Commit Graph

26 Commits

Author SHA1 Message Date
PyTorch MergeBot
b5594f7df0 Revert "Use missing-prototypes in torch_cpu (#103725)"
This reverts commit 716b3b893d.

Reverted https://github.com/pytorch/pytorch/pull/103725 on behalf of https://github.com/osalpekar due to Broke caffe2 builds due. More info at [D46920675](https://www.internalfb.com/diff/D46920675) ([comment](https://github.com/pytorch/pytorch/pull/103725#issuecomment-1603129273))
2023-06-22 18:30:31 +00:00
cyy
716b3b893d Use missing-prototypes in torch_cpu (#103725)
This PR enables  Wmissing-prototypes in torch_cpu except some generated cpp files and the mps and metal backends.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103725
Approved by: https://github.com/albanD
2023-06-21 13:19:55 +00:00
Scott Wolchok
0a66d5b325 [PyTorch] Remove unnecessary iostream includes in headers (#61500)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61500

libstdc++ defines a static variable called `std::__ioinit` in iostream that adds global constructor size overhead to each translation that includes iostream. To reduce the size overhead from that, we can often include ostream instead.
ghstack-source-id: 136163529

Test Plan: buildsizebot some mobile apps

Reviewed By: dhruvbird

Differential Revision: D29648016

fbshipit-source-id: 9c3139712c71248513cc5032d21e77f3ecbae8fe
2021-08-19 18:54:51 -07:00
Nikita Shulga
a9b0a921d5 Disable avoid-non-const-global-variables lint check (#62008)
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`

All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`;  do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008

Reviewed By: driazati, r-barnes

Differential Revision: D29838584

Pulled By: malfet

fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
2021-07-22 18:04:40 -07:00
Nikita Shulga
3a66a1cb99 [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841)
Summary:
Add cppcoreguidelines-avoid-magic-numbers exclusion to clang-tidy
Remove existing nolint warnings using following script:
```
for file in `git ls-files | grep -v \.py`; do gsed '/^ *\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)/d' -i  $file; done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57841

Reviewed By: samestep

Differential Revision: D28295045

Pulled By: malfet

fbshipit-source-id: 7c6e8d1213c9593f169ed3df6a916498f1a97163
2021-05-07 20:02:33 -07:00
Nikita Shulga
4cb534f92e Make PyTorch code-base clang-tidy compliant (#56892)
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os

def get_compiled_files_list():
    import json
    with open("build/compile_commands.json") as f:
        data = json.load(f)
    files = [os.path.relpath(node['file']) for node in data]
    for idx, fname in enumerate(files):
        if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
            files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
    return files

def run_clang_tidy(fname):
    check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
    changes = check_output(["git", "ls-files", "-m"])
    if len(changes) == 0:
        return
    check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])

def main():
    git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
    compiled_files = get_compiled_files_list()
    for idx, fname in enumerate(git_files):
        if fname not in compiled_files:
            continue
        if fname.startswith("caffe2/contrib/aten/"):
            continue
        print(f"[{idx}/{len(git_files)}] Processing {fname}")
        run_clang_tidy(fname)

if __name__ == "__main__":
    main()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892

Reviewed By: H-Huang

Differential Revision: D27991944

Pulled By: malfet

fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
2021-04-28 14:10:25 -07:00
Ilia Cherniavskii
7b1d6c8912 Update intra_inter_benchmark (#22051)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22051
ghimport-source-id: 70710b3866b1a5e21656b77d2695ada74d00254e

Test Plan:
PARALLEL_BACKEND=NATIVE_TBB USE_OPENMP=0 USE_TBB=1 MKL_SEQ=1
MKLDNN_THREADING=SEQ USE_CUDA=0 BLAS=MKL USE_MKLDNN=1 BUILD_BINARY=1
python setup.py develop --cmake

./build/bin/intra_inter_benchmark

Imported from OSS

Differential Revision: D15933951

Pulled By: ilia-cher

fbshipit-source-id: 88ad8f7a1634c1612ffaa68f22721ffc73d9b2ba
2019-06-21 23:06:27 -07:00
Dmytro Dzhulgakov
c25e33789e Lightweight at-most-once logging for API usage (#20745)
Summary:
Resubmit #20698 which got messed up.

Idea is that when PyTorch is used in a custom build environment (e.g. Facebook), it's useful to track usage of various APIs centrally. This PR introduces a simple very lightweight mechanism to do so - only first invocation of a trigger point would be logged. This is significantly more lightweight than #18235 and thus we can allow to put logging in e.g. TensorImpl.

Also adds an initial list of trigger points. Trigger points are added in such a way that no static initialization triggers them, i.e. just linking with libtorch.so will not cause any logging. Further suggestions of what to log are welcomed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20745

Differential Revision: D15429196

Pulled By: dzhulgakov

fbshipit-source-id: a5e41a709a65b7ebccc6b95f93854e583cf20aca
2019-05-23 23:17:59 -07:00
Edward Z. Yang
9b1dbffba5
Re-sync with internal repository (#20702) 2019-05-20 09:22:57 -04:00
Dmytro Dzhulgakov
d3059b9c49 Lightweight logging for once-only API usage 2019-05-19 23:04:40 -07:00
Yangqing Jia
7d5f7ed270 Using c10 namespace across caffe2. (#12714)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12714

This is a short change to enable c10 namespace in caffe2. We did not enable
it before due to gflags global variable confusion, but it should have been
mostly cleaned now. Right now, the plan on record is that namespace caffe2 and
namespace aten will fully be supersets of namespace c10.

Most of the diff is codemod, and only two places of non-codemod is in caffe2/core/common.h, where

```
using namespace c10;
```

is added, and in Flags.h, where instead of creating aliasing variables in c10 namespace, we directly put it in the global namespace to match gflags (and same behavior if gflags is not being built with).

Reviewed By: dzhulgakov

Differential Revision: D10390486

fbshipit-source-id: 5e2df730e28e29a052f513bddc558d9f78a23b9b
2018-10-17 12:57:19 -07:00
Yangqing Jia
38f3d1fc40 move flags to c10 (#12144)
Summary:
still influx.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12144

Reviewed By: smessmer

Differential Revision: D10140176

Pulled By: Yangqing

fbshipit-source-id: 1a313abed022039333e3925d19f8b3ef2d95306c
2018-10-04 02:09:56 -07:00
Sebastian Meßmer
49f8581745
Update from facebook (#7855)
* [mpscnn] MPSCNNChannelShuffle

att

* [Easy] Adding tags as an argument to the functional layer

Without it "tags" would be added as an argument to the operator.

The change here is based on the assumption that there is no operator that takes "tags" as an argument.

* Fix locally_connected_op schema check.

Fix locally_connected_op schema check.

* [C2] Add TypeAndShape inference for few more operators

As desc

* [c2] Shape inference should support 0 as dimension

Tensors can have 0 in their dimension.

* Make MockHiveReader loop over and support max_examples

Replace DatasetReader with RandomDatasetReader.

So that Mock Hive Reader can simulate a large data input using a small sample file as source.

* Utility function to wipe cache between benchmark runs

Caffe2 benchmark does not wipe out cache between runs, and this potentially creates an unrealistically optimistic picture of performance. This diff adds utility function to wipe out the cache.

* Allow caffe2 GlobalInit to be invoked multiple times

Allow caffe2 GlobalInit to be invoked multiple times. Will re-parse gflags and update logging levels on successive invocations, but will not re-run init functions or perform other one-time initialization.

* Add Caffe2 GlobalInitIsCalledGuard to base net and operator classes

Warn if caffe2's GlobalInit function has not been invoked before creating an operator or net object. This is based on discussion here: https://fb.quip.com/kqGIAbmK7vNG

* Rethrow current exception on failure

Rethrow current exception instead of copy constructing a new one on op failure.

* Make `clone()` return subclass of List/Struct

`clone()` is not working correctly when we subclass those classes

* Wipe the cache before the net run

the util function is copied from D7409424
will rebase once D7409424 is landed.

* [Caffe2] [Mobile] Support utils/cast.h::GetCastDataType with LITE_PROTO builds

* Correct includes

async_polling include -> async_base include

* Prepare execution flags for executor migration

Making async_scheduling aware of underlying net type to prepare for executor
migration

* Add operator level observers into async executor

Adding operator level observers into RunAsync operators' calls

* Cleanup TEST_Benchmark

Remove duplicate code and provide default implementation in NetBase

* [C2] Fix type and shape inference for binary comparison ops

As desc.

* Add GlobalInit to predictor to ensure initialization is always done before prediction

FACEBOOK:

Redo D7651453 the correct way.

Now use a static variable for the arguments passed to GLog

* Remove spammy log message

This method is currently used in various places inside Caffe itself.

* Disable events for operators inside a chain

We don't need to use events in operators within a chain because the chain is
always scheduled on a single stream, keeping only first and last event for
scheduling purposes

* Ensure correct finish run order

In rare cases we might call finishRun and trigger net's destruction while
another worker is still holding shared_ptr to a thread pool, that can cause
thread pool destruction from within a worker thread in case no other nets are
using the pool. This diff fixes the order of calling finishRun and also changes
pool() to return raw pointer to keep pool's ownership within the net

* Reduce unnecessary polling

Make sure we don't waste CPU by polling operators that we can set an efficient
callbacks on

* Squash commit of syncing 9506eeb from github to fbcode

Patch xplat buck fix

add virtual destructor to OptimizationPass

add virtual destructor to OptimizationPass

build fixes for sync

build fixes for sync

* Fix net tracing

Fix net tracing from async_scheduling

* Fix logging
2018-05-29 11:38:02 -07:00
Paul Jesse Hellemn
b875fb281c
Update from facebook (#7451)
* [bootcamp] Improve "Shape" operator to support axes specification

To improve .shape operator of Caffe2 to support x.shape(tensor, axes), which takes an optional int array "axes" as input. For example, x.shape(tensor, [1, 0]) will return the dimension for axis 1 and 0 following the specified order. For current version, "axes" input allows duplications and can have arbitrary length.

* Back out "Add barrier net that runs before training nets"

Original commit changeset: b373fdc9c30f. Need additional changes to some callers to support barrier failures.

* Change warning to verbose log to reduce log spam

The `LOG(WARNING)` was a bit spammy for regular use so lets just make it a `VLOG`.

* Extract the shared code from different caffe2_benchmark binaries

The OSS benchmark and Internal benchmark will share most functions in the benchmark.

* Support MFR in sequence training

As titled.

* Make knowledge distillation work with using logged prediction feature as teacher label.

1) Add loading raw dense feature as teacher label.
2) Optional calibration function for teacher label
3) Add teacher label into generic unit test
4) Deprecated TTSN workflow version using feature_options to config teacher label

* [C2/CUDA]: unjoined cross entropy sigmoid

as desc

* Add async_scheduling executor into deferrable_net_exec_test

Add async_scheduling into tests and fix some exception cases

* Fix Event disabled error

When disabling event in RNN ops make sure we don't call Finish on disabled
event from op's RunAsync

* cuda ensure cpu output op can handle both TensorCPU and TensorCUDA

as desc.

* [C2 Core] Infer input device option in C2 hypothesis_test checkers

Improve how we default input blob device options.
Previously it defaults as where op lives but it is not necessarily the case.

For example:
CopyCPUToGPU

* [C2 Op]SplitByLengthsOp CPU/GPU implementation

[C2 Op]SplitByLengthsOp CPU/GPU implementation

* fix undefined symbol error

not sure why we're getting undefined symbol even with link_whole = True
Need to figure out why but need this workaround for now

* Add tools in DAIPlayground platform to help debugging models

Add additional tools to allow Plauground override individual method defined in AnyExp.  This will allow user to create module that specificly change certain default method behavior.  An example included in this diff is deactivating test model and checkpointing.  When debugging any model problems, switching off components helps me quickly narrow down the location of the bug.  The technique is extensively used in task T27038712 (Steady memory increase in EDPM, eventually resulting in gloo/cuda.cu:34: out of memory)

* add shape and type inference for int8 conversion operator

* Fix flaky test for group_norm

Fix flaky test for group_norm

* Fix group_norm_op_test flaky

Fix group_norm_op_test flaky

* Implementation of composite learning rate policy

In many state-of-the-arts deep learning works, people use a simple trick to
schedule the learning rate: use a fixed learning rate until error plateaus
and then switch to a different fixed learning rate, and so on. In this diff,
we implemented a simple version of the composite learning rate. The user gives
a set of learning rates policies and corresponding iteration nums, and the
optimizer will change the learning rate policy based on the number of iterations so far.

For example, the user give two learning rate policies, one is FixedLearningRate
and PolyLearningRate, with an iteration number of 1k. Then the first 1k iteration,
we use FixedLearningRate. For the following iterations, we use PolyLearningRate.

* Split two use cases of CachedReader into two classes, DBFileReader and CachedReader

# Use Cases:

1). input: DB file -> output: DatasetReader.

Use DBFileReader.

2). input: Reader -> build cache DB file -> output: DatasetReader.

Use CachedReader.

# Changes to CachedReader:

1). Move db_path to the constructor.
Because in mock reader. cache will always be built ahead.

# Changes to tests:

1). Make a separate TestCase class for CachedReader and DBFileReader.

2). Make it possible to add more test functions by adding setUp, tearDown and _make_temp_path.

3). Make delete db_path more general. `db_path` could be a file for `log_file_db`, but could also be a directory for `leveldb`.

* Back out "On Mobile phones, call GlobalInit with no arguments in predictor in case we need to perform initialization"

Original commit changeset: 4489c6133f11

* Fix LARS bug

Fixed a bug in the LARS implementation which caused all subsequent blobs not using LARS to have the LARS learning rate multiplier applied to them.

* [tum] support sparse init & add uniformFill option

as title

* Propagate exception for async nets

Capture the exception when an exception is thrown in async nets and re-throw it after wait().  This allows exceptions to be propagated up to the caller.

This diff was a part of D7752068.  We split the diff so that C2 core files changes are in a separate diff.

* Automatic update of fbcode/onnx to 69894f207dfcd72d1e70497d387201cec327efbc

Previous import was 403ccfbd0161c38f0834413d790bad0874afbf9a

Included changes:
- **[69894f2](https://github.com/onnx/onnx/commit/69894f2)**: Use op schema.all tensor types in random like definitions (#865) <Scott McKay>
- **[b9d6b90](https://github.com/onnx/onnx/commit/b9d6b90)**: Clarify random like operators (#846) <Scott McKay>
- **[fc6b5fb](https://github.com/onnx/onnx/commit/fc6b5fb)**: Refactor shape inference implementation (#855) <anderspapitto>
- **[b7d8dc8](https://github.com/onnx/onnx/commit/b7d8dc8)**: fix cmake warning message (#863) <Eric S. Yu>
- **[f585c5d](https://github.com/onnx/onnx/commit/f585c5d)**: add pytorch-operator test for tile (#831) <Wenhao Hu>
- **[993fe70](https://github.com/onnx/onnx/commit/993fe70)**: add install step (#832) <Eric S. Yu>
- **[68bc26c](https://github.com/onnx/onnx/commit/68bc26c)**: add type inference for traditional ml ops except classifier ops. (#857) <Ke Zhang>
- **[9cc0cda](https://github.com/onnx/onnx/commit/9cc0cda)**: fix string representation of scalar types (#858) <G. Ramalingam>
- **[1078925](https://github.com/onnx/onnx/commit/1078925)**: fix y in pow test case to scalar (#852) <Wenhao Hu>
- **[c66fb6f](https://github.com/onnx/onnx/commit/c66fb6f)**: Add some math function shape inference (#845) <anderspapitto>
- **[ff667d1](https://github.com/onnx/onnx/commit/ff667d1)**: Refactor return type and docs for ONNXIFI_BACKEND_DIRECTX_ID (#853) <Marat Dukhan>
- **[11c6876](https://github.com/onnx/onnx/commit/11c6876)**: clear initializer names when clear initializer (#849) <Wenhao Hu>
- **[73c34ae](https://github.com/onnx/onnx/commit/73c34ae)**: Clarify FeatureVectorizer description. (#843) <Scott McKay>
- **[1befb9b](https://github.com/onnx/onnx/commit/1befb9b)**: Remove useless text in docs (#850) <Lu Fang>
- **[e84788f](https://github.com/onnx/onnx/commit/e84788f)**: Fix SELU attributes' default values (#839) <Lu Fang>
- **[ebac046](https://github.com/onnx/onnx/commit/ebac046)**: Add tile test case (#823) <Wenhao Hu>
- **[8b7a925](https://github.com/onnx/onnx/commit/8b7a925)**: a few more shape inference functions (#772) <anderspapitto>
- **[9718f42](https://github.com/onnx/onnx/commit/9718f42)**: Make the coefficient non optional for LinearClassifier (#836) <Jaliya Ekanayake>
- **[ef083d0](https://github.com/onnx/onnx/commit/ef083d0)**: Add save_tensor and load_tensor functions for Protos (#770) <Lu Fang>
- **[45ceb55](https://github.com/onnx/onnx/commit/45ceb55)**: Check if CMAKE_BUILD_TYPE set before project(). (#812) <Sergii Dymchenko>
- **[4b3d2b0](https://github.com/onnx/onnx/commit/4b3d2b0)**: [WIP] reenable shape inference tests (#834) <anderspapitto>
- **[22d17ee](https://github.com/onnx/onnx/commit/22d17ee)**: RNN tests: LSTM, GRU, SimpleRNN (#739) <Peyman Manikashani>
- **[de65b95](https://github.com/onnx/onnx/commit/de65b95)**: dimension denotation (#443) <Tian Jin>
- **[eccc76e](https://github.com/onnx/onnx/commit/eccc76e)**: fix field number issue in onnx operator proto and enable its build (#829) <Ke Zhang>
- **[d582beb](https://github.com/onnx/onnx/commit/d582beb)**: disable shape inference test to unbreak ci (#830) <Lu Fang>
- **[485b787](https://github.com/onnx/onnx/commit/485b787)**: function proto for composite op. (#802) <Ke Zhang>
- **[cd58928](https://github.com/onnx/onnx/commit/cd58928)**: specify defaults for attributes of Affine op (#820) <G. Ramalingam>
- **[7ee2cf9](https://github.com/onnx/onnx/commit/7ee2cf9)**: merge the dummy backend back into the main one (#743) <anderspapitto>
- **[1c03a5a](https://github.com/onnx/onnx/commit/1c03a5a)**: [Proposal] ONNX Interface for Framework Integration (previously ONNX Backend API) header and docs (#551) <Marat Dukhan>
- **[3769a98](https://github.com/onnx/onnx/commit/3769a98)**: Rename real model test case from VGG-16 to ZFNet (#821) <Lu Fang>

* [C2]ReluN Op

relu n op.

tf reference: https://www.tensorflow.org/api_docs/python/tf/nn/relu6

* Call destructor when assigning a blob value

* Add executor overrides

Add executor overrides flag to enable migration to async_scheduling executor

* Add barrier net that runs before training nets - attempt #2

Add a synchonize barrier net that is run before training nets.  With this net, shards that are faster will wait for other shards before start training.  This reduce chances of the faster shards timing out during GLOO AllReduce.
Removed explicit data_parallel_model.py.synchronize call in holmes workflow.

This change was landed previously but caused errors for some EDPM workflows - See https://fb.facebook.com/groups/1426530000692545/permalink/1906766366002237/ - because EDPM assumes any call to CreateOrCloneCommonWorld and Gloo ops are wrapped in exception handlers but in this case exception thrown in the barrier init net is not handled.

To address this issue, we add _CreateOrCloneCommonWorld to the param_init_net instead of a new barrier init net.  Since errors for param_init_net run is handled gracefully and re-rendezvous, it should fixes the problem.

* Handle empty nets in async_scheduling

Make sure we don't get stuck on empty nets

* use CUDA_ARCH for conditional compile

* [C2 fix] infer function for ensure_cpu_output_op

* Update group_norm test to reduce flaky test

* Fix lr_multiplier for GPU
2018-05-10 23:14:27 -07:00
Bram Wasti
aa56a1211d
Update from facebook (#6871)
* Track checkpoint performance in scuba

As title.

* [C2/CUDA]: fix cross entropy sigmoid with logits

when adding log_d_trick, I forgot to add it to the cuda impl; this diff fixes
it.

* Back out "[caffe2] Unregister MKL fallbacks for NCHW conversions"

Original commit changeset: 8918dd40205a
Will land after @jongsoo's diff https://phabricator.intern.facebook.com/D7596315 lands

* [Easy][C2] Don't add blob to external outputs from output_record if it's already external output

As desc.

* On Mobile phones, call GlobalInit with no arguments in predictor in case we need to perform initialization

FACEBOOK:

The QPL logger needs the initialization code. In the past, the initialization code is put in the pipeline calling Caffe2. However, those places become obsolete quickly, as the product teams change places to call Caffe2 from time to time. We also need to track which teams use Caffe2 so that we can put the initialization code there.

With this diff, the initialization code is put in the predictor constructor, only enabled for mobile phones. This way, we can always enable QPL logging.

Once we do this, we can check how many times Caffe2 inference is called in production, and which models are more popular in production. This way, we can prioritize our effort supporting those models.

Will clean up the old code calling the init in the product in a separate diff.

* add padding op for sparse length tensor

to pad length-based sparse tensor with padding_value

* Add conv_op with cudaconvnet engine

Add conv_op with cudaconvnet engine

* [numa] Fix simple NUMA copy benchmark

Move XavierFill into init_net and also compute BW

* call roundf (device function) instead of round (host function)

* [caffe2_benchmark][observer] Make caffe2_benchmark use its own observer

1. Add ClearGlobalNetObservers()
2. Make caffe2_benchmark use its own observer and observer_reporter

* [detectron] Use roundf instead of round in the detectron module ops

* allow K larger than number of elements in top k op

one use case is to use this op together with PackSegments for sparse tensors, where the number of elements in each slice is not statistically defined.

* add ChannelShuffle DNNLOWP op

* fixup math_cpu.cc break
2018-04-23 15:01:56 -07:00
Marat Dukhan
0b3edfd3dd
[caffe2] Do not print version and build info unless explicitly requested (#6282) 2018-04-05 16:09:13 -04:00
Orion Reblitz-Richardson
1d5780d42c Remove Apache headers from source.
* LICENSE file contains details, so removing from individual source files.
2018-03-27 13:10:18 -07:00
Dmytro Dzhulgakov
5527dd3b08 Expose CMake options in the binary
Summary:
Useful for figuring out with people which version they built with. We can just ask for --caffe2_version gflag or get core.build_options from python.

Also adds CMAKE_INSTALL_RPATH_USE_LINK_PATH - without it wasn't building on my Mac. How should it be tested?
Closes https://github.com/caffe2/caffe2/pull/1271

Reviewed By: bddppq

Differential Revision: D5940750

Pulled By: dzhulgakov

fbshipit-source-id: 45b4c94f67e79346a10a65b34f40fd258295dad1
2017-10-04 02:33:02 -07:00
Yangqing Jia
8286ce1e3a Re-license to Apache
Summary: Closes https://github.com/caffe2/caffe2/pull/1260

Differential Revision: D5906739

Pulled By: Yangqing

fbshipit-source-id: e482ba9ba60b5337d9165f28f7ec68d4518a0902
2017-09-28 16:22:00 -07:00
Yangqing Jia
57b51db8d7 Add a guard function to check Caffe2 linking setup.
Summary:
This helps diagnosing issues like #346
Closes https://github.com/caffe2/caffe2/pull/354

Differential Revision: D4928347

Pulled By: Yangqing

fbshipit-source-id: b45685f1da18cbc49be293260b1fc2268fe5cd4c
2017-04-21 03:38:37 -07:00
Yangqing Jia
d1e9215184 fbsync 2016-10-07 13:08:53 -07:00
Yangqing Jia
6463eebc7b chunky sync - build scripts to be written 2016-07-21 10:16:42 -07:00
Yangqing Jia
79c5275d75 A set of changes to make newest sync build.
(1) build file changes.
(2) removed data/ subfolder - anything involving datasets should probably
be tested separately.
(3) Some new functionalities.

TODOs:

(1) build files for contrib/
(2) cudnn 5.05 compatibility (currently supporting 5.04)
2016-05-15 23:04:32 -07:00
Yangqing Jia
559053d3a8 chunky sync 2016-05-13 14:43:48 -07:00
Yangqing Jia
fa59b90c72 misc updates 2016-01-13 21:00:56 -08:00
Yangqing Jia
648d1b101a A consolidation of a couple random weekend work.
(1) various bugfixes.
(2) Tensor is now a class independent from its data type. This allows us
    to write easier type-independent operators.
(3) code convention changes a bit: dtype -> T, Tensor<*Context> -> Tensor* alias.
(4) ParallelNet -> DAGNet to be more consistent with what it does.
(5) Caffe's own flags library instead of gflags.
(6) Caffe's own logging library instead of glog, but glog can be chosen with
    compile-time definition -DCAFFE2_USE_GOOGLE_GLOG. As a result, glog macros
    like CHECK, DCHECK now have prefix CAFFE_, and LOG(*) now becomes
    CAFFE_LOG_*.
(7) an optional protobuf inclusion, which can be chosen with USE_SYSTEM_PROTOBUF
    in build_env.py.
2015-10-11 23:14:06 -07:00