type recognized by inductor and dynamo. Remaining changes are test changes to make sure that the `Buffer` type can be used as a drop in replacement for `register_buffer` as it just leads to `register_buffer` being called. The addition of this new functionality still allows for normal tensors to be used as buffers so these changes are intended to be backwards compatible.
Fixes#35735
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104069
Approved by: https://github.com/mikaylagawarecki